
Last updated:
3/10/2020

Problem M8.1: Fetch Pipelines

Ben is designing a deeply-pipelined, single-issue, in-order MIPS processor. The first half of his
pipeline is as follows:

PC PC Generation
F1

ICache Access F2
D1

Instruction Decode D2
RN Rename/Reorder
RF Register File Read
EX Integer Execute

There are no branch delay slots and currently there is no branch prediction hardware
(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage).
Subroutine calls use JAL/JALR (jump and link). These instructions write the return address
(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC Generation
takes a whole cycle and that you cannot bypass anything into the end of the PC Generation
phase.

Problem M8.1.A Pipelining Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine
return instruction? Immediately after what pipeline stage does the processor know the subroutine
return address? How many pipeline bubbles are required when executing a subroutine return?

Problem M8.1.B Adding a BTB

Louis Reasoner suggests adding a BTB to speed up subroutine returns. Why doesn’t a standard
BTB work well for predicting subroutine returns?

Last updated:
3/10/2020

Problem M8.1.C Adding a Return Stack

Instead of a BTB, Ben decides to add a return stack to his processor pipeline. This return stack
records the return addresses of the N most recent subroutine calls. This return stack takes no time
to access (it is always presenting a return address).
Explain how this return stack can speed up subroutine returns. Describe when and in which
pipeline stages return addresses are pushed on and popped off the stack.

Problem M8.1.D Return Stack Operation

Fill in the pipeline diagram below corresponding to the execution of the following code on the
return stack machine:

A: JAL B
A+1: A+2:
…

B: JR r31
B+1: B+2:
…

Make sure to indicate the instruction that is being executed. The first two instructions are
illustrated below. The crossed out stages indicate that the instruction was killed during those
cycles.

instruction
A PC F1

A+1 PC

time®
F2 D1 D2 RN RF EX
F1 F2 D1 D2 RN RF EX

Last updated:
3/10/2020

Problem M8.1.E Handling Return Address Mispredicts

If the return address prediction is wrong, how is this detected? How does the processor recover,
and how many cycles are lost (relative to a correct prediction)?

Problem M8.1.F Further Improving Performance

Describe a hardware structure that Ben could add, in addition to the return stack, to improve the
performance of return instructions so that there is usually only a one-cycle pipeline bubble when
executing subroutine returns (assume that the structure takes a full cycle to access).

Last updated:
3/10/2020

Problem M8.2: Managing Out-of-order Execution

This problem investigates the operation of a superscalar processor with branch prediction,
register renaming, and out-of-order execution. The processor holds all data values in a physical
register file, and uses a rename table to map from architectural to physical register names. A
free list is used to track which physical registers are available for use. A reorder buffer (ROB)
contains the bookkeeping information for managing the out-of-order execution (but, it does not
contain any register data values).

When a branch instruction is encountered, the processor predicts the outcome and takes a
snapshot of the rename table. If a misprediction is detected when the branch instruction later
executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling
back the “next available” pointer, updating the free list, and restoring the earlier rename table
snapshot.

We will investigate the execution of the following code sequence (assume that there is no
branch-delay slot):

loop: lw
addi
beqz
addi

skip: bne

r1, 0(r2)
r2, r2, 4
r1, skip
r3, r3, 1
r2, r4, loop

load r1 from address in r2
increment r2 pointer
branch to “skip” if r1 is 0
increment r3
loop until r2 equals r4

The diagram for Question M3.5.A on the next page shows the state of the processor during the
execution of the given code sequence. An instance of each instruction in the loop has been issued
into the ROB (the beqz instruction has been predicted not-taken), but none of the instructions
have begun execution. In the diagram, old values which are no longer valid are shown in the
following format: . The rename table snapshots and other bookkeeping information for branch
misprediction recovery are not shown.

Last updated:
3/10/2020

 P4
 P5
 P6
P0

8016 p
6823 p
8000 p

7 p

…

x lw p P2 r1 P1 P4
x addi p P2 r2 P2 P5
x beqz P4

x addi p P3 r3 P3 P6
x bne P5 p P0

Problem M8.2.A

Assume that the following events occur in order (though not necessarily in a single cycle):

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written
into the ROB (note that the bne instruction has been predicted taken).

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical
register file, and update the ROB. Note that this step only occurs once.

Step 3. As many instructions as possible commit.
Update the diagram below to reflect the processor state after these events have occurred.
Cross out any entries which are no longer valid. Note that the “ex” field should be marked
when an instruction executes, and the “use” field should be cleared when it commits. Be sure to
update the “next to commit” and “next available” pointers. If the load executes, assume that the
data value it retrieves is 0.

