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Problem M6.1: Complex Pipelining Dependencies 
 
Consider the following instruction sequence. An equivalent sequence of C-like pseudocode is 
also provided. 
 
I1:  L.D     F1, 0 (R1)        ;    F1 = *r1; 
I2:  MUL.D   F2, F0, F2        ;    F2 = F0*F2; 
I3:  ADD.D   F1, F2, F2        ;    F1 = F2 + F2; 
I4:  L.D     F2, 0 (R2)        ;    F2 = *r2;  
I5:  ADD.D   F3, F1, F2        ;    F3 = F1 + F2; 
I6:  S.D     F3, 0 (R3)        ;    *r3 = F3; 
…… 
 
Fill out the table below to identify all Read-After-Write (RAW), Write-After-Read (WAR), and 
Write-After-Write (WAW) dependencies in the above sequence. Do not worry about memory 
dependencies for this question. The dependency between I2 and I3 is already filled in for you. 
 

                 Earlier (Older) Instruction 
 I1 I2 I3 I4 I5 I6 

I1 -      

I2  -     

I3  RAW -    

I4    -   

I5     -  

I6      - 
 
 

Current 
Instruction 
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Problem M6.2: Out-of-order Scheduling 
 
Ben Bitdiddle is adding a floating-point unit to the basic MIPS pipeline. He has patterned the 
design after the IBM 360/91’s floating-point unit. His FPU has one adder, one multiplier, and 
one load/store unit. The adder has a four-cycle latency and is fully pipelined. The multiplier has 
a fifteen-cycle latency and is fully pipelined.  Assume that loads and stores take 1 cycle (plus one 
cycle for the write-back stage for loads) and that we have perfect branch prediction. 
 
There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There 
is a single write-back port to each register file. In the case of a write-back conflict, the older 
instruction writes back first. Floating-point instructions (and loads writing floating point registers) 
must spend one cycle in the write-back stage before their result can be used.  Integer results are 
available for bypass the next cycle after issue. 
  
Ben is now deciding whether to go with (a) in-order issue using a scoreboard, (b) out-of-order 
issue, or (c) out-of-order issue with register renaming. His favorite benchmark is this DAXPY 
loop central to Gaussian elimination (Hennessy and Patterson, 291).  The following code 
implements the operation Y=aX+Y for a vector of length 100.  Initially R1 contains the base 
address for X, R2 contains the base address for Y, and F0 contains a.  Your job is to evaluate the 
performance of the three scheduling alternatives on this loop. 
 

 loop:    
I1  L.D F2, 0(R1) ;load X(i) 
I2  MUL.D F1, F2, F0 ;multiply a*X(i) 
I3  L.D F3, 0(R2) ;load Y(i) 
I4  ADD.D F3, F1, F3 ;add a*X(i)+Y(i) 
I5  S.D F3, 0(R2) ;store Y(i) 
I6  DADDUI R1, R1, 8 ;increment X index 
I7  DADDUI R2, R2, 8 ;increment Y index 
I8  DSGTUI R3, R1, 800 ;test if done 
I9  BEQZ R3, loop ;loop if not done 
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Problem M6.2.A In-order using a scoreboard 
 
Fill in the scoreboard in table M6.2-1 to simulate the execution of one iteration of the loop for in-
order issue using a scoreboard. Keep in mind that, in this scheme, no instruction is issued that 
has a WAW hazard with any previous instruction that has not written back (as mentioned in the 
lecture slides). Recall the WB stage is only relevant for FP instructions (integer instructions can 
forward results). You may use ellipses in the table to represent the passage of time (to compress 
repetitive lines). 
 
In steady state, how many cycles does each iteration of the loop take?  What is the bottleneck? 
 
 
Problem M6.2.B Out-of-order 

 
Now consider a single-issue out-of-order implementation. In this scheme, the issue stage buffer 
holds multiple instructions waiting to issue. The decode stage can add up to one instruction per 
cycle to the issue buffer. The decode stage adds an instruction to the issue buffer if there is space 
and if the instruction does not have a WAR hazard with any previous instruction that has not 
issued or a WAW hazard with any previous instruction that has not written back. Assume you 
have an infinitely large issue buffer.  Assume only one instruction can be dispatched from the 
issue buffer at a time. 
 
