
Last updated: 
3/10/2020 

 
 
Problem M8.1: Fetch Pipelines 
 
Ben is designing a deeply-pipelined, single-issue, in-order MIPS processor. The first half of his 
pipeline is as follows: 
 

PC PC Generation 
F1  

ICache Access F2 
D1  

Instruction Decode D2 
RN Rename/Reorder 
RF Register File Read 
EX Integer Execute 

 
There are no branch delay slots and currently there is no branch prediction hardware 
(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage). 
Subroutine calls use JAL/JALR (jump and link). These instructions write the return address 
(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC Generation 
takes a whole cycle and that you cannot bypass anything into the end of the PC Generation 
phase. 
 
Problem M8.1.A Pipelining Subroutine Returns 

 
Immediately after what pipeline stage does the processor know that it is executing a subroutine 
return instruction? Immediately after what pipeline stage does the processor know the subroutine 
return address? How many pipeline bubbles are required when executing a subroutine return? 
 
 
 
Problem M8.1.B Adding a BTB 

 
Louis Reasoner suggests adding a BTB to speed up subroutine returns. Why doesn’t a standard 
BTB work well for predicting subroutine returns? 
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Problem M8.1.C Adding a Return Stack 

 
Instead of a BTB, Ben decides to add a return stack to his processor pipeline. This return stack 
records the return addresses of the N most recent subroutine calls. This return stack takes no time 
to access (it is always presenting a return address). 
Explain how this return stack can speed up subroutine returns. Describe when and in which 
pipeline stages return addresses are pushed on and popped off the stack. 
 
 
 
 

Problem M8.1.D Return Stack Operation 
 
Fill in the pipeline diagram below corresponding to the execution of the following code on the 
return stack machine: 
 
A: JAL B 
A+1: A+2: 
… 
 
B: JR r31 
B+1: B+2: 
… 
 
Make sure to indicate the instruction that is being executed. The first two instructions are 
illustrated below. The crossed out stages indicate that the instruction was killed during those 
cycles. 
 

instruction 
A             PC       F1 

A+1                      PC 

time® 
F2 D1 D2 RN RF EX 
F1 F2 D1 D2 RN RF EX 
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Problem M8.1.E Handling Return Address Mispredicts 

 
If the return address prediction is wrong, how is this detected? How does the processor recover, 
and how many cycles are lost (relative to a correct prediction)? 
 
 
 
 
Problem M8.1.F Further Improving Performance 

 
Describe a hardware structure that Ben could add, in addition to the return stack, to improve the 
performance of return instructions so that there is usually only a one-cycle pipeline bubble when 
executing subroutine returns (assume that the structure takes a full cycle to access). 



Last updated: 
3/10/2020 

 
 
Problem M8.2: Managing Out-of-order Execution 

 
This problem investigates the operation of a superscalar processor with branch prediction, 
register renaming, and out-of-order execution. The processor holds all data values in a physical 
register file, and uses a rename table to map from architectural to physical register names. A 
free list is used to track which physical registers are available for use. A reorder buffer (ROB) 
contains the bookkeeping information for managing the out-of-order execution (but, it does not 
contain any register data values). 
 
When a branch instruction is encountered, the processor predicts the outcome and takes a 
snapshot of the rename table. If a misprediction is detected when the branch instruction later 
executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling 
back the “next available” pointer, updating the free list, and restoring the earlier rename table 
snapshot. 
 
We will investigate the execution of the following code sequence (assume that there is no 
branch-delay slot): 
 

loop: lw 
addi 
beqz 
addi 

skip: bne 

r1, 0(r2) 
r2, r2, 4 
r1, skip 
r3, r3, 1 
r2, r4, loop 

# load r1 from address in r2 
# increment r2 pointer 
# branch to “skip” if r1 is 0 
# increment r3 
# loop until r2 equals r4 

 
The diagram for Question M3.5.A on the next page shows the state of the processor during the 
execution of the given code sequence. An instance of each instruction in the loop has been issued 
into the ROB (the beqz instruction has been predicted not-taken), but none of the instructions 
have begun execution. In the diagram, old values which are no longer valid are shown in the 
following format: . The rename table snapshots and other bookkeeping information for branch 
misprediction recovery are not shown. 
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 P4  
 P5  
 P6  
P0   

 

8016 p 
6823 p 
8000 p 

7 p 
  
  
  
  
  
  
 

…
 

x  lw p P2   r1 P1 P4 
x  addi p P2   r2 P2 P5 
x  beqz  P4      

x  addi p P3   r3 P3 P6 
x  bne  P5 p P0    

          
          
          
          
 

 
Problem M8.2.A 

 
Assume that the following events occur in order (though not necessarily in a single cycle): 

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written 
into the ROB (note that the bne instruction has been predicted taken). 

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical 
register file, and update the ROB. Note that this step only occurs once. 

Step 3. As many instructions as possible commit. 
Update the diagram below to reflect the processor state after these events have occurred. 
Cross out any entries which are no longer valid. Note that the “ex” field should be marked 
when an instruction executes, and the “use” field should be cleared when it commits. Be sure to 
update the “next to commit” and “next available” pointers. If the load executes, assume that the 
data value it retrieves is 0. 
 
