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Problem M7.1: Branch Prediction 
  
loop: 

LW R4, 0(R3)  
 ADDI R3, R3, 4  
  SUBI R1, R1, 1 
b1: 

BEQZ R4, b2  
 ADDI R2, R2, 1 
b2: 

BNEZ R1, loop   
Figure M3.6-A: BP bits state diagram  

  
Problem M7.1.A Program 
 
R2 contains the number of non-zero entries in the first n elements of array.  
 
Problem M7.1.B 2-bit branch prediction 
There are 7 mispredicts (shown in bold italics).  

 System 
State 

Branch Predictor  Branch Behavior  

PC  R3/R4  b1 bits  b2 bits  Predicted  Actual  
b1  4/1  10  10  N  N  
b2  4/1  10 10  N T 

b1  8/0  10  11 N T 

b2  8/0  11 11  N T 

b1  12/1  11  00 N  N  
b2  12/1  10  00  T  T  
b1  16/0 10  00  N T 

b2  16/0 11  00  T  T  
b1  20/1 11  00  N  N  
b2  20/1 10  00  T  T  
b1  24/0 10  00  N T 

b2  24/0 11  00  T  T  
b1  28/1 11  00  N  N  
b2  28/1 10  00  T  T  
b1  32/0 10  00  N T 

b2  32/0 11  00  T N 
Table M7.1-1  
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Problem M7.1.C                                          Branch prediction with one global history bit 
 
There are 9 mispredicts (shown in bold italics).  
  

 System State Branch Predictor  Behavior  

PC  
  

R3/R4  
  

history 
bit  

b1 bits  b2 bits    
Predicted  

  
Actual  set 0 set 1 set 0 set 1 

b1  4/1 1  10 10  10  10  N  N  
b2  4/1 0  10 10 10  10  N  T 

b1  8/0 1  10 10  11 10 N T 

b2  8/0 1  10  11 11 10  N T 

b1  12/1 1  10  11  11 11 N  N  
b2  12/1 0  10  10 11  11  N  T 

b1  16/0  1  10  10  00 11  N  T 

b2  16/0  1  10  11 00 11  N T 

b1  20/1  1  10  11  00 00 N  N  
b2  20/1  0  10  10 00  00  T  T  
b1  24/0  1  10  10  00 00  N  T 

b2  24/0  1  10  11 00 00  T  T  
b1  28/1  1  10  11  00 00 N  N  
b2  28/1  0  10  10 00  00  T  T  
b1  32/0  1  10  10  00 00  N  T 

b2  32/0  1  10  11 00 00  T N 
Table M7.1-2  
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Problem M7.1.D                                          Branch prediction with two global history bits 
 
There are 7 mispredicts (shown in bold italics).  

 System State  Branch Predicto r  Behavior   

PC  
  

R3/R4  history  b1 bits    b2 bits    
Predicted 

  
Actual 

  bits  set 00  set 01  set 10 set 11 set 00 set 01 set 10 set 11  

b1  4/1 11  10  10  10  10  10  10  10  10  N  N  
b2  4/1 01  10  10  10  10 10 10  10  10  N  T 

b1  8/0 10  10  10  10  10  10  11 10  10  N T 

b2  8/0 11  10  10  11 10  10  11  10  10  N T 

b1  12/1 11  10  10  11  10  10  11  10  11 N  N  
b2  12/1 01  10  10  11  10 10 11  10  11  N  T 

b1  16/0  10  10  10  11  10  10  00 10  11  N  T 

b2  16/0  11  10  10  00 10  10  00  10  11  N T 

b1  20/1  11  10  10  00  10  10  00  10  00 N  N  
b2  20/1  01  10  10  00  10 10 00  10  00  T  T  
b1  24/0  10  10  10  00  10  10  00 10  00  T  T  
b2  24/0  11  10  10  00 10  10  00  10  00  T  T  
b1  28/1  11  10  10  00  10  10  00  10  00 N  N  
b2  28/1  01  10  10  00  10 10 00  10  00  T  T  
b1  32/0  10  10  10  00  10  10  00 10  00  T  T  
b2  32/0 11  10  10 00 10  10  00  10  00  T N 

Table M7.1-3 
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Problem 7.1.E                    Analysis I  
 
The first thing to notice is that the more history bits we have, the longer it takes to get any correct 
prediction since we have to “train” the predictor. These start-up costs go up as the number of 
history bits increase.  
  