Rename Table
R1
R2
R3
R4

Physical Regs
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Free List

 P7
 P8
 P9

next to
commit

next
available

Reorder Buffer (ROB)

→
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

→

Last updated:
3/10/2020

…

Problem M8.2.B

Assume that after the events from Question M3.6.A have occurred, the following events occur in
order:

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome,
and recovery action is taken to repair the processor state.

Step 2. The beqz instruction commits.
Step 3. The correct next instruction is fetched and is written into the ROB.

Fill in the diagram below to reflect the processor state after these events have occurred.
Although you are not given the rename table snapshot, you should be able to deduce the
necessary information from the diagram from Question M3.6.A. You do not need to show
invalid entries in the diagram, but be sure to fill in all the fields which have valid data, and
update the “next to commit” and “next available” pointers. Also make sure that the free list
contains all available registers.

Rename Table
R1
R2
R3
R4

Physical Regs Free List
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

next
available

Last updated:
3/10/2020

Problem M8.2.C

Consider (1) a single-issue, in-order processor with no branch prediction and (2) a multiple-
issue, out-of-order processor with branch prediction. Assume that both processors have the same
clock frequency. Consider how fast the given loop executes on each processor, assuming that it
executes for many iterations.

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor
compared to the out-of-order processor?

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order
processor compared to the in-order processor?

Last updated:
3/10/2020

Problem M8.3: Exceptions and Register Renaming

Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86
processors to compete with Intel. His latest project is the Bentium 4, a superscalar, out-of-order
processor with register renaming and speculative execution.

The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI).
In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be
used to hold intermediary values used by micro-operations (µops) generated by the microcode
engine. The microcode engine is the decode unit and is used to generate µops for all the x86
instructions. For example, the following register-memory x86 instruction might be translated into
the following RISC-like µops:

ADD Rd, Ra, offset(Rb) ® LW T0, offset(Rb)
ADD Rd, Ra, T0

All 16 µop-visible registers are renamed by the register allocation table (RAT) into a set of
physical registers (P0-Pn). There is a separate shadow map structure that takes a snapshot of the
RAT on a speculative branch in case of a misprediction. The block diagram for the front-end of
the Bentium 4 is shown below:

Instruction
Fetch

x86 instructions

ROM
Engine

Decode

Note: The decode block is
actually replicated in the
Bentium 4 in order to decode
multiple instructions per cycle
(not shown in the diagram).

uops

Uop Buffer

Register
Renaming

dispatch window and
execution cores

Last updated:
3/10/2020

Problem M8.3.A Recovering from Exceptions

For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine
state is reset back to the precise state that existed right before the excepting instruction started
executing. This instruction is then re-executed after the exception is handled. Ben proposes that
the shadow map structure used for speculative branches can also be used to recover a precise
state in the event of an exception. Specify a strategy that can be implemented for taking the least
number of snapshots of the RAT that would still allow the Bentium 4 to implement precise
exception handling.

Problem M8.3.B Minimizing Snapshots

Ben further states that the shadow map structure does not need to take a snapshot of all the
registers in the Bentium 4 to be able to recover from an exception. Is Ben correct or not? If so,
state which registers do not need to be recorded and explain why they are not necessary, or
explain why all the registers are necessary in the snapshot.

Problem M8.3.C Renaming Registers

Assume that the Bentium 4 has the same register renaming scheme as the Pentium 4. What is the
minimum number of physical registers (P) that the Bentium 4 must have to allow register
renaming to work? Explain your answer.

Last updated:
3/10/2020

Problem M8.4: Out-of-order Execution (Spring 2014 Quiz 2, Part C)

In this problem, we are going to update the state of the processor when different events happen. You are given an out-of-order processor in
some initial state, as described by the registers (renaming table, physical registers, and free list), one-bit branch predictor, and re-order buffer.
Your job is to show the changes that occur when some event occurs, starting from the same initial state except where noted. For partial credit,
briefly describe what changes occur.

Last updated:
3/10/2020

Problem M8.4.A
Show the state of the processor if the first load completes (but does not commit).

Last updated:
3/10/2020

Problem M8.4.B

Show the state of the processor after the next instruction is issued.

Last updated:
3/10/2020

Problem M8.4.C

From the state at the end of Question 2, as the next action can the processor issue (not execute) another instruction?

In one or two sentences, what does this say about our design? How can we improve it?

Last updated:
3/10/2020

Problem M8.4.D

Show the state of the processor if the first LD triggers a page fault and after abort finishes.