 

Rename Table 
R1 
R2 
R3 
R4 

 

Physical Regs 
P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

Free List 
  
  
  
 P7 
 P8 
 P9 
  
  
  

 
 
 
 
 
 

next to 
commit 

 
 
 

next 
available 

Reorder Buffer (ROB) 

→ 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

 
 
 
 
 

→ 
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…
 

 
Problem M8.2.B 

 
Assume that after the events from Question M3.6.A have occurred, the following events occur in 
order: 

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome, 
and recovery action is taken to repair the processor state. 

Step 2. The beqz instruction commits. 
Step 3. The correct next instruction is fetched and is written into the ROB. 

 
Fill in the diagram below to reflect the processor state after these events have occurred. 
Although you are not given the rename table snapshot, you should be able to deduce the 
necessary information from the diagram from Question M3.6.A. You do not need to show 
invalid entries in the diagram, but be sure to fill in all the fields which have valid data, and 
update the “next to commit” and “next available” pointers. Also make sure that the free list 
contains all available registers. 
 
 

Rename Table 
R1 
R2 
R3 
R4 

Physical Regs Free List 
P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

 
 
 

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

 
 
 

next 
available 
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Problem M8.2.C 

 
Consider (1) a single-issue, in-order processor with no branch prediction and (2) a multiple-
issue, out-of-order processor with branch prediction. Assume that both processors have the same 
clock frequency. Consider how fast the given loop executes on each processor, assuming that it 
executes for many iterations. 
 
Under what conditions, if any, might the loop execute at a faster rate on the in-order processor 
compared to the out-of-order processor? 
 
 
 
 
 
 

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order 
processor compared to the in-order processor? 
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Problem M8.3: Exceptions and Register Renaming 
 
Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86 
processors to compete with Intel. His latest project is the Bentium 4, a superscalar, out-of-order 
processor with register renaming and speculative execution. 
 
The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI). 
In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be 
used to hold intermediary values used by micro-operations (µops) generated by the microcode 
engine. The microcode engine is the decode unit and is used to generate µops for all the x86 
instructions. For example, the following register-memory x86 instruction might be translated into 
the following RISC-like µops: 
 

ADD Rd, Ra, offset(Rb) ® LW T0, offset(Rb) 
ADD Rd, Ra, T0 

 
All 16 µop-visible registers are renamed by the register allocation table (RAT) into a set of 
physical registers (P0-Pn). There is a separate shadow map structure that takes a snapshot of the 
RAT on a speculative branch in case of a misprediction. The block diagram for the front-end of 
the Bentium 4 is shown below: 
 
 
 

Instruction 
Fetch 

 

x86 instructions 
 

 
 

ROM 
Engine 

Decode 

Note: The decode block is 
actually replicated in the 
Bentium 4 in order to decode 
multiple instructions per cycle 
(not shown in the diagram). 

 
uops 

 
Uop Buffer 

 
 
 

Register 
Renaming 

 
 

dispatch window and 
execution cores 
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Problem M8.3.A Recovering from Exceptions 

 
For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine 
state is reset back to the precise state that existed right before the excepting instruction started 
executing. This instruction is then re-executed after the exception is handled. Ben proposes that 
the shadow map structure used for speculative branches can also be used to recover a precise 
state in the event of an exception. Specify a strategy that can be implemented for taking the least 
number of snapshots of the RAT that would still allow the Bentium 4 to implement precise 
exception handling. 
 
 
 
Problem M8.3.B Minimizing Snapshots 

 
Ben further states that the shadow map structure does not need to take a snapshot of all the 
registers in the Bentium 4 to be able to recover from an exception. Is Ben correct or not? If so, 
state which registers do not need to be recorded and explain why they are not necessary, or 
explain why all the registers are necessary in the snapshot. 
 
 
 
Problem M8.3.C Renaming Registers 

 
Assume that the Bentium 4 has the same register renaming scheme as the Pentium 4. What is the 
minimum number of physical registers (P) that the Bentium 4 must have to allow register 
renaming to work? Explain your answer. 
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Problem M8.4: Out-of-order Execution (Spring 2014 Quiz 2, Part C) 
 
In this problem, we are going to update the state of the processor when different events happen. You are given an out-of-order processor in 
some initial state, as described by the registers (renaming table, physical registers, and free list), one-bit branch predictor, and re-order buffer. 
Your job is to show the changes that occur when some event occurs, starting from the same initial state except where noted. For partial credit, 
briefly describe what changes occur. 
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Problem M8.4.A  
Show the state of the processor if the first load completes (but does not commit). 
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Problem M8.4.B  

Show the state of the processor after the next instruction is issued. 
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Problem M8.4.C  
 
From the state at the end of Question 2, as the next action can the processor issue (not execute) another instruction?  
 