Another thing to notice is that the single history bit does not help at all (even after we get into a 
steady-state phase). In both the single history bit and no history cases, the b2 branch is predicted 
correctly once we get past the start-up phase (since b2 is always taken). The single bit of history 
does not help since this history is too “nearsighted”. The second history bit captures the alternating 
pattern of the b1 branch, and hence does not mispredict once it gets past the start-up phase. For a 
large n then, the 2-bit history predictor is the best.  
  
The final point of observation is that all the predictors mispredict the fall-through case (the last b2 
branch).  
  
Problem 7.1.E                    Analysis II  
 
When the input is random, no prediction scheme will help predict whether b1 is taken or not.  All 
three schemes will eventually predict b2 as always taken.  However, the more history bits are used, 
the more sets need to be trained to predict the always taken for b2. Thus, the more history bits used, 
the more mispredicts of branch b2 will occur initially.  The answer does not depend on the size of 
n. However, as n gets large, the start-up costs become insignificant among the three schemes.  
  
The moral of the problem is that history bits are useful if there is a pattern among a sequence of 
branches. The longer this pattern is, the more history bits are needed to be able to recognize this 
pattern. If the pattern is not recognized, then global history bits can hurt because it take longer to 
train the branches that can be predicted correctly.  
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Problem M7.2:  
  
  
Problem M7.2.A 
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Problem M7.2.B 
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Problem M7.3: Branch Prediction 
  
Problem 7.3.A                      

  

  Predicted 
Taken?  

Actually 
Taken?  Pipeline bubbles  

BEQZ/ 
BNEZ  

Y  Y  3  

Y  N  6  

N  Y  6  

N  N  0   

J  Always taken  
(No lookup)  Y  3  

JR  Always taken  
(No lookup)  Y  6  

 
Problem 7.3.B                     
 
  

Conditional 
Branches  

BTB Hit?  
(BHT) 

Predicted 
Taken?  

Actually 
Taken?  Pipeline bubbles  

Y  Y  Y  1  
Y  Y  N  6  
Y  N  Y  Cannot occur  
Y  N  N  Cannot occur   
N  Y  Y  3  
N  Y  N  6  
N  N  Y  6  
N  N  N  0  
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Problem 7.3.D                     
 
  

          BR1 

 (Valid) Predicted 
V  Entry PC Target PC                  BR2 

  
 
 
 
 
 
 
 
 
 
 
 
 
  

... 

0 0 

... 

0 0 

... 
1 0x101c 0x1000 

1 0x1000 0x1014 

BTB BHT 
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Problem M7.4: Complex Pipelining (Spring 2014 Quiz 2, Part B) 
 

 
 
You are designing a processor with the complex pipeline illustrated above. For this problem 
assume there are no unconditional jumps or jump register—only conditional branches. 
 
Suppose the following: 

• Each stage takes a single cycle. 
• Branch addresses are known after stage Branch Address Calc/Begin Decode.  
• Branch conditions (taken/not taken) are known after Register File Read. 
• Initially, the processor always speculates that the next instruction is at PC+4, without any 

specialized branch prediction hardware. 
• Branches always go through the pipeline without any stalls or queuing delays. 
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Problem M7.4.A  
 
How much work is lost (in cycles) on a branch misprediction in this pipeline? 
 
6 cycles are lost when stalls are inserted into pipeline stages A, P, F, B, I and J. 
 
 
 

Problem M7.4.B  
 
If one quarter of instructions are branches, and half of these are taken, then how much should we 
expect branches to increase the processor’s CPI (cycles per instruction)? 
 
This answer is asking how much CPI is spent on branches in the machine, increase relative to a 
machine that never stalls on branches (e.g. has “magic fetch”). 
 
