
Last updated:
3/10/2020

 1

Problem M6.1: Complex Pipelining Dependencies

Consider the following instruction sequence. An equivalent sequence of C-like pseudocode is
also provided.

I1: L.D F1, 0 (R1) ; F1 = *r1;
I2: MUL.D F2, F0, F2 ; F2 = F0*F2;
I3: ADD.D F1, F2, F2 ; F1 = F2 + F2;
I4: L.D F2, 0 (R2) ; F2 = *r2;
I5: ADD.D F3, F1, F2 ; F3 = F1 + F2;
I6: S.D F3, 0 (R3) ; *r3 = F3;
……

Fill out the table below to identify all Read-After-Write (RAW), Write-After-Read (WAR), and
Write-After-Write (WAW) dependencies in the above sequence. Do not worry about memory
dependencies for this question. The dependency between I2 and I3 is already filled in for you.

 Earlier (Older) Instruction
 I1 I2 I3 I4 I5 I6

I1 -

I2 -

I3 RAW -

I4 -

I5 -

I6 -

Current
Instruction

Last updated:
3/10/2020

 2

Problem M6.2: Out-of-order Scheduling

Ben Bitdiddle is adding a floating-point unit to the basic MIPS pipeline. He has patterned the
design after the IBM 360/91’s floating-point unit. His FPU has one adder, one multiplier, and
one load/store unit. The adder has a four-cycle latency and is fully pipelined. The multiplier has
a fifteen-cycle latency and is fully pipelined. Assume that loads and stores take 1 cycle (plus one
cycle for the write-back stage for loads) and that we have perfect branch prediction.

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There
is a single write-back port to each register file. In the case of a write-back conflict, the older
instruction writes back first. Floating-point instructions (and loads writing floating point registers)
must spend one cycle in the write-back stage before their result can be used. Integer results are
available for bypass the next cycle after issue.

Ben is now deciding whether to go with (a) in-order issue using a scoreboard, (b) out-of-order
issue, or (c) out-of-order issue with register renaming. His favorite benchmark is this DAXPY
loop central to Gaussian elimination (Hennessy and Patterson, 291). The following code
implements the operation Y=aX+Y for a vector of length 100. Initially R1 contains the base
address for X, R2 contains the base address for Y, and F0 contains a. Your job is to evaluate the
performance of the three scheduling alternatives on this loop.

 loop:
I1 L.D F2, 0(R1) ;load X(i)
I2 MUL.D F1, F2, F0 ;multiply a*X(i)
I3 L.D F3, 0(R2) ;load Y(i)
I4 ADD.D F3, F1, F3 ;add a*X(i)+Y(i)
I5 S.D F3, 0(R2) ;store Y(i)
I6 DADDUI R1, R1, 8 ;increment X index
I7 DADDUI R2, R2, 8 ;increment Y index
I8 DSGTUI R3, R1, 800 ;test if done
I9 BEQZ R3, loop ;loop if not done

Last updated:
3/10/2020

 3

Problem M6.2.A In-order using a scoreboard

Fill in the scoreboard in table M6.2-1 to simulate the execution of one iteration of the loop for in-
order issue using a scoreboard. Keep in mind that, in this scheme, no instruction is issued that
has a WAW hazard with any previous instruction that has not written back (as mentioned in the
lecture slides). Recall the WB stage is only relevant for FP instructions (integer instructions can
forward results). You may use ellipses in the table to represent the passage of time (to compress
repetitive lines).

In steady state, how many cycles does each iteration of the loop take? What is the bottleneck?

Problem M6.2.B Out-of-order

Now consider a single-issue out-of-order implementation. In this scheme, the issue stage buffer
holds multiple instructions waiting to issue. The decode stage can add up to one instruction per
cycle to the issue buffer. The decode stage adds an instruction to the issue buffer if there is space
and if the instruction does not have a WAR hazard with any previous instruction that has not
issued or a WAW hazard with any previous instruction that has not written back. Assume you
have an infinitely large issue buffer. Assume only one instruction can be dispatched from the
issue buffer at a time.