Table M6.2-2 represents the execution of one iteration of the loop in steady state. Fill in the 
cycle numbers for the cycles at which each instruction issues and writes back. The first row has 
been filled out for you already; please complete the rest of the table. Note that the order of 
instructions listed is not necessarily the issue order. We define cycle 0 as the time at which 
instruction I1 is issued.  
 
Draw arrows for the RAW, WAR, and WAW dependencies that are involved in the critical path 
of the loop in table M2.1-2.  In steady state, how many cycles does each iteration of the loop take?  
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Problem M6.2.C Register Renaming 
 
The number of registers specified in an ISA limits the maximum number of instructions that can 
be in the pipeline. This question studies register renaming to solve this problem. In this question, 
we will consider an ideal case where we have unlimited hardware resources for renaming 
registers. 
 
Table M6.2-3 shows instructions from our benchmark for two iterations using the same format as 
Table M6.2-2. First, fill in the new register names for each instruction, where applicable. Since 
we have an infinite supply of register names, you should use a new register name each time a 
register is written (T0, T1, T2, etc). Keep in mind that after a register has been renamed, 
subsequent instructions that refer to that register need to refer instead to the new register name. 
You may find it helpful to create a rename table. Rename both integer and floating-point 
instructions. 
 
Next, fill in the cycle numbers for the cycles at which each instruction issues and writes back. 
The decode stage can add up to one instruction per cycle to the re-order buffer (ROB). Assume 
that instruction I2 was decoded in cycle 0, and cannot be issued until cycle 2. Also assume that 
you have an infinitely large ROB.   
 
In steady state, how many cycles does each iteration of the loop take?  What is the performance 
bottleneck? 
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Instr. 
Issued 

Time 
(cycles) 

Functional Unit Status Floating Point 
Registers Reserved 

for Writes Int  Load (1)  Adder 
(4) 

Multiplier 
(15) WB 

I1 0  F2    F2 
 1     F2 F2 

I2 2    F1  F1 
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

Table M6.2-1   
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Time 

Op Dest Src1 Src2 
Decode → Issue Issued WB 

I1 -1 0 1 L.D F2 R1  

I2 
 

  MUL.D F1 F2 F0 

I3 
 

  L.D F3 R2  

I4 
 

   ADD.D F3 F1 F3 

I5 
 

  S.D  R2 F3 

I6 
 

  DADDUI R1 R1  

I7 
 

  DADDUI R2 R2  

I8 
 

  DSGTUI R3 R1  

I9 
 

  BEQZ  R3  

Table M6.2-2 
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Time 

Op Dest Src1 Src2 
Decode → Issue Issued WB 

I1 -1 0 1 L.D T0 R1  

I2 
 

  MUL.D T1 t0 F0 

I3 
 

  L.D T2 R2  

I4 
 

   ADD.D T3   

I5 
 

  S.D    

I6 
 

  DADDUI    

I7 
 

  DADDUI    

I8 
 

  DSGTUI    

I9 
 

  BEQZ    

I1    L.D    

I2 
 

  MUL.D    

I3 
 

  L.D    

I4 
 

   ADD.D    

I5 
 

  S.D    

I6 
 

  DADDUI    

I7 
 

  DADDUI    

I8 
 

  DSGTUI    

I9 
 

  BEQZ    

Table M6.2-3 
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Problem M6.3: Out-of-Order Scheduling 
 
This problem deals with an out-of-order single-issue processor that is based on the basic MIPS 
pipeline and has floating-point units. The FPU has one adder, one multiplier, and one load/store 
unit. The adder has a two-cycle latency and is fully pipelined. The multiplier has a ten-cycle 
latency and is fully pipelined. Assume that loads and stores take 1 cycle (plus one cycle for 
write-back for loads). 
 
There are 4 floating-point registers, F0-F3.  These are separate from the integer registers. There 
is a single write-back port to each register file. In the case of a write-back conflict, the older 
instruction writes back first. Floating-point instructions (including loads writing floating point 
registers) must spend one cycle in the write-back stage before their result can be used. Integer 
results are available for bypass the next cycle after issue. 
 
To maximize number of instructions that can be in the pipeline, register renaming is used. The 
decode stage can add up to one instruction per cycle to the re-order buffer (ROB).   
 
The instructions are committed in order and only one instruction may be committed per cycle.  
The earliest time an instruction can be committed is one cycle after write back. 
 
