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Computer System Architecture  
6.823 Quiz #2 
April 7th, 2017 

Professors Daniel Sanchez and Joel Emer 
 
 

 
Name: ________Solutions______________        

 
This is a closed book, closed notes exam. 

85 Minutes 
13 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 14 and 15 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

    Part A  ________     25 Points 
    Part B  ________     30 Points 
   Part C  ________     20 Points 
   Part D  ________     25 Points 

 
TOTAL          ________  100 Points 
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Part A: Complex Pipelining (25 points) 
 
Consider the following MIPS instruction sequence. An equivalent sequence of C-like pseudocode 
is also provided. F1, F2, and F3 are floating point registers. 
 
I1: 
I2: 
I3: 
I4: 
I5: 
I6: 
I7: 

L.D   F2, 0(R2)  
L.D   F1, 0(R1)  
L.D   F2, 4(R1)  
MUL.D  F3, F1, F2 
ADD.D  F1, F2, F2 
S.D  F3, 0(R2) 
S.D        F1, 4(R1) 

; F2 = *r2; 
; F1 = *r1; 
; F2 = *(r1+4); 
; F3 = F1 x F2; 
; F1 = F2 + F2; 
; *r2 = F3; 
; *(r1+4) = F1; 

 
Question 1 (4 points) 
 
Fill out the table below to identify all Read-After-Write (RAW), Write-After-Read (WAR), and 
Write-After-Write (WAW) dependencies in the above sequence. Do not worry about memory 
dependencies for this question. The dependency between I3 and I4 is already filled in for you. 
 

 Earlier (Older) Instructions 

C
ur

re
nt

 In
st

ru
ct

io
n 

 I1 I2 I3 I4 I5 I6 I7 

I1 -       

I2 - -      

I3 WAW - -     

I4 - RAW RAW -    

I5 - WAW RAW WAR -   

I6 - - - RAW - -  

I7 - - - - RAW - - 
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Question 2 (9 Points) 
 
Calculate the number of cycles this code sequence would take to execute from issue of I1 to the 
issue of I7, inclusive, on a single-issue in-order pipelined machine. The machine uses a 
scoreboard and has no bypassing (as in Lecture 8). The floating point multiplier, adder, and 
load/store units are fully pipelined, so issue is never stalled by a busy functional unit (FU). The 
FUs latch their inputs. Assume that functional units have latencies as shown in the table below. 
Register write-back takes one additional cycle. Ignore write-back conflicts. I1 misses, but all 
other memory operations hit. 
 

Operation Load/Store that hits Load/Store that misses Multiplies Adds 
Latency 2 cycles 6 cycles 4 cycles 2 cycles 

 
You may fill out the timing chart below to help you find the answer. Filling out the chart can give 
you partial credit. It is initialized for you below with the issue and completion/write-back cycles 
of I1. 
 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Instruction 

issue or 
writeback 

I1 I2  I2   I1 I3  I3 I4 I5  I5 I4 I6 

 
Cycle 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Instruction 
issue or 

writeback 

I7 
                

 
An in-order core with scoreboard does not issue an instruction if its destination register appears 
in the writes-pending bit-vector. That is, it stalls on WAW hazards. Therefore I3 cannot issue 
until I1 completes. Because inputs are latched, WAR hazards do not cause stalls. 
 
Partial credit was given if students recognize that I3 must complete after I1. 
 
 
 
 
 
 
 
 
 
 
 
Number of cycles from issue of I1 to issue of I7, inclusive __17____ 
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Question 3 (12 Points) 
 
Manually rename registers in the code sequence to eliminate all WAR and WAW dependences, 
and reorder the instructions in the code sequence to minimize execution time. You may use 
register names from F1 to F7. Show the new instruction sequence and give the number of cycles 
this sequence takes to execute on the scoreboarded in-order pipeline. Partial credit will be given 
for solutions with improved, but sub-optimal timing. 
 
Original instruction sequence Register-renamed and reordered sequence 
 
I1: 
I2: 
I3: 
I4: 
I5: 
I6: 
I7: 

 
L.D   F2, 0(R2) 
L.D   F1, 0(R1)  
L.D   F2, 4(R1)       
MUL.D  F3, F1, F2 
ADD.D  F1, F2, F2 
S.D  F3, 0(R1) 
S.D        F1, 4(R1) 

 
I1’: 
 
 
I2’: 
 
 
I3’:  
 
 
I4’:  
 
 
I5’: 
 
 
I6’: 
 
 
I7’: 
 

 
L.D   F4, 4(R1)      
 
 
L.D   F1, 0(R1) 
 
 
L.D   F2, 0(R2) 
 