Table M6.2-2 represents the execution of one iteration of the loop in steady state. Fill in the
cycle numbers for the cycles at which each instruction issues and writes back. The first row has
been filled out for you already; please complete the rest of the table. Note that the order of
instructions listed is not necessarily the issue order. We define cycle 0 as the time at which
instruction I1 is issued.

Draw arrows for the RAW, WAR, and WAW dependencies that are involved in the critical path
of the loop in table M2.1-2. In steady state, how many cycles does each iteration of the loop take?

Last updated:
3/10/2020

 4

Problem M6.2.C Register Renaming

The number of registers specified in an ISA limits the maximum number of instructions that can
be in the pipeline. This question studies register renaming to solve this problem. In this question,
we will consider an ideal case where we have unlimited hardware resources for renaming
registers.

Table M6.2-3 shows instructions from our benchmark for two iterations using the same format as
Table M6.2-2. First, fill in the new register names for each instruction, where applicable. Since
we have an infinite supply of register names, you should use a new register name each time a
register is written (T0, T1, T2, etc). Keep in mind that after a register has been renamed,
subsequent instructions that refer to that register need to refer instead to the new register name.
You may find it helpful to create a rename table. Rename both integer and floating-point
instructions.

Next, fill in the cycle numbers for the cycles at which each instruction issues and writes back.
The decode stage can add up to one instruction per cycle to the re-order buffer (ROB). Assume
that instruction I2 was decoded in cycle 0, and cannot be issued until cycle 2. Also assume that
you have an infinitely large ROB.

In steady state, how many cycles does each iteration of the loop take? What is the performance
bottleneck?

Last updated:
3/10/2020

 5

Instr.
Issued

Time
(cycles)

Functional Unit Status Floating Point
Registers Reserved

for Writes Int Load (1) Adder
(4)

Multiplier
(15) WB

I1 0 F2 F2
 1 F2 F2

I2 2 F1 F1

Table M6.2-1

Last updated:
3/10/2020

 6

Time

Op Dest Src1 Src2
Decode → Issue Issued WB

I1 -1 0 1 L.D F2 R1

I2

 MUL.D F1 F2 F0

I3

 L.D F3 R2

I4

 ADD.D F3 F1 F3

I5

 S.D R2 F3

I6

 DADDUI R1 R1

I7

 DADDUI R2 R2

I8

 DSGTUI R3 R1

I9

 BEQZ R3

Table M6.2-2

Last updated:
3/10/2020

 7

Time

Op Dest Src1 Src2
Decode → Issue Issued WB

I1 -1 0 1 L.D T0 R1

I2

 MUL.D T1 t0 F0

I3

 L.D T2 R2

I4

 ADD.D T3

I5

 S.D

I6

 DADDUI

I7

 DADDUI

I8

 DSGTUI

I9

 BEQZ

I1 L.D

I2

 MUL.D

I3

 L.D

I4

 ADD.D

I5

 S.D

I6

 DADDUI

I7

 DADDUI

I8

 DSGTUI

I9

 BEQZ

Table M6.2-3

Last updated:
3/10/2020

 8

Problem M6.3: Out-of-Order Scheduling

This problem deals with an out-of-order single-issue processor that is based on the basic MIPS
pipeline and has floating-point units. The FPU has one adder, one multiplier, and one load/store
unit. The adder has a two-cycle latency and is fully pipelined. The multiplier has a ten-cycle
latency and is fully pipelined. Assume that loads and stores take 1 cycle (plus one cycle for
write-back for loads).

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There
is a single write-back port to each register file. In the case of a write-back conflict, the older
instruction writes back first. Floating-point instructions (including loads writing floating point
registers) must spend one cycle in the write-back stage before their result can be used. Integer
results are available for bypass the next cycle after issue.

To maximize number of instructions that can be in the pipeline, register renaming is used. The
decode stage can add up to one instruction per cycle to the re-order buffer (ROB).

The instructions are committed in order and only one instruction may be committed per cycle.
The earliest time an instruction can be committed is one cycle after write back.

For the following questions, we will evaluate the performance of the code segment in Figure
M6.3-A.

