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Problem M10.1: Multithreading 
  
This problem evaluates the effectiveness of multithreading using a simple database benchmark. 
The benchmark searches for an entry in a linked list built from the following structure, which 
contains a key, a pointer to the next node in the linked list, and a pointer to the data entry.   
  

struct node { int key; 
struct node 
*next; struct 
data *ptr;  

}  
   
The following MIPS code shows the core of the benchmark, which traverses the linked list and 
finds an entry with a particular key. Assume MIPS has no delay slots.  
  

 ;  
 ; R1: a pointer to the linked list  
 ; R2: the key to find  
 ;  

loop: LW      R3, 0(R1)  ; load a key     
 LW   R4, 4(R1)  ; load the next pointer  

   SEQ   R3, R3, R2 ; set R3 if R3 == R2  
      BNEZ     R3, End    ; found the entry  
   ADD   R1, R0, R4  
   BNEZ  R1, Loop   ; check the next node 
End:  

; R1 contains a pointer to the matching entry or zero 
; if not found  

  
We run this benchmark on a single-issue in-order processor. The processor can fetch and issue 
(dispatch) one instruction per cycle. If an instruction cannot be issued due to a data dependency, 
the processor stalls. Integer instructions take one cycle to execute and the result can be used in the 
next cycle. For example, if SEQ is executed in cycle 1, BNEZ can be executed in cycle 2. We also 
assume that the processor has a perfect branch predictor with no penalty for both taken and not-
taken branches.  
  
Problem 10.1.A                        
  
Assume that our system does not have a cache. Each memory operation directly accesses main 
memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-blocking. After 
the processor issues a memory operation, it can continue executing instructions until it reaches an 
instruction that is dependent on an outstanding memory operation. How many cycles does it take 
to execute one iteration of the loop in steady state?   
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Problem M10.1.B                        
  
Now we add zero-overhead multithreading to our pipeline. A processor executes multiple threads, 
each of which performs an independent search. Hardware mechanisms schedule a thread to execute 
each cycle.     
  
In our first implementation, the processor switches to a different thread every cycle using fixed 
round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads executes one 
instruction every N cycles. What is the minimum number of threads that we need to fully utilize 
the processor, i.e., execute one instruction per cycle?   
  
  
  
Problem M10.1.C                        
  
How does multithreading affect throughput (number of keys the processor can find within a given 
time) and latency (time the processor takes to find an entry with a specific key)? Assume the 
processor switches to a different thread every cycle and is fully utilized. Check the correct boxes.  
  

  Throughput  Latency  

Better      

Same      

Worse      

  
  
  
Problem M10.1.D                        
  
We change the processor to only switch to a different thread when an instruction cannot execute 
due to data dependency. What is the minimum number of threads to fully utilize the processor now? 
Note that the processor issues instructions in-order in each thread.  
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Problem M10.2: Multithreaded architectures 
  
The program we will use is listed below. (In all questions, you should assume that arrays A, B and 
C do not overlap in memory.)  
  

 
 
In this problem, we will analyze the performance of our program on a multi-threaded architecture. 
Our machine is a single-issue, in-order processor. It switches to a different thread every cycle using 
fixed round robin scheduling. Each of the N threads executes one instruction every N cycles. We 
allocate the code to the threads such that every thread executes every Nth iteration of the original 
C code (each thread increments i by N).  
  
Integer instructions take 1 cycle to execute, floating point instructions take 4 cycles and memory 
instructions take 3 cycles. All execution units are fully pipelined. If an instruction cannot issue 
because its data is not yet available, it inserts a bubble into the pipeline, and retries after N cycles.  
  
Below is our program in assembly code for this machine.  
 

 
  

  
 
 
  

C code 
 
for (i=0; i<328; i++) { 
 A[i] = A[i] * B[i]; 
 C[i] = C[i] + A[i]; 
} 

Assembly code 
 
loop: ld   f1, 0(r1)  ; f1 = A[i] 
      ld   f2, 0(r2)  ; f2 = B[i] 
      fmul f4, f2, f1 ; f4 = f1 * f2 
      st   f4, 0(r1)  ; A[i] = f4 
      ld   f3, 0(r3)  ; f3 = C[i] 
      fadd f5, f4, f3 ; f5 = f4 + f3 
      st   f5, 0(r3)  ; C[i] = f5 
      add  r1, r1, 4 
      add  r2, r2, 4 
      add  r3, r3, 4 
      add  r4, r4, -1 
      bnez r4, loop   ; loop 
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Problem M10.2.A                        
  
What is the minimum number of threads this machine needs to remain fully utilized issuing an 
instruction every cycle for our program? Explain.  
  
