

Page 1 of 18

Computer System Architecture
6.823 Quiz #2
April 5th, 2019

Name: ________SOLUTIONS_________

This is a closed book, closed notes exam.

80 Minutes
 16 Pages (+2 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Show your work to receive full credit.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz.
• Pages 17 and 18 are scratch pages. Use them if you need more space to

answer one of the questions, or for rough work.

 Part A ________ 28 Points
 Part B ________ 30 Points
 Part C ________ 20 Points
 Part D ________ 22 Points

TOTAL ________ 100 Points

Page 2 of 18

Part A: Branch Prediction (28 points)

Consider a processor with the following pipeline stages:

The processor has the following characteristics:

- The A (Address generation) stage fetches the instruction at address PC+4.
- The branch target address is known at the end of the B stage.
- The branch condition is known at the end of R stage. If the branch was mispredicted,

the processor squashes all previous instructions in stages A to J.

To analyze the performance of this processor, we will use the following program:

int count = 0;
for(int i = 0; i <= 1000000; i++)
{
 if(A[i] == 0) //Branch B1
 {
 count++;
 }

 if(B[i] == 0) //Branch B2
 {
 count--;
 }
} //Branch LP

A
F1
F2

B
D
J
R
E

Address (PC) generation

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calculation / Begin Decode

Complete Decode
Steer Instructions to Functional Units

Register File Read

Execute... Remainder of execution pipeline

F3 Instruction Fetch Stage 3

Page 3 of 18

The assembly code for this program is as follows. Assume that registers R4 and R5 hold
the base addresses of arrays A and B, respectively, and that R6 holds the value of count.

Address Instruction

0x1000 ANDI R1, 0
0x1004 BEGIN: LW R2, 0(R4)
0x1008 LW R3, 0(R5)

0x100C B1: BNEZ R2, B2

0x1010 ADDI R6, R6, 1
0x1014 B2: BNEZ R3, END
0x1018 SUBI R6, R6, 1

0x101C END: ADDI R4, R4, 4

0x1020 ADDI R5, R5, 4

0x1024 ADDI R1, R1, 1

0x1028 SUBI R7, R1, 1000000
0x102C LP: BNEZ R7, BEGIN

For the following questions, Array A contains a repeating pattern of [0, 0, 1], and B
contains a repeating pattern of [0, 0, 0, 1]:

A = [0, 0, 1, 0, 0, 1, ... 0, 0, 1]
B = [0, 0, 0, 1, 0, 0, 0, 1, ... 0, 0, 0, 1]

Question 1 (6 points)

In steady state, What is the average number of cycles lost per iteration for each of the
following branches?
Average cycles lost = (how often branch is taken) * (branch mispredict penalty)
 (a) B1
 (1/3) * 7 = 7/3

 (b) B2
 (1/4) * 7 = 7/4

 (c) LP
 1 * 7 = 7

Page 4 of 18

Ben Bitdiddle adds a two-level branch predictor to the B stage to improve branch
prediction accuracy, as shown in the figure below.

The predictor consists of a set of local history registers indexed by lower bits of the PC
(excluding the least significant 2 bits since instructions are 4B-aligned). Each local history
register contains the last several outcomes of a given branch. Every time a new branch is
encountered, a 1 is shifted in from the right for taken branches and 0 for non-taken
branches. Each local history register value is used to index into a table of 1-bit counters.
Each counter predicts taken if the given counter entry is 1, and predicts not taken if it is 0.

With this addition, fetches work as follows. The A stage fetches PC+4, like before. If the
fetched instruction is a branch, the B stage then looks up the two-level branch predictor
with the branch PC. If the predictor predicts taken, all following instructions in the pipeline
in stages A to F3 are squashed, and the PC is redirected to the calculated branch address.

Question 2 (4 points)

Ben first wants to map each branch in his code to a distinct local history registers by using
the least significant bits of the PC. With the given indexing scheme, what is the smallest
size of the local history registers table (i.e., the number of local history registers) required
to ensure that no two branches map to the same local history register? Note the table size
must be a power of two.