I1 L.D F1, 5(R2)
I2 MUL.D F2, F1, F0
I3 ADD.D F3, F2, F0
I4 ADDI R2, R2, 8
I5 L.D F1, 5(R2)
I6 MUL.D F2, F1, F1
I7 ADD.D F2, F2, F3

Figure M6.3-A

Last updated:
3/10/2020

 9

Problem M6.3.A

For this question, we will consider an ideal case where we have unlimited hardware resources for
renaming registers. Assume that you have an infinitely large ROB.

Your job is to complete Table M6.3-1. Fill in the cycle numbers when each instruction enters the
ROB, issues, writes back, and commits. Also fill in the new register names for each instruction,
where applicable. Since we have an infinite supply of register names, you should use a new
register name each time a register is written (T0, T1, T2, … etc). Keep in mind that after a
register has been renamed, subsequent instructions that refer to that register need to refer instead
to the new register name.

 Time
OP Dest Src1 Src2 Decode à

ROB
Issued WB Committed

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 1 ADD.D
I4 ADDI -
I5 L.D -
I6 MUL.D
I7 ADD.D

Table M6.3-1

Problem M6.3.B

For this question, assume that you have a two-entry ROB. An ROB entry can be reused one
cycle after the instruction using it commits.

Your job is to complete Table M6.3-2. Fill in the cycle numbers when each instruction enters
the ROB, issues, writes back, and commits. Also fill in the new register names for each
instruction, where applicable.

 Time
OP Dest Src1 Src2 Decode à

ROB
Issued WB Committed

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 3 ADD.D
I4 ADDI -
I5 L.D -
I6 MUL.D
I7 ADD.D

Table M6.3-2

Last updated:
3/10/2020

 10

Problem M6.4: Superscalar Processor

Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features.

o Four fully-pipelined functional units: ALU, MEM, FADD, FMUL
o Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the

ROB (assume perfect branch prediction and no cache misses)
o An unbounded length Reorder Buffer that can perform the following operations on every

cycle.
o Accept two instructions from the Instruction Fetch and Decode Unit
o Dispatch an instruction to each functional unit including Data Memory
o Let Write-back update an unlimited number of entries
o Commit up to 2 instructions in-order

o There is no bypassing or short circuiting. For example, data entering the ROB cannot be
passed on to the functional units or committed in the same cycle.

.

Instruction
Queue

ROB

(infinite)

2 Instr per
cycle

ALU

FADD

+ Data
Mem

FMUL

Regfile

Issue as
many as
possible

Writeback as many
as possible

Commit at
most 2 instr

per cycle

Last updated:
3/10/2020

 11

Now consider the execution of the following program on this machine using:

I1 loop: LD F2, 0(R2)
I2 LD F3, 0(R3)
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2)
I5 LD F3, 4(R3)
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6
I11 ADD R2, R2, 8
I12 ADD R3, R3, 8
I13 ADD R4, R4, -1
I14 BNEZ R4, loop

Problem M6.4.A

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10.
Tags should not be reused.

Instr # Instruction Dest Src1 Src2
I1 LD F2, 0(R2) T1 R2 0
I2 LD F3, 0(R3) T2 R3 0
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2) R2 4
I5 LD F3, 4(R3) R3 4
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6 F1

Renaming table

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
R2
R3
F1
F2 T1
F3 T2
F4
F5
F6

Last updated:
3/10/2020

 12

Problem M6.4.B

Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the
data dependencies between the instructions after register renaming

Problem M6.4.C

The attached table is a data structure to record the times when some activity takes place in the
ROB. For example, one column records the time when an instruction enters ROB, while the last
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the
time when results are written back to the ROB. This data structure has been designed to test your
understanding of how a Superscalar machine functions.

Fill in the blanks in the last two columns up to slot T13 (you may use the source columns for
book keeping).