Branch CPI = misprediction rate x misprediction penalty 
 
From the problem description, we always predict PC+4 or “not taken”. So the misprediction rate 
is just the rate of taken branches. 
 
Branch CPI = fraction branches x fraction taken x misprediction penalty 
 
From the question: 
 
Branch CPI = ¼ x ½ x 6 = ¾  
 

Problem M7.4.C  
 
You are unsatisfied with this performance and want to reduce the work lost on branches. Given 
your hardware budget, you can add only one of the following: 
 

• A branch predictor to your pipeline that resolves after Instruction Fetch Stage 1. 
• Or a branch target buffer (BTB) that resolves after Instruction Fetch Stage 2. 

 
If each make the same predictions, which do you prefer? In one or two sentences, why? 
 
Branch predictions earlier than B are unhelpful since we don’t have an address to jump to even if 
the branch is predicted taken. So although the BTB is available later in the pipeline, it is better to 
have the BTB since it gives us an address we can use to redirect fetch. 
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Problem M7.4.D  

 
You decide to add the BTB (not the branch predictor). Your BTB is a fully tagged structure, so if 
it predicts an address other than PC+4 then it always predicts the branch address of a conditional 
branch (but not the condition!) correctly. For partial credit, show your work.  
 
If the BTB correctly predicts a next PC other than PC+4, what is the effect on the pipeline? 
 
We inject two stalls into stages A and P and redirect fetch to the BTB address. So we lose 2 cycles. 
 
 
If the BTB predicts the next PC incorrectly, what is the effect on the pipeline? 
 
The BTB has exactly the same misprediction penalty as the baseline machine—6 cycles. This is 
true regardless of whether the BTB predicted PC+4 or a different address, since no matter what 
after an incorrect prediction the branch will be followed by six stalls in the pipeline. (The penalties 
are not additive.) 
 
 
 
Assume the BTB predicts PC+4 90% of the time. When the BTB predicts PC+4 it is accurate 90% 
of the time. Otherwise it is accurate 80% of the time. How much should we expect branches to 
increase the CPI of the BTB design? (Don’t bother trying to compute exact decimal values.) 
 
This is simply a matter of computing the probabilities of all combinations of prediction and 
accuracy and their associated penalties. 
 
Denote each case as “prediction/actual”. So “T/NT” means the BTB predicted a PC other than 
PC+4, but it turned out that PC+4 was the actual branch resolution. 
 
Branch CPI = T/T CPI + T/NT CPI + NT/T CPI + NT/NT CPI 
 
NT/NT CPI is zero since this just means the BTB predicted PC+4 and no stalls happened. 
 
T/T CPI incurs a penalty of 2 cycles (see above), and this happens when the BTB predicts a PC 
other than PC+4 (10%) and it is correct (80%). So T/T CPI = 2 * 0.1 * 0.8 
 
T/NT CPI and NT/T CPI both incur a penalty of 6 cycles (see above). These occur when the BTB 
is incorrect about its prediction: T/NT rate is 0.1 * 0.2, NT/T rate is 0.9 * 0.1. So T/NT CPI = 0.1 
* 0.2 * 6 and NT/T CPI  = 0.9 * 0.1 * 6. 
 
Branch CPI = (0.1 * 0.2 + 0.9 * 0.1) * 6 + 0.1 * 0.8 * 2 = 0.82 
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Problem M7.5: Branch Prediction (Spring 2015 Quiz 2, Part A) 
 
Ben Bitdiddle is designing a processor with the complex pipeline illustrated below: 
 

 
 
The processor has the following characteristics:  
 

• Issues at most one instruction per cycle. 
• Branch addresses are known at the end of the B stage (Branch Address Calc/Begin 

Decode). 
• Branch conditions (taken/not taken) are known at the end of the R stage (Register File 

Read). 
• Branches always go through the pipeline without any stalls or queuing delays. 