Table size must be big enough to prevent aliasing between B1 (0x100C) and LP
(0x102C).

=> Need 4 bits => 2^4 = 16

...0100...

PC
Local History

Registers

1
1
0
1

1-bit
counters

Taken /
Not Taken

00

Page 5 of 18

Question 3 (4 points)

Ben wants to decide how many bits each local history register should have. What is the
minimum number of bits required to achieve perfect prediction in steady state?
Remember that A = [0, 0, 1, 0, 0, 1, ... 0, 0, 1] and B = [0, 0, 0, 1, 0, 0, 0, 1, ... 0, 0, 0, 1].

We can start with the least # of bits that covers at least one pattern:
3 bits => Does not work for pattern 100 (need to predict 1 for B1, and 0 for B2)
4 bits => Does not work for pattern 0100 (predict 1 for B1, predict 0 for B2)
5 bits => Does not work for pattern 00100 (predict 1 for B1, predict 0 for B2)
Lastly, 6 bits is guaranteed to work since none of the patterns of B1 overlap with those of
B2 when you consider the 3 possible patterns of B1 (001001, 010010, 100100)

Question 4 (4 points)

Alyssa P. Hacker adds a Branch Target Buffer (BTB) to the F1 stage to further improve
performance. The BTB holds a mapping of the branch PC to the target PC for branches
that it predicts to be taken. Assume that, if the branch is taken, the target PC predicted by
the BTB is always correct (i.e., there is no aliasing).

With this addition, fetches work as follows. As before, the A stage fetches PC+4. The BTB
is looked up in the F1 stage. Upon a hit, the BTB redirects control flow to the target PC
and squashes the following instruction in the A stage. The B stage redirects control flow
with the two-level predictor as explained in Question 2.

In the table below, fill in how many cycles are lost to branches for each scenario.

BTB prediction 2-Level Predictor
prediction

Cycles lost to branches if:

Taken Not taken

Taken Taken 1 7

Taken Not Taken 7 4

Not Taken Taken 4 7

Not Taken Not Taken 7 0

Page 6 of 18

Question 5 (5 points)

Assume that for the B2 branch, the BTB always hits. Using the combination of BTB and
the two-level predictor we designed in Questions 2-4, how many cycles are lost, on average
per loop iteration, due to the B2 branch? (Full credit will be given for a correct formula
that depends on the values from your answers to questions 2-4, even if those are not correct.)

Average cycles lost = (ratio of taken branches). * (cycles lost to branch if branch is taken)
+ (ratio of not taken branches) * (cycles lost to branch if branch is not taken)
= (1/4) * (1) + (3/4) * (4) = 3.25 cycles per iteration

Question 6 (5 points)

Consider the case where B now contains the repeating pattern [1, 0, 0, 1], while array A
stays the same. That is, the array contents are:

A = [0, 0, 1, 0, 0, 1, ... 0, 0, 1]
B = [1, 0, 0, 1, 1, 0, 0, 1, ... 1, 0, 0, 1]

Does our two-level predictor still work as well as it did on the previous pattern? Why or
why not? Explain.

Yes. Like in Question 4, none of the 3 patterns of A (001001, 010010, 100100) overlap
with those of B if we use 6 bits. In fact, we can get away with 5 bits here.

Page 7 of 18

Part B: Out-of-order Execution (30 points)

This question uses the out-of-order machine described in the Quiz 2 Handout. We describe
events that affect the initial state shown in the handout. Label each event with one of the
actions listed in the handout. If you pick a label with a blank (_____), you also have to fill
in the blank using the choices (i—vii) listed below. If you pick “R. Illegal action”, state
why it is an illegal action. If in doubt, state your assumptions.

Example: Instruction I17 hits in the BTB and reads entry 1.
Answer: (E, ii): Satisfy a dependence on PC value by speculation using a dynamic
prediction. (You can simply write E, ii)

a) Assume the value of physical register P7 is now available, which is 2004. Instruction

I14 is issued, finds a matching address on instruction I15 in the load buffer, and
aborts instruction I15.