 
ADD.D  F5, F4, F4 
 
 
MUL.D  F3, F1, F4 
 
 
S.D        F5, 4(R1) 
 
 
S.D  F3, 0(R1) 
 
 

 
You may fill out the timing chart below to help you find the answer, and for partial credit. 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Instruction 
issue or 

writeback 
I1’ I2’ I3’ 

I1’ 
I4’ 
I2’ I5’ I4’ I6’  I5’ 

I3’ I7’       

 
 
Number of cycles from issue of I1 to issue of I7, inclusive ____10_______ 
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Part B: Out-of-Order Processing (30 points) 
 
 
This question uses the out-of-order Data-in-ROB machine described in the Quiz 2 Handout.  We 
describe events that affect the initial state shown in the handout. Label each event with one of the 
actions listed in the handout. If you pick a label with a blank (_____), you also have to fill in the 
blank using the choices (i—v) listed below. If you pick “R. Illegal action”, state why it is an 
illegal action. If in doubt, state your assumptions. 

 
Example: Assume T11 data becomes available. Instruction I12 is issued and its effective 
address matches load buffer entry 4. Answer: (L, iv): Check the correctness of a speculation on 
memory address and find an incorrect speculation. (You can simply write L, iv) 
 
 
a) Instruction I8 finishes execution and replaces T10’s src1 tag with data, and sets the p1 bit. 
 
(B, i): Satisfy a dependence on register value by bypassing a speculative value 
 
 
b) Instruction I8 finishes execution and writes back the new value of R4 to T8’s dest data 

field, and sets its pd bit. 
 

F: Write a speculative value using lazy data management 
 
 
 
c) Instruction I17 is dispatched to ROB entry T17. The instruction will write register R6, so tag 

T17 is written into the R6 entry of the rename table, and the valid bit is set. 
 
G: Write a speculative value using greedy data management 
 
 
 
d) Instruction I17 is dispatched to ROB entry T17. The instruction’s first operand is register 

R3, so value 3980 is copied from the register file into T17’s src1 field, and the p1 bit is set. 
 

(C, i): Satisfy a dependence on register value by using a committed value 
 
 
 

e) Instruction I18 has no entry in the BTB, so PC 0xc0 is fetched for I19. 
 
(E, ii): Satisfy a dependence on PC value by speculation using a dynamic prediction 
OR 
(D, ii): Satisfy a dependence on PC value by speculation using a static prediction 
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f) Assume T11 data becomes available and the processor’s divider unit is unpipelined (i.e. it 
can work on only one instruction at a time). Instruction I13 is not issued until the divide 
finishes. 

 
(A, vii): Satisfy a dependence on functional unit by stalling. 
 
 
 
 
g) Assume all instructions through I6 have committed. I7 commits and writes 4000 into the R2 

entry of the register file. 
  

P: Commit correctly speculated instruction, and replace old values with lazily updated values 
 
 
 
 
h) Assume all instructions through I7 have committed. I8 commits and replaces T10’s src1 

tag with a data value and sets T10’s p1 bit.  
 

R: Illegal or broken action. There should be no tags to replace; tag replacement should have been 
handled in write-back. 
 
 

 
 

i) Assume T13 data becomes available, I14 is issued, and the branch is found to be predicted 
correctly as not taken. The relevant branch prediction counter is decremented (unless it is 
already 0). 
 

(I, iii): Speculatively update a prediction on branch direction using greedy value management 
OR because there isn’t an undo log or buffer, accepted (H, iii) and (J, iii). 
 

 
 
 

j) Assume instruction I11 encodes an address offset of 4 (not shown in the figure). I11 is 
issued, writes address 4004 into entry 3 of the load buffer, sets the corresponding valid bit, 
and loads data from the cache. 

 
 
R: Illegal or broken action. The cache load will read stale data, as 4004 would have hit in the 
store buffer entry 2. 
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Part C: Multithreading (20 points) 
 
In this problem you will evaluate the throughput improvement of multithreading on the 
following code, which computes the per-element product of two arrays: 
 

float A[1024], B[1024], P[1024]; 
… 
for (int i = 0; i < 1024; i++) 
  P[i] = A[i] * B[i]; 

 
Here is the corresponding MIPS assembly code: 
 

;; Assume: 
;; R1 holds address of A[i]; initialized to base address of A 
;; 4096(R1) holds address of B[i], based on offset from A[i] 
;; 8192(R1) holds address of P[i], based on offset from A[i] 
;; R2 holds number of iterations remaining; initialized to N 
 

I1: loop: lw.s F1, 0(R1) 
I2:  lw.s F2, 4096(R1) 
I3:  mul.s F3, F1, F2 
I4:  sw.s  F3, 8192(R1) 
I5:  addi R1, R1, 4 
I6:  addi R2, R2, -1 
I7:  bnez R2, loop  
  
You run this code on a single-issue in-order processor. Assume the following:  
• The processor can fetch and issue one instruction per cycle. 
• If an instruction cannot be issued due to a data dependency, the processor stalls. 
• Loads/stores take 4 cycles (i.e., if instruction I1 starts execution at cycle N, then instructions 

that depend on the result of I1 can only start execution at or after cycle N+4); multiplies take 
3 cycles; and all other instructions execute in 1 cycle. 