For the following questions, we will evaluate the performance of the code segment in Figure 
M6.3-A.  
 

I1  L.D F1, 5(R2) 
I2  MUL.D F2, F1, F0 
I3  ADD.D F3, F2, F0 
I4  ADDI R2, R2, 8 
I5  L.D F1, 5(R2) 
I6  MUL.D F2, F1, F1 
I7  ADD.D F2, F2, F3 

Figure M6.3-A 
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Problem M6.3.A  
 
For this question, we will consider an ideal case where we have unlimited hardware resources for 
renaming registers.  Assume that you have an infinitely large ROB. 
 
Your job is to complete Table M6.3-1. Fill in the cycle numbers when each instruction enters the 
ROB, issues, writes back, and commits. Also fill in the new register names for each instruction, 
where applicable. Since we have an infinite supply of register names, you should use a new 
register name each time a register is written (T0, T1, T2, … etc). Keep in mind that after a 
register has been renamed, subsequent instructions that refer to that register need to refer instead 
to the new register name. 
 

 Time 
OP Dest Src1 Src2 Decode à 

ROB 
Issued WB Committed 

I1 -1 0 1 2 L.D T0 R2 - 
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 1    ADD.D    
I4     ADDI   - 
I5     L.D   - 
I6     MUL.D    
I7     ADD.D    

Table M6.3-1 
 
 
Problem M6.3.B  

 
For this question, assume that you have a two-entry ROB. An ROB entry can be reused one 
cycle after the instruction using it commits.   
 
Your job is to complete Table M6.3-2.  Fill in the cycle numbers when each instruction enters 
the ROB, issues, writes back, and commits. Also fill in the new register names for each 
instruction, where applicable.   
 

 Time 
OP Dest Src1 Src2 Decode à 

ROB 
Issued WB Committed 

I1 -1 0 1 2 L.D T0 R2 - 
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 3    ADD.D    
I4     ADDI   - 
I5     L.D   - 
I6     MUL.D    
I7     ADD.D    

Table M6.3-2 
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Problem M6.4: Superscalar Processor 
 
Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features. 

o Four fully-pipelined functional units: ALU, MEM, FADD, FMUL 
o Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the 

ROB (assume perfect branch prediction and no cache misses) 
o An unbounded length Reorder Buffer that can perform the following operations on every 

cycle. 
o Accept two instructions from the Instruction Fetch and Decode Unit 
o Dispatch an instruction to each functional unit including Data Memory 
o Let Write-back update an unlimited number of entries 
o Commit up to 2 instructions in-order 

o There is no bypassing or short circuiting. For example, data entering the ROB cannot be 
passed on to the functional units or committed in the same cycle. 

. 

 

Instruction
Queue

ROB

(infinite)

2 Instr per 
cycle

ALU

FADD

+ Data
Mem

FMUL

Regfile

Issue as 
many as 
possible

Writeback as many 
as possible

Commit at 
most 2 instr 

per cycle
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Now consider the execution of the following program on this machine using: 

 
I1 loop: LD F2, 0(R2) 
I2  LD F3, 0(R3) 
I3  FMUL F4, F2, F3 
I4  LD F2, 4(R2) 
I5  LD F3, 4(R3) 
I6  FMUL F5, F2, F3 
I7  FMUL F6, F4, F5 
I8  FADD F4, F4, F5 
I9  FMUL F6, F4, F5 
I10  FADD F1, F1, F6 
I11  ADD R2, R2, 8 
I12  ADD R3, R3, 8 
I13  ADD R4, R4, -1 
I14  BNEZ R4, loop 

 
 
Problem M6.4.A  

 
Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10. 
Tags should not be reused. 
 

Instr # Instruction Dest Src1 Src2 
I1 LD F2, 0(R2) T1 R2 0 
I2 LD F3, 0(R3) T2 R3 0 
I3 FMUL F4, F2, F3    
I4 LD F2, 4(R2)  R2 4 
I5 LD F3, 4(R3)  R3 4 
I6 FMUL F5, F2, F3    
I7 FMUL F6, F4, F5    
I8 FADD F4, F4, F5    
I9 FMUL F6, F4, F5    
I10 FADD F1, F1, F6  F1  

 
Renaming table 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 
R2           
R3           
F1           
F2 T1          
F3  T2         
F4           
F5           
F6           
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Problem M6.4.B  
 
Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the 
data dependencies between the instructions after register renaming 
 
 

 
 
 
 
Problem M6.4.C  

 
The attached table is a data structure to record the times when some activity takes place in the 
ROB. For example, one column records the time when an instruction enters ROB, while the last 
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the 
time when results are written back to the ROB. This data structure has been designed to test your 
understanding of how a Superscalar machine functions.  
 