Since this problem was vaguely worded in terms of what happens when instruction
I15 aborts, we gave full credit for the following answers:
(L, iv), (M), (N)

b) Instruction I8 finishes execution and writes result to physical register P2.

(G): Write a speculative value using greedy data management

c) Assume physical register P6 becomes available and holds a value of 01. Instruction
I13 executes and finds that the branch is indeed not taken.

(K,iii): Check the correctness of a speculation on branch direction and find a correct
speculation

d) Assume all instructions up to I6 commit. I7 commits and adds physical register P9
to the free list.

(Q): Commit correctly speculated instruction, and free log associated with greedily
updated values

Page 8 of 18

e) Assume instruction I13 is a mispredicted branch. Upon detecting the misprediction,
the rename table is restored to a previous snapshot.

(N): Abort speculative action and cleanup greedily managed values

f) Assume instruction I8 finishes execution and the value of P2 becomes available.
Instruction I9 is issued and reads physical registers P1 and P2.

(B): Satisfy a dependence on Register value by bypassing a speculative value

g) Assume instruction I16 is decoded and found to be a branch. The branch is predicted
taken, and the global history register is updated from 10011010 to 00110101 (shift
in a 1 from the right).

(I): Speculatively update a prediction on branch direction using greedy value
management

h) Assume instruction I16 writes to register R4. I16 is dispatched, grabs a new physical
register P11 from the free list, and updates the rename table entry of R4 to P11.

(G): Write speculative value using greedy data management

i) Assume the value of physical register P2 becomes available. I9 issues, finishes
execution, and frees physical register P1.

(R): Illegal operation. P1 is not freed until I9 commits.

j) Assume entry 1 of the BTB becomes invalid. Instruction I18 is fetched from address
0x3c.

(E): Satisfy a dependence on branch direction by speculation using a dynamic
prediction.
OR
(D): Satisfy a dependence on branch direction by speculation using a static prediction.

Page 9 of 18

Part C: Out-Of-Order Processor Design (20 points)

You are given an out-of-order processor with unlimited decode, issue, commit bandwidth.
The processor’s ISA has 16 architectural registers. To achieve an efficient design, you are
asked to calculate the average occupancy of various structures for different implementation
alternatives. We will use the following code:

The loop can be unrolled (thus eliminating branches) and translated into the following
instruction sequence, with six instructions per iteration:

Below are two different diagrams that show the cycles at which instructions are decoded,
issued, and committed in steady state (use the one you find more convenient). First, the
following table shows these cycles for the instructions in the Nth loop iteration:

Instruction Number Opcode Decode Issue Commit
6N addi 2N 2N+1 2N+6

6N+1 addi 2N 2N+1 2N+6
6N+2 lw 2N 2N+3 2N+6
6N+3 sw 2N+1 2N+5 2N+6
6N+4 muli 2N+1 2N+4 2N+7
6N+5 add 2N+1 2N+5 2N+7

For example, instruction I8 (lw) is decoded at cycle 2, issued at cycle 5, and committed at
cycle 8.

I0 addi r1, r1, #4
I1 addi r2, r2, #4
I2 lw r3, 0(r1)
I3 sw r3, 0(r2)
I4 muli r3, r3, #2
I5 add r4, r4, r3
I6 addi r1, r1, #4
I7 addi r2, r2, #4
I8 lw r3, 0(r1)
I9 sw r3, 0(r2)
I10 muli r3, r3, #2
I11 add r4, r4, r3

while(true) {
 i = i + 1
 B[i] = A[i]
 sum += A[i] * 2
}

Page 10 of 18

Second, the waterfall diagram below describes how the instructions are scheduled in steady
state.

Time: 2N 2N+1 2N+2 2N+3 2N+4 2N+5 2N+6 2N+7 2N+8 2N+9
I6N (addi) D I C
I6N+1 (addi) D I C
I6N+2 (lw) D I C
I6N+3 (sw) D I C
I6N+4 (muli) D I C
I6N+5 (add) D I C

Hint: To answer these questions, you do not need to derive the instruction scheduling
for more iterations.