  
  
 
 
 
 
 
 
 
Problem M10.2.B                        
  
What will be the peak performance in flops/cycle for this program? Explain briefly.  
  
  
  
  
 
 
 
 
 
 
Problem M10.2.C                        
  
Can we reach peak performance running this program using fewer threads by rearranging the 
instructions? Explain briefly.  
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Problem M10.3: Multithreading 
  
Consider a single-issue in-order multithreading processor that is similar to the one described in 
Problem M3.8.    
  
Each cycle, the processor can fetch and issue one instruction that performs any of the following 
operations.  
  

• load/store: 12-cycle latency (fully pipelined) 
• integer add: 1-cycle latency 
• floating-point add: 5-cycle latency (fully pipelined) 
• branch: no delay slots, 1-cycle latency 

 
The processor does not have a cache.  Each memory operation directly accesses main memory.  
If an instruction cannot be issued due to a data dependency, the processor stalls.  We also assume 
that the processor has a perfect branch predictor with no penalty for both taken and not-taken 
branches.  
  
You job is to analyze the processor utilizations for the following two thread-switching 
implementations.  
  
Fixed Switching:  the processor switches to a different thread every cycle using fixed roundrobin 
scheduling.  Each of the N threads executes an instruction every N cycles.  
  
Data-dependent Switching:  the processor only switches to a different thread when an instruction 
cannot execute due to a data dependency.  
  
Each thread executes the following MIPS code.  
 

  
 
Problem M10.3.A                        
  
What is the minimum number of threads that we need to fully utilize the processor for each 
implementation?    
  
Fixed Switching: _________________ Thread(s)  
  
  
Data-dependent Switching: _________________ Thread(s)  
  
  
  

loop: ld   F2, 0(R1)     ; load data into F2 
      addi R1, R1, 4     ; bump source pointer 
      fadd F3, F3, F2    ; F3 = F3 + F2 
      bne  F2, F4, loop  ; continue if F2 != F4 
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Problem M10.3.B                        
  
What is the minimum number of threads that we need to fully utilize the processor for each 
implementation if we change the load/store latency to 1-cycle (but keep the 5-cycle 
floatingpoint add)?    
  
  
Fixed Switching: _________________ Thread(s)  
  
  
  
Data-dependent Switching: _________________ Thread(s)  
  
  
  
  
Problem M10.3.C                        
  
Consider a Simultaneous Multithreading (SMT) machine with limited hardware resources.  
Circle the following hardware constraints that can limit the total number of threads that the machine 
can support.  For the item(s) that you circle, briefly describe the minimum requirement to support 
N threads.  
  
  
(A) Number of Functional Units   
  
  
(B) Number of Physical Registers  
  
  
(C) Data Cache Size  
  
  
(D) Data Cache Associatively  
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Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D) 
 
 Consider the following instruction sequence. 
 

 
 

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at cycle N, 
then instructions that depend on the result of I1 can only start execution at or after cycle N+4); 
multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier 
and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect 
branch prediction.  
 
 
Problem M10.4.A                        
 
Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the 
processor switches to the next thread every cycle, and if the instruction of the next thread is not 
ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to 
fully utilize the processor every cycle while running this code? 
 
4 
 
 
 
 
  

      addi   r3, r0, 256 
loop: lw     f1, r1, #0 
      lw     f2, r2, #0 
      mul    f3, f1, f2 
      sw     f3, r2, #0 
      addi   r1, r1, #4 
      addi   r2, r2, #4 
      addi   r3, r3, #-1 
      bnez   r3, loop 
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Problem M10.4.B                        
 
Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to 
another thread when there is a L2 cache miss. Will the following three metrics increase or decrease, 
compared to fixed round-robin switching? Use a couple of sentences to answer the following 
questions. 
 
 
1) Compared to fixed round-robin switching, will the number of threads needed for the highest 
achievable utilization increase or decrease? Why? 
 
 
 
 
 
 
 
 
 
 
2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization 
increase or decrease? Why? 
 
 
 
 
 
 
 
 
 
 
 
3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?  
 
  

  