Fill in the blanks in the last two columns up to slot T13 (you may use the source columns for 
book keeping).  
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Slot 
 

Instruction 
Cycle 

instruction 
entered 
ROB 

Argument 1 Argument 2 dst Cycle 
dispatched 

Cycle 
written 
back to 
ROB 

src1 cycle 
available 

Src2 cycle 
available 

dst reg 

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6 
T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7 
T3 FMUL F4, F2, F3 2   F3 7 F4   
T4 LD F2, 4(R2) 2 C 2 R2  F2   
T5 LD F3, 4(R3) 3 C 3 R3  F3   
T6 FMUL F5, F2, F3 3     F5   
T7 FMUL F6, F4, F5 4     F6   
T8 FADD F4, F4, F5 4     F4   
T9 FMUL F6, F4, F5 5     F6   
T10 FADD F1, F1, F6 5     F1   
T11 ADD R2, R2, 8 6 R2 6 C 6 R2   
T12 ADD R3, R3, 8 6 R3 6 C 6 R3   
T13 ADD R4, R4, -1 7 R4 7 C 7 R4   
T14 BNEZ R4, loop 7   C Loop    
T15 LD F2, 0(R2) 8 C 8   F2 10 14 
T16 LD F3, 0(R3) 8 C 8   F3 11 15 
T17 FMUL F4, F2, F3 9     F4   
T18 LD F2, 4(R2) 9 C 9   F2   
T19 LD F3, 4(R3) 10 C 10   F3   
T20 FMUL F5, F2, F3 10     F5   
T21 FMUL F6, F4, F5 11     F6   
T22 FADD F4, F4, F5 11     F4   
T23 FMUL F6, F4, F5 12     F6   
T24 FADD F1, F1, F6 12     F1   
T25 ADD R2, R2, 8 13   C 13 R2   
T26 ADD R3, R3, 8 13   C 13 R3   
T27 ADD R4, R4, -1 14   C 14 R4   
T28 BNEZ R4, loop 14   C  Loop    
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Problem M6.4.D  
 
Identify the instructions along the longest latency path in completing this iteration of the loop (up 
to instruction 13). Suppose we consider an instruction to have executed when its result is 
available in the ROB. How many cycles does this iteration take to execute?  
 
 
 
Problem M6.4.E  

 
Do you expect the same behavior, i.e., the same dependencies and the same number of cycles, 
for the next iteration? (You may use the slots from T15 onwards in the attached diagram for 
bookkeeping to answer this question). Please give a simple reason why the behavior may repeat, 
or identify a resource bottleneck or dependency that may preclude the repetition of the behavior. 
 
 
 
Problem M6.4.F  

 
Can you improve the performance by adding at most one additional memory port and an FP 
Multiplier? Explain briefly. 
 
Yes / No  
 
 
 
Problem M6.4.G  

 
What is the minimum number of cycles needed to execute a typical iteration of this loop if we 
keep the same latencies for all the units but are allowed to use as many FUs and memory ports 
and are allowed to fetch and commit as many instructions as we want. 
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 Problem M6.5: Register Renaming and Static vs. Dynamic Scheduling 
 
The following MIPS code calculates the floating-point expression E = A * B + C * D, where the 
addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively: 
 

L.S F0, 0(R1) 
L.S F1, 0(R2) 
MUL.S F0, F0, F1 
L.S F2, 0(R3) 
L.S F3, 0(R4) 
MUL.S F2, F2, F3 
ADD.S F0, F0, F2 
S.S F0, 0(R5) 

 
 
Problem M6.5.A Simple Pipeline 
 
Calculate the number of cycles this code sequence would take to execute (i.e., the number of 
cycles between the issue of the first load instruction and the issue of the final store, inclusive) on 
a simple in-order pipelined machine that has no bypassing. The datapath includes a load/store 
unit, a floating-point adder, and a floating-point multiplier. Assume that loads have a two-cycle 
latency, floating-point multiplication has a four-cycle latency and floating-point addition has a 
two-cycle latency. Write-back for floating-point registers takes one cycle. Also assume that all 
functional units are fully pipelined and ignore any write-back conflicts. Give the number of 
cycles between the issue of the first load instruction and the issue of the final store, inclusive. 
 

