
Last updated:
3/10/2020

Problem M10.1: Multithreading

This problem evaluates the effectiveness of multithreading using a simple database benchmark.
The benchmark searches for an entry in a linked list built from the following structure, which
contains a key, a pointer to the next node in the linked list, and a pointer to the data entry.

struct node { int key;
struct node
*next; struct
data *ptr;

}

The following MIPS code shows the core of the benchmark, which traverses the linked list and
finds an entry with a particular key. Assume MIPS has no delay slots.

 ;
 ; R1: a pointer to the linked list
 ; R2: the key to find
 ;

loop: LW R3, 0(R1) ; load a key
 LW R4, 4(R1) ; load the next pointer

 SEQ R3, R3, R2 ; set R3 if R3 == R2
 BNEZ R3, End ; found the entry
 ADD R1, R0, R4
 BNEZ R1, Loop ; check the next node
End:

; R1 contains a pointer to the matching entry or zero
; if not found

We run this benchmark on a single-issue in-order processor. The processor can fetch and issue
(dispatch) one instruction per cycle. If an instruction cannot be issued due to a data dependency,
the processor stalls. Integer instructions take one cycle to execute and the result can be used in the
next cycle. For example, if SEQ is executed in cycle 1, BNEZ can be executed in cycle 2. We also
assume that the processor has a perfect branch predictor with no penalty for both taken and not-
taken branches.

Problem 10.1.A

Assume that our system does not have a cache. Each memory operation directly accesses main
memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-blocking. After
the processor issues a memory operation, it can continue executing instructions until it reaches an
instruction that is dependent on an outstanding memory operation. How many cycles does it take
to execute one iteration of the loop in steady state?

Last updated:
3/10/2020

Problem M10.1.B

Now we add zero-overhead multithreading to our pipeline. A processor executes multiple threads,
each of which performs an independent search. Hardware mechanisms schedule a thread to execute
each cycle.

In our first implementation, the processor switches to a different thread every cycle using fixed
round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads executes one
instruction every N cycles. What is the minimum number of threads that we need to fully utilize
the processor, i.e., execute one instruction per cycle?

Problem M10.1.C

How does multithreading affect throughput (number of keys the processor can find within a given
time) and latency (time the processor takes to find an entry with a specific key)? Assume the
processor switches to a different thread every cycle and is fully utilized. Check the correct boxes.

 Throughput Latency

Better

Same

Worse

Problem M10.1.D

We change the processor to only switch to a different thread when an instruction cannot execute
due to data dependency. What is the minimum number of threads to fully utilize the processor now?
Note that the processor issues instructions in-order in each thread.

Last updated:
3/10/2020

Problem M10.2: Multithreaded architectures

The program we will use is listed below. (In all questions, you should assume that arrays A, B and
C do not overlap in memory.)

In this problem, we will analyze the performance of our program on a multi-threaded architecture.
Our machine is a single-issue, in-order processor. It switches to a different thread every cycle using
fixed round robin scheduling. Each of the N threads executes one instruction every N cycles. We
allocate the code to the threads such that every thread executes every Nth iteration of the original
C code (each thread increments i by N).

Integer instructions take 1 cycle to execute, floating point instructions take 4 cycles and memory
instructions take 3 cycles. All execution units are fully pipelined. If an instruction cannot issue
because its data is not yet available, it inserts a bubble into the pipeline, and retries after N cycles.

Below is our program in assembly code for this machine.

C code

for (i=0; i<328; i++) {
 A[i] = A[i] * B[i];
 C[i] = C[i] + A[i];
}

Assembly code

loop: ld f1, 0(r1) ; f1 = A[i]
 ld f2, 0(r2) ; f2 = B[i]
 fmul f4, f2, f1 ; f4 = f1 * f2
 st f4, 0(r1) ; A[i] = f4
 ld f3, 0(r3) ; f3 = C[i]
 fadd f5, f4, f3 ; f5 = f4 + f3
 st f5, 0(r3) ; C[i] = f5
 add r1, r1, 4
 add r2, r2, 4
 add r3, r3, 4
 add r4, r4, -1
 bnez r4, loop ; loop

Last updated:
3/10/2020

Problem M10.2.A

What is the minimum number of threads this machine needs to remain fully utilized issuing an
instruction every cycle for our program? Explain.

Problem M10.2.B

What will be the peak performance in flops/cycle for this program? Explain briefly.

Problem M10.2.C

Can we reach peak performance running this program using fewer threads by rearranging the
instructions? Explain briefly.

Last updated:
3/10/2020

Problem M10.3: Multithreading

Consider a single-issue in-order multithreading processor that is similar to the one described in
Problem M3.8.

Each cycle, the processor can fetch and issue one instruction that performs any of the following
operations.

• load/store: 12-cycle latency (fully pipelined)
• integer add: 1-cycle latency
• floating-point add: 5-cycle latency (fully pipelined)
• branch: no delay slots, 1-cycle latency

The processor does not have a cache. Each memory operation directly accesses main memory.
If an instruction cannot be issued due to a data dependency, the processor stalls. We also assume
that the processor has a perfect branch predictor with no penalty for both taken and not-taken
branches.

You job is to analyze the processor utilizations for the following two thread-switching
implementations.

Fixed Switching: the processor switches to a different thread every cycle using fixed roundrobin
scheduling. Each of the N threads executes an instruction every N cycles.

Data-dependent Switching: the processor only switches to a different thread when an instruction
cannot execute due to a data dependency.

Each thread executes the following MIPS code.

Problem M10.3.A

What is the minimum number of threads that we need to fully utilize the processor for each
implementation?

Fixed Switching: _________________ Thread(s)

Data-dependent Switching: _________________ Thread(s)

loop: ld F2, 0(R1) ; load data into F2
 addi R1, R1, 4 ; bump source pointer
 fadd F3, F3, F2 ; F3 = F3 + F2
 bne F2, F4, loop ; continue if F2 != F4

Last updated:
3/10/2020

Problem M10.3.B

What is the minimum number of threads that we need to fully utilize the processor for each
implementation if we change the load/store latency to 1-cycle (but keep the 5-cycle
floatingpoint add)?

Fixed Switching: _________________ Thread(s)

Data-dependent Switching: _________________ Thread(s)

Problem M10.3.C

Consider a Simultaneous Multithreading (SMT) machine with limited hardware resources.
Circle the following hardware constraints that can limit the total number of threads that the machine
can support. For the item(s) that you circle, briefly describe the minimum requirement to support
N threads.

(A) Number of Functional Units

(B) Number of Physical Registers

(C) Data Cache Size

(D) Data Cache Associatively

Last updated:
3/10/2020

Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D)

 Consider the following instruction sequence.

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at cycle N,
then instructions that depend on the result of I1 can only start execution at or after cycle N+4);
multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier
and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect
branch prediction.

Problem M10.4.A

Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the
processor switches to the next thread every cycle, and if the instruction of the next thread is not
ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to
fully utilize the processor every cycle while running this code?

4

 addi r3, r0, 256
loop: lw f1, r1, #0
 lw f2, r2, #0
 mul f3, f1, f2
 sw f3, r2, #0
 addi r1, r1, #4
 addi r2, r2, #4
 addi r3, r3, #-1
 bnez r3, loop

Last updated:
3/10/2020

Problem M10.4.B

Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to
another thread when there is a L2 cache miss. Will the following three metrics increase or decrease,
compared to fixed round-robin switching? Use a couple of sentences to answer the following
questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the highest
achievable utilization increase or decrease? Why?

2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization
increase or decrease? Why?

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?