 
Ben’s target program is shown below:  
 
 
 
 
 
 
 
 
 
 
Suppose the following: 
 
 
 
The MODi (modulo-immediate) instruction is defined as follows:  
MODi Rd Rs imm: Rd <- Rs Mod imm 
 
  

for(int i = 0; i <= 1000000; i++) 
{  
    if(i % 2 == 0) //Branch B1 
    { //Not taken 
       (Do something A) 
    } 
    if(i % 4 == 0) //Branch B2 
    { //Not taken 
       (Do something B) 
    } 
} //Branch LP 
 

ANDi R1 0 
LOOP:MODi R2 R1 2 
 BNE  R2 M4 // B1 
 (Do something A) 
 … … 
M4: MODi R3 R1 4 
 BNE  R3 END // B2 
 (Do something B) 
 … …  
END: SUBi R4 R1 1000000 
 BNE  R4 LOOP // LP 
 … … 
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Problem M7.5.A  
 
In steady state, what is the probability for each branch in the code to be taken/not taken on 
average?  Fill in the table below. 
 

Branch Probability to be 
taken 

Probability to be 
not taken 

B1 0.5 0.5 

B2 0.75 0.25 

LP ~1 ~0 
 
 
 

Problem M7.5.B  
 
In steady state, how many cycles per iteration are lost on average if the processor always speculates 
that every branch is not taken (i.e., next PC is PC+4)? 
 
Penalty for miss prediction = 6 cycles 
 
6 * 0.5 + 6 * 0.75 + 6 * 1 = 13.5 
 
 

Problem M7.5.C  
 
Ben designs a static branch predictor to improve performance. This predictor always predicts 
not taken for forward jumps and taken for backward jumps. The prediction is available at the 
end of the B stage. In steady state, how many cycles per iteration are lost on average? 
 
Penalty for miss prediction = 6 cycles 
 
Penalty for correct prediction for taken = 3 cycles 
 
6 * 0.5 + 6 * 0.75 + 3 * 1 = 10.5 
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Problem M7.5.D  
 
To improve performance further, Ben designs a dynamic branch predictor with local branch 
history registers and 1-bit counters. 
  
Each local branch history registers store the last several outcomes of a single branch (branches B1, 
B2 and LP in our case).  By convention, the most recent branch outcome is the least significant 
bit, and so on. The predictor uses the local history of the branch to index a table of 1-bit counters. 
It predicts not taken if the corresponding 1-bit counter is 0, and taken if it is 1. Assume local branch 
history registers are always correct.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How many bits per branch history register do we need to perform perfect prediction in steady state? 
 
4 bits 
 
B1:  01 => 0 
 10 => 1 
B2:  0001 => 0 
 0010 => 0 
 0100 => 0 
 1000 => 1 
LP:  (all pattern) => 1 
 
(Using 3 bits will have collision for pattern 010 of B1 and B2) 
 
  

Local branch 
history registers 

B1 …101 
B2 …001 
LP …000 

 

1-bit counters 
Addr Prediction 

…000 0 
…001 1 
…010 0 
…011 0 
…100 1 
…101 1 
…110 0 
…111 0 

  … 
  … 
    … 
    … 
 

Indexing 
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Problem M7.5.E  
 
The local-history predictor itself is a speculative structure. That is, for subsequent predictions to 
be accurate, the predictor has to be updated speculatively.  
 
Explain what guess the local history update function should use. 
 
Guess the prediction is correct and use the prediction to update history register 
 
 
 
 
 
 
 
 

Problem M7.5.F  
 
Ben wants to design the data management policy (i.e., how to manage the speculative data in 
different structures of the predictor) for the local-history branch predictor to work well. Use a 
couple of sentences to answer the following questions. 
 

1) What data management policies should be applied to each structure?  
 
 

Greedy update for history registers and lazy update for 1-bit predictors 
 
 
 
 
 

2) For your selected data management policies, is there any challenge for the recovery 
mechanism when there is misspeculation? If so, what are the challenges?  

 
Recovery mechanism for history registers will be hard. We need to record all the 
information (PC, execution order) about branches that speculatively update the history 
registers and roll back the history register with the information sequentially. 

 
 
 
 
 
 
 