 
Problem M6.5.B Static Scheduling 

 
Reorder the instructions in the code sequence to minimize the execution time. Show the new 
instruction sequence and give the number of cycles this sequence takes to execute on the simple 
in-order pipeline. 
 
 
Problem M6.5.C Fewer Registers 

 
Rewrite the code sequence, but now using only two floating-point registers. Optimize for 
minimum run-time. You may need to use temporary memory locations to hold intermediate 
values (this process is called register-spilling when done by a compiler). List the code sequence 
and give the number of cycles it takes to execute. 
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Problem M6.5.D Register renaming and dynamic scheduling 

Simulate the effect of running the original code on a single-issue machine with register renaming 
and out-of-order issue. Ignore structural hazards apart from the single instruction decode per 
cycle. Show how the code is executed and give the number of cycles required. Compare it with 
results from the optimized execution in M2.4.B. 
 
 
Problem M6.5.E Effect of Register Spills 

Now simulate the effect of running the code you wrote in M2.4.C on the single-issue machine 
with register renaming and out-of-order issue from M2.4.D. Compare the number of cycles 
required to execute the program. What are the differences in the program and/or architecture that 
change the number of cycles required to execute the program? You should assume that all load 
instructions before a store must issue before the store is issued, and load instructions after a store 
must wait for the store to issue. 
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Problem M6.6: Register Renaming Schemes 
 
This problem requires the knowledge of Handout Out-of-Order Execution with ROB and 
Lectures 8 and 9.  Please, read these materials before answering the following questions. 
 
Future File Scheme 
In order to eliminate the step of reading operands from the reorder buffer in the decode stage, we 
can insert a second register file into the processor shown in Figure M6.6-A, called the future file.  
The future file contains the most up-to-date speculatively-executed value for a register, while the 
primary register file contains committed values. Each entry in the future file has a valid bit. A 
summary of the operations is given below. 
 

 
Figure M6.6-A 

 
Only the decode and write-back stages have to change from the baseline implementation in 
Handout Out-of-Order Execution with ROB to implement the future file, as described below. 
Decode: The Rename table, the register file, and the future file are read simultaneously. If the 
rename table has the valid bit set for an operand, then the value has not yet been produced and 
the tag will be used. Otherwise, if the future file has a valid bit set for its entry, then use the 
future file value. Otherwise, use the register file value. The instruction is assigned a slot in the 
ROB (the ROB index is this instruction’s tag). If the instruction writes a register, its tag is 
written to the destination register entry in the rename table. 
Write-Back: When an instruction completes execution, the result, if any, will be written back to 
the data field in the reorder buffer and the pd bit will be set. Additionally, any dependent 
instructions in the reorder buffer will receive the value.  If the tag in the rename table for this 
register matches the tag of the result, the future file is written with the value and the valid bit on 
the rename table entry is cleared. 
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Problem M6.6.A Finding Operands: Original ROB scheme 
 
Consider the original ROB scheme in Handout Out-of-Order Execution with ROB, and suppose 
the processor state is as given in Figure H4-A. Assume that the following three instructions enter 
the ROB simultaneously in a single cycle, and that no instruction commits or completes 
execution in this cycle. In the table below, write the contents of each instruction’s source 
operand entries (either a register value or a tag t1, t2, etc., for both Src1 and Src2) and whether 
that entry came from the register file, the reorder buffer, the rename table or the instruction itself.   
 

Instruction Src1 value 

Regfile, ROB, 
rename table, 
or instruction? Src2 value 

Regfile, ROB, 
rename table, or 
instruction? 

sub r5,r1,r3     
addi r6,r2,4     
andi r7,r4,3     

 
 
Problem M6.6.B Finding Operands: Future File Scheme 

 
In the future file scheme, explain why an instruction entering the ROB will never need to fetch 
either of its operands from the ROB. 
 
 
Problem M6.6.C Future File Operation 

 
Describe a situation in which an instruction result is written to the ROB but might not be written 
to the future file. Provide a simple code sequence to illustrate your answer. 
 
 