• The load/store unit and multiplier are fully pipelined (i.e., can start a new request each cycle). 
• The end-of-loop branch is always predicted correctly. 
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Question 1 (5 Points) 
 
Suppose the code runs on a multithreaded processor that performs fixed switching: the processor 
switches to the next thread every cycle (round-robin), and if the instruction of the next thread is 
not ready, it inserts a bubble into the pipeline. What is the minimum number of threads required 
to fully utilize the processor every cycle while running this code? Explain. 
 
 
4 threads. The longest stall is 4 cycles between the lw.s and mul.s. To hide that latency, we 
require an additional 3 threads. 
 
 
 
 
 
 
 
 
 
 
 
Question 2 (5 Points) 
 
Now suppose the multithreaded processor performs data-dependent switching: the processor 
only switches to another thread when an instruction cannot execute due to a data dependence. If 
no threads have a ready instruction, the processor inserts a bubble into the pipeline. What is the 
minimum number of threads required to fully utilize the processor every cycle while running this 
code? Explain. 
 
 
3 threads.  
 
Necessity: the processor must always stall on the 3-cycle dependence between I3 and I4, 
therefore a thread switch occurs here. Three threads are needed to hide the latency. 
 
Sufficiency: in steady state, the processor can issue instruction sequence I4, I5, I6, I7, I1, and I2 
without stall. With three threads, these six contiguous stall-free cycles are more than enough to 
hide the 4-cycle latency between I2 and I3. 
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Question 3 (10 Points) 
 
Assume the fixed-switching policy of Question 1. Reorder and edit the sequence of 
instructions to minimize the number of threads that fully utilize the multithreaded pipeline. How 
many threads do you need? Explain. 
 
Partial credit will be given for solutions with a reduced, but sub-optimal number of threads. 
 
Original instruction sequence Write a reordered and edited sequence 
 
loop: lw.s F1, 0(R1) 

lw.s F2, 4096(R1) 
 mul.s F3, F1, F2 
 sw.s  F3, 8192(R1) 
 addi R1, R1, 4 
 addi R2, R2, -1 
 bnez R2, loop  
 
 
 
 
 
 
 

 
loop: lw.s F1, 0(R1) 

lw.s F2, 4096(R1) 
 addi R2, R2, -1 
 mul.s F3, F1, F2 
 addi R1, R1, 4 
 sw.s  F3, 8188(R1) 
 bnez R2, loop  

 
The decrement of R2 is independent of all instructions but the branch, including the second 
lw.s, so it can execute without waiting for the result of that load. To break up the multiply and 
store, we must carefully hoist the increment of R1 (by reducing the offset of the store by 4), as 
there was an anti-dependence between the sw.s and increment. With N total threads, each 
instruction is executed at the following cycles for the first thread: 
loop: lw.s F1, 0(R1)          1 

lw.s F2, 4096(R1)       1 + N 
 addi R2, R2, -1         1 + 2N 
 mul.s F3, F1, F2         1 + 3N 
 addi R1, R1, 4          1 + 4N 
 sw.s  F3, 8188(R1)       1 + 5N 
 bnez R2, loop           1 + 6N 
To avoid stalling on the 4- and 3-cycle latencies, we require both  

(1 + 3N – 1 + N) ≥ 4 => N ≥ 2 
and 

(1 + 5N – 1 + 3N) ≥ 3 => N ≥ 1.5 
 
 
Number of threads needed to fill the pipeline with reordered code: ___2_____  
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Part D: Centralized vs. Decentralized Issue (25 points) 
 

 
This problem focuses on the issue logic of a superscalar out-of-order machine. You will explore 
the tradeoffs between a centralized issue buffer (left) and decentralized reservation stations 
(right). In both designs, an issue buffer entry is allocated when each instruction is decoded and is 
freed when the instruction is dispatched to a functional unit. The decentralized design (right), 
introduced by Tomasulo in the IBM 360/91, distributes the issue buffer entries around the 
processor, with one set of entries per functional unit. In such a design, the distributed entries are 
called “reservation stations”. Do not worry about instruction commit or speculative buffering; 
you will focus on stages from entry allocation to instruction dispatch and completion. 
  