Last updated:
3/10/2020

Problem M8.5 (Spring 2015 Quiz 2, Part B)

You are given an out-of-order processor that

• Issues at most one instruction per cycle
• Commits at most one instruction per cycle
• Uses an unified physical register file

Problem M8.5.A

Consider the following code sequence:

Assume the branch instruction (blez) is not taken. Fill out the table below to identify all Read-After-
Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW) dependencies in the above
sequence.

 I0 I1 I2 I3 I4 I5 I6 I7

I0 -

I1 WAW
RAW -

I2
 -

I3 -

I4 -

I5 -

I6 -

I7
 -

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

Older Instruction

Younger
Instruction

Last updated:
3/10/2020

In Problems M8.5.B to M8.5.D, you should update the state of the processor when different events
happen. The starting state in each question is the same, and the event specified in each question is the
ONLY event that takes place for that question. The starting state is shown in the different structures:
renaming table, physical registers, free list, two-bit branch predictor, global history buffer, and reorder
buffer (ROB).

Note the following conventions:

• The valid bit for any entry is represented by “1”.
• The valid bit can be cleared by crossing it out.
• In the ROB, the “ex” field should be marked with “1” when an instruction starts execution,

and the “use” field should be cleared when it commits. Be sure to update the “next to
commit” and “next available” pointers, if necessary.

• Fill out the “after” fields in all the tables. Write new values in these boxes if the values
change due to the event specified in the question. You do not have to repeat the values if
they do not change due to the event.

In Questions 2 through 4, we will use the same code sequence as in Question 1:

The starting state of the processor is as follows:

• Instructions I0-I4 are already in the ROB.
• I0 (lw) has already finished execution.
• I1 (addi) and I2 (lw) have started executing but have not finished yet.
• I3 (blez) has been predicted to be Not-Taken by the branch predictor.
• I5 (mul) has completed the decode stage.
• I6 (addi) has completed the Fetch Stage.
• The next PC is set to 0x40, which is the PC of I7 (add).

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

Last updated:
3/10/2020

Problem M8.5.B

The following figure shows the starting state of the processor. Suppose the decoded instruction I5 (mul)
is now inserted into the ROB. Update the diagram to reflect the processor state after this event has
occurred.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi P5 r4 P3 P7

Free List
P8
P9

P10

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40

Branch Global History
Before After

0010110

Rename Table (Latest)
Name Before After

R1 P0
R2 P5
R3 P6
R4 P7

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
3/10/2020

Problem M8.5.C

Start from the same processor state, shown below. Suppose now I1 (addi) has completed execution.
Commit as many instructions as possible. Update the diagram to reflect the processor state after I1
execution completes and as many instructions as possible have committed. Again, assume no other
events take place.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi P5 r4 P3 P7

Free List
P8
P9

P10

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40

Branch Global History
Before After

0010110

Rename Table (Latest)
Name Before After

R1 P0
R2 P5
R3 P6
R4 P7

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
3/10/2020

Problem M8.5.D

Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an ALU
overflow exception. Restore the architectural and microarchitectural state to recover from
misspeculation. The exception handler for the processor is at address 0x8C (control is transferred to the
exception handler after recovery). You do not need to worry about the number of cycles taken by
recovery. Show the processor state after recovery.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi P5 r4 P3 P7

Free List
P8
P9

P10

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40

Branch Global History
Before After

0010110

Rename Table (Latest)
Name Before After

R1 P0
R2 P5
R3 P6
R4 P7

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
3/10/2020

Problem M8.6: Out-of-order Processor Design (Spring 2014 Quiz 2, Part D)

You are designing an out-of-order processor similar to the IBM 360/91 Tomasulo design shown above.
This design distributes the re-order buffer around the processor, placing entries near their associated
functional units. In such a design, the distributed ROB entries are called “reservation stations”. Entries
are allocated when the instruction is decoded and freed when the instruction is dispatched to the
functional unit.

Your design achieves an average throughput of 1.5 instructions per cycle. Two-thirds of instructions
are adds, and one-third are multiplies. The latency of each instruction type from allocation to
completion is 5 cycles for adds and 14 cycles for multiplies.

Type of operation Fraction of instructions Average latency
Add 2/3 5
Multiply 1/3 14

The adder and multiplier are each fully pipelined with full bypassing. Once an instruction is dispatched
to the FU, the adder takes 2 cycles and the multiplier takes 5 cycles.

Throughput Add latency Multiply latency
1.5 2 5

Last updated:
3/10/2020

Problem M8.6.A

How many entries are in use, on average, in the reservation station at each functional unit (adder,
multiplier) in the steady state? Assume there are infinite entries available if needed. What is the
average latency of an instruction in this machine? For partial credit, feel free to give any formulae you
believe may be important to answer this question.