Last updated:
3/10/2020

 13

Slot

Instruction
Cycle

instruction
entered
ROB

Argument 1 Argument 2 dst Cycle
dispatched

Cycle
written
back to
ROB

src1 cycle
available

Src2 cycle
available

dst reg

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6
T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7
T3 FMUL F4, F2, F3 2 F3 7 F4
T4 LD F2, 4(R2) 2 C 2 R2 F2
T5 LD F3, 4(R3) 3 C 3 R3 F3
T6 FMUL F5, F2, F3 3 F5
T7 FMUL F6, F4, F5 4 F6
T8 FADD F4, F4, F5 4 F4
T9 FMUL F6, F4, F5 5 F6
T10 FADD F1, F1, F6 5 F1
T11 ADD R2, R2, 8 6 R2 6 C 6 R2
T12 ADD R3, R3, 8 6 R3 6 C 6 R3
T13 ADD R4, R4, -1 7 R4 7 C 7 R4
T14 BNEZ R4, loop 7 C Loop
T15 LD F2, 0(R2) 8 C 8 F2 10 14
T16 LD F3, 0(R3) 8 C 8 F3 11 15
T17 FMUL F4, F2, F3 9 F4
T18 LD F2, 4(R2) 9 C 9 F2
T19 LD F3, 4(R3) 10 C 10 F3
T20 FMUL F5, F2, F3 10 F5
T21 FMUL F6, F4, F5 11 F6
T22 FADD F4, F4, F5 11 F4
T23 FMUL F6, F4, F5 12 F6
T24 FADD F1, F1, F6 12 F1
T25 ADD R2, R2, 8 13 C 13 R2
T26 ADD R3, R3, 8 13 C 13 R3
T27 ADD R4, R4, -1 14 C 14 R4
T28 BNEZ R4, loop 14 C Loop

Last updated:
3/10/2020

 14

Problem M6.4.D

Identify the instructions along the longest latency path in completing this iteration of the loop (up
to instruction 13). Suppose we consider an instruction to have executed when its result is
available in the ROB. How many cycles does this iteration take to execute?

Problem M6.4.E

Do you expect the same behavior, i.e., the same dependencies and the same number of cycles,
for the next iteration? (You may use the slots from T15 onwards in the attached diagram for
bookkeeping to answer this question). Please give a simple reason why the behavior may repeat,
or identify a resource bottleneck or dependency that may preclude the repetition of the behavior.

Problem M6.4.F

Can you improve the performance by adding at most one additional memory port and an FP
Multiplier? Explain briefly.

Yes / No

Problem M6.4.G

What is the minimum number of cycles needed to execute a typical iteration of this loop if we
keep the same latencies for all the units but are allowed to use as many FUs and memory ports
and are allowed to fetch and commit as many instructions as we want.

Last updated:
3/10/2020

 15

 Problem M6.5: Register Renaming and Static vs. Dynamic Scheduling

The following MIPS code calculates the floating-point expression E = A * B + C * D, where the
addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively:

L.S F0, 0(R1)
L.S F1, 0(R2)
MUL.S F0, F0, F1
L.S F2, 0(R3)
L.S F3, 0(R4)
MUL.S F2, F2, F3
ADD.S F0, F0, F2
S.S F0, 0(R5)

Problem M6.5.A Simple Pipeline

Calculate the number of cycles this code sequence would take to execute (i.e., the number of
cycles between the issue of the first load instruction and the issue of the final store, inclusive) on
a simple in-order pipelined machine that has no bypassing. The datapath includes a load/store
unit, a floating-point adder, and a floating-point multiplier. Assume that loads have a two-cycle
latency, floating-point multiplication has a four-cycle latency and floating-point addition has a
two-cycle latency. Write-back for floating-point registers takes one cycle. Also assume that all
functional units are fully pipelined and ignore any write-back conflicts. Give the number of
cycles between the issue of the first load instruction and the issue of the final store, inclusive.

Problem M6.5.B Static Scheduling

Reorder the instructions in the code sequence to minimize the execution time. Show the new
instruction sequence and give the number of cycles this sequence takes to execute on the simple
in-order pipeline.

Problem M6.5.C Fewer Registers

Rewrite the code sequence, but now using only two floating-point registers. Optimize for
minimum run-time. You may need to use temporary memory locations to hold intermediate
values (this process is called register-spilling when done by a compiler). List the code sequence
and give the number of cycles it takes to execute.