The following applies to both designs. Your desired average throughput is 1.5 instructions per 
cycle. Consider a stream of floating point instructions that consists of 2/3 adds and 1/3 
multiplies. For this stream, you observe that the average latency of an instruction from allocation 
in issue buffer to functional unit completion is 12 cycles. The processor’s adder and multiplier 
are each fully pipelined. Once an instruction is dispatched to the functional unit, both the adder 
and multiplier take 3 cycles.  
 

Type of operation Stream instruction ratio FU latency 
Add 2/3 3 cycles 
Multiply 1/3 3 cycles 

 
 

Average throughput Average total latency  
1.5 instructions per cycle 12 cycles 

  

Mult

p data p data1
2

p data1
2
3
4
5
6

data load
buffers
(from 
memory)

1
2
3
4

Adder

p data p data1
2
3

Floating
Point
Reg

< t, result >

p data

Reg

Load
Unit FU FU Store

Unit

< t, result >

t1
t2
.
.
tn

Ins#  use  exec   op    p     data    p    data

Centralized	Issue	Buffer Distributed	
Reservation
Stations
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Question 1 (8 points) 
 
Consider the centralized issue buffer. In steady state, how many issue buffer entries are in use on 
average? 
 
 
Average throughput:  
T = 1.5 IPC 
 
We need the average latency of an instruction from allocation to dispatch, but are given 
allocation to completion, as well as functional unit latencies. First compute the average latency in 
the functional units: 
 
Lfu = 3 cycles (average of 3 and 3) 
 
The average occupancy latency of an entry is therefore 
 
Locc = Ltotal – Lfu = 12 – 3 = 9 cycles 
 
Little’s law: 
Nocc = T * Locc = 1.5 * 9 = 13.5 entries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Average issue buffer entries used ____13.5_____ 
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Question 2 (9 points) 
 
Now consider the decentralized design. You observe that the average latency of add instructions 
from allocation to completion is 14 cycles for the stream of interest. How many reservation 
station entries are in use, on average, at each functional unit (adder, multiplier) in steady state? 

 
 
Since the average throughput of all instruction types is 1.5 IPC, then the throughput of the 
instruction types individually scales with their ratio. 
 
Tadd = 2/3 * 1.5 = 1 IPC     
Tmul = 1/3 * 1.5 = 0.5 IPC 
 
The next step is to determine the average latency that an instruction spends occupying its 
reservation station entry, i.e. from allocation to dispatch. This is straightforward for adds. 
 
Laddocc = Laddtotal – Laddfu = 14 – 3 = 11 cycles 
 
We must find the total latency for multiplies. The average total latency of all instruction types is 
12 cycles. We know that adds contribute 2/3 to that average. 
Ltotal = 2/3 Laddtotal  + 1/3 Lmultotal  

ð Lmultotal = 3 * (12 – 14 * 2 / 3) = 36 - 28 = 8 cycles 
 

Since the average latency of multiply instructions from allocation to completion is 8 cycles, we 
can determine the average occupancy latency in a reservation station from the functional unit 
latency. 
Lmulocc = Lmultotal – Lmulfu = 8 – 3 = 5 cycles 
 
Now apply Little’s Law: 
 
Naddocc = Tadd * Laddocc = 1 * 11 = 11 entries 
Nmulocc = Tmul * Lmulocc = 0.5 * 5 = 2.5 entries 
 
 
 
 
 
 
 

Average Adder reservation station entries 11 

Average Multiplier reservation station entries 2.5 
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Question 3 (4 points) 
 
Again consider the decentralized design. Suppose we run an instruction stream symmetric to the 
original. It is comprised of 1/3 adds and 2/3 multiplies, and the average latency of multiply 
instructions from allocation to functional unit completion is 14 cycles. How many reservation 
station entries are in use, on average, at each functional unit (adder, multiplier) in steady state? 
For full and/or partial credit, explain your reasoning. 
 
In the symmetric stream, we will swap all instances of an add-type variable with a multiply-type 
variable (ratios, throughput, latencies, etc). Therefore the final solution is just a swap of Question 
3. 
 
 
 
 

Average Adder reservation station entries 2.5 

Average Multiplier reservation station entries 11 
 
  
 
 
Question 4 (4 points) 
 
Qualitatively, name one advantage and one disadvantage of the distributed reservation station 
design over the centralized issue buffer. Explain. 
 
Advantage: At instruction completion, an associative lookup in performed on issue buffers to 
find tags to replace with new data values. With distributed reservation stations, this associative 
lookup is performed on more, smaller structures, saving energy. 
 
Disadvantage: We can use the full capacity of the centralized issue buffer to react to different 
instruction stream compositions, whereas we would need more aggregate decentralized entries to 
handle a variety of instruction streams.
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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