 
 
 
 
 
 
 
In one or two sentences, what does this say about our design? How can we improve it? 
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Problem M8.4.D  
 
Show the state of the processor if the first LD triggers a page fault and after abort finishes. 
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Problem M8.5 (Spring 2015 Quiz 2, Part B) 
 
You are given an out-of-order processor that 
 

• Issues at most one instruction per cycle 
• Commits at most one instruction per cycle 
• Uses an unified physical register file 

 
Problem M8.5.A  
 
Consider the following code sequence: 
 

 
 
Assume the branch instruction (blez) is not taken. Fill out the table below to identify all Read-After-
Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW) dependencies in the above 
sequence.  
 

 I0 I1 I2 I3 I4 I5 I6 I7 

I0 -  
       

I1 WAW 
RAW -       

 

I2  
  -      

 

I3    -     
 

I4     -    
 

I5      -   
 

I6       -  
 

I7        
 - 

 

     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3 

Older Instruction 

Younger 
Instruction 
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In Problems M8.5.B to M8.5.D, you should update the state of the processor when different events 
happen. The starting state in each question is the same, and the event specified in each question is the 
ONLY event that takes place for that question.  The starting state is shown in the different structures: 
renaming table, physical registers, free list, two-bit branch predictor, global history buffer, and reorder 
buffer (ROB). 
 
Note the following conventions: 
 

• The valid bit for any entry is represented by “1”.  
• The valid bit can be cleared by crossing it out. 
• In the ROB, the “ex” field should be marked with “1” when an instruction starts execution, 

and the “use” field should be cleared when it commits. Be sure to update the “next to 
commit” and “next available” pointers, if necessary. 

• Fill out the “after” fields in all the tables. Write new values in these boxes if the values 
change due to the event specified in the question. You do not have to repeat the values if 
they do not change due to the event. 

 
In Questions 2 through 4, we will use the same code sequence as in Question 1:  

 

The starting state of the processor is as follows:  
 

• Instructions I0-I4 are already in the ROB.  
• I0 (lw) has already finished execution. 
• I1 (addi) and I2 (lw) have started executing but have not finished yet.  
• I3 (blez) has been predicted to be Not-Taken by the branch predictor.  
• I5 (mul) has completed the decode stage. 
• I6 (addi) has completed the Fetch Stage.  
• The next PC is set to 0x40, which is the PC of I7 (add).  

 
 
 
 
  

     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3 
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Problem M8.5.B  
 
The following figure shows the starting state of the processor. Suppose the decoded instruction I5 (mul) 
is now inserted into the ROB. Update the diagram to reflect the processor state after this event has 
occurred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi  P5   r4 P3 P7 
          
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
 
 
 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40  

 

Branch Global History 
Before After 

0010110  
 

Rename Table (Latest) 
Name Before After 

R1 P0  
R2 P5  
R3 P6  
R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5   
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 
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Problem M8.5.C  
 
Start from the same processor state, shown below. Suppose now I1 (addi) has completed execution. 
Commit as many instructions as possible. Update the diagram to reflect the processor state after I1 
execution completes and as many instructions as possible have committed. Again, assume no other 
events take place. 
 
 
 
 

 
 

 
 
 
 
 
 
 
  

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi  P5   r4 P3 P7 
          
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
 
 
 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40  

 

Branch Global History 
Before After 

0010110  
 

Rename Table (Latest) 
Name Before After 

R1 P0  
R2 P5  
R3 P6  
R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5   
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 



Last updated: 
3/10/2020 

Problem M8.5.D  
 
Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an ALU 
overflow exception. Restore the architectural and microarchitectural state to recover from 
misspeculation. The exception handler for the processor is at address 0x8C (control is transferred to the 
exception handler after recovery). You do not need to worry about the number of cycles taken by 
recovery. Show the processor state after recovery. 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi  P5   r4 P3 P7 
          
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
 
 
 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40  

 

Branch Global History 
Before After 

0010110  
 

Rename Table (Latest) 
Name Before After 

R1 P0  
R2 P5  
R3 P6  
R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5   
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 
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Problem M8.6: Out-of-order Processor Design (Spring 2014 Quiz 2, Part D) 
 

 
 
You are designing an out-of-order processor similar to the IBM 360/91 Tomasulo design shown above. 
This design distributes the re-order buffer around the processor, placing entries near their associated 
functional units. In such a design, the distributed ROB entries are called “reservation stations”. Entries 
are allocated when the instruction is decoded and freed when the instruction is dispatched to the 
functional unit. 
 
Your design achieves an average throughput of 1.5 instructions per cycle. Two-thirds of instructions 
are adds, and one-third are multiplies. The latency of each instruction type from allocation to 
completion is 5 cycles for adds and 14 cycles for multiplies. 
 
Type of operation Fraction of instructions Average latency 
Add 2/3 5 
Multiply 1/3 14 
 
The adder and multiplier are each fully pipelined with full bypassing. Once an instruction is dispatched 
to the FU, the adder takes 2 cycles and the multiplier takes 5 cycles. 
 
Throughput Add latency Multiply latency 
1.5 2 5 
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Problem M8.6.A  
 
How many entries are in use, on average, in the reservation station at each functional unit (adder, 
multiplier) in the steady state? Assume there are infinite entries available if needed. What is the 
average latency of an instruction in this machine? For partial credit, feel free to give any formulae you 
believe may be important to answer this question. 
 