Last updated:
3/10/2020

 16

Problem M6.5.D Register renaming and dynamic scheduling

Simulate the effect of running the original code on a single-issue machine with register renaming
and out-of-order issue. Ignore structural hazards apart from the single instruction decode per
cycle. Show how the code is executed and give the number of cycles required. Compare it with
results from the optimized execution in M2.4.B.

Problem M6.5.E Effect of Register Spills

Now simulate the effect of running the code you wrote in M2.4.C on the single-issue machine
with register renaming and out-of-order issue from M2.4.D. Compare the number of cycles
required to execute the program. What are the differences in the program and/or architecture that
change the number of cycles required to execute the program? You should assume that all load
instructions before a store must issue before the store is issued, and load instructions after a store
must wait for the store to issue.

Last updated:
3/10/2020

 17

Problem M6.6: Register Renaming Schemes

This problem requires the knowledge of Handout Out-of-Order Execution with ROB and
Lectures 8 and 9. Please, read these materials before answering the following questions.

Future File Scheme
In order to eliminate the step of reading operands from the reorder buffer in the decode stage, we
can insert a second register file into the processor shown in Figure M6.6-A, called the future file.
The future file contains the most up-to-date speculatively-executed value for a register, while the
primary register file contains committed values. Each entry in the future file has a valid bit. A
summary of the operations is given below.

Figure M6.6-A

Only the decode and write-back stages have to change from the baseline implementation in
Handout Out-of-Order Execution with ROB to implement the future file, as described below.
Decode: The Rename table, the register file, and the future file are read simultaneously. If the
rename table has the valid bit set for an operand, then the value has not yet been produced and
the tag will be used. Otherwise, if the future file has a valid bit set for its entry, then use the
future file value. Otherwise, use the register file value. The instruction is assigned a slot in the
ROB (the ROB index is this instruction’s tag). If the instruction writes a register, its tag is
written to the destination register entry in the rename table.
Write-Back: When an instruction completes execution, the result, if any, will be written back to
the data field in the reorder buffer and the pd bit will be set. Additionally, any dependent
instructions in the reorder buffer will receive the value. If the tag in the rename table for this
register matches the tag of the result, the future file is written with the value and the valid bit on
the rename table entry is cleared.

Register
File

Reorder
buffer

Load
Unit FU FU FU Store

Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti v
R2

tag
valid bit

t1
t2
.
.
tn

R1
R2
R3

:

Next to
commit

Next
available

: :

R3
R4

Future
File

valid bit

R1
R2
R3

:

Register
File

Reorder
buffer

Load
Unit FU FU FU Store

Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest dataIns# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti v
R2

tag
valid bit

t1
t2
.
.
tn

R1
R2
R3

:

Next to
commit

Next
available

: :

R3
R4

Future
File

valid bit

R1
R2
R3

:

Last updated:
3/10/2020

 18

Problem M6.6.A Finding Operands: Original ROB scheme

Consider the original ROB scheme in Handout Out-of-Order Execution with ROB, and suppose
the processor state is as given in Figure H4-A. Assume that the following three instructions enter
the ROB simultaneously in a single cycle, and that no instruction commits or completes
execution in this cycle. In the table below, write the contents of each instruction’s source
operand entries (either a register value or a tag t1, t2, etc., for both Src1 and Src2) and whether
that entry came from the register file, the reorder buffer, the rename table or the instruction itself.

Instruction Src1 value

Regfile, ROB,
rename table,
or instruction? Src2 value

Regfile, ROB,
rename table, or
instruction?

sub r5,r1,r3
addi r6,r2,4
andi r7,r4,3

Problem M6.6.B Finding Operands: Future File Scheme

In the future file scheme, explain why an instruction entering the ROB will never need to fetch
either of its operands from the ROB.

Problem M6.6.C Future File Operation

Describe a situation in which an instruction result is written to the ROB but might not be written
to the future file. Provide a simple code sequence to illustrate your answer.