Question 1 (5 points)

Assume that we have an data-in-ROB design that works as follows:

• At decode stage: an instruction is decoded and written to the ROB. The instruction
grabs an ROB entry at the beginning of the cycle.

• At issue stage: the instruction enters the execution pipeline.
• At commit stage: the instruction leaves the ROB at the end of the cycle.

On average, how many ROB entries are used in steady state?

Use Little's Law.
Throughput = 3 instructions per cycle
Average Latency = (7 + 7 + 7 + 6 + 7 + 7) / 6 = 41/6 cycles
N = T * L = 3 * (7 + 7 + 7 + 6 + 7 + 7) / 6 = 20.5 entries

Question 2 (5 points)

To simplify the ROB implementation, we introduce a separate, smaller issue queue
that holds instructions waiting to be issued:

• At decode stage: an instruction is decoded. The instruction grabs an ROB entry as
well as an entry in the issue queue at the beginning of the cycle.

• At issue stage: the instruction leaves the issue queue at the end of the cycle.
• At commit stage: the instruction leaves the ROB at the end of the cycle.

On average, how many issue queue entries are used in steady state?

Throughput = 3 instructions per cycle
Average Latency = (2 + 2 + 4 + 5 + 4 + 5) / 6 = 22/6 cycles
N = T * L = 3 * (2 + 2 + 4 + 5 + 4 + 5) / 6 = 11 entries

Page 11 of 18

Question 3 (5 points)

We change our ROB from the data-in-ROB design to having a unified physical register
file that holds both speculative and non-speculative register values. We use an ISA
that has 16 architectural registers. Instructions interact with the unified register file as
follows:

• At decode stage: an instruction is decoded. At the beginning of the cycle, the
instruction grabs an ROB entry and also grabs a free physical register from the
free list.

• At issue stage: the instruction is issued.
• At commit stage: the instruction leaves the ROB and releases the previously

mapped physical register at the end of the commit stage.

In steady state, how many physical registers are in use on average?

Note that store instructions do not allocate physical registers.

Throughput = 2.5 instructions per cycle
Average Latency = (7 + 7 + 7 + 7 + 7) / 5 = 7 cycles
N = T * L = 2.5 * 7 = 17.5 registers.

We also need to take into account 16 physical registers that are initially mapped.
Hence, total physical registers = 16 + 17.5 = 33.5

Question 4 (5 points)

We design our processor to have a unified load-store buffer that holds both pending
loads and stores. Assume that on average stores occupy the buffer for 5 cycles, and
loads occupy the buffer for 3 cycles. In steady state, how many load-store buffer
entries are in use on average?

Calculate number of entries for stores and loads separately, then add them.

Throughput of loads = 0.5 loads per cycle
N_load = 0.5 * 3 = 1.5
Throughput of stores = 0.5 stores per cycle
N_store = 0.5 * 5 = 2.5

Thus, total comes to 4 entries

Page 12 of 18

Part D: Multithreading (22 points)

In this part, we will investigate the tradeoffs between different fetch policies for a processor
that supports simultaneous multithreading (SMT).

Ben Bitdiddle is given a superscalar, out-of-order processor with support for SMT that has
a 20-entry ROB. Ben wishes to run 2 threads T1 and T2 on this machine while maximizing
the machine’s aggregate throughput, measured in terms of committed instructions per
cycle (IPC). To aid his decision, he first runs each thread in isolation on the machine to
see the relationship between the number of instructions in flight and the throughput.

Ben finds that each thread's throughput can be analytically expressed as follows, where Ni
is the number of instructions in flight for thread Ti:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)* 	= 	0.1	 × 	𝑁*
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)2 	= 	0.8	 × 	4𝑁2
𝑁* + 𝑁2 = 20

In the questions below, assume that the only resource both threads contend on is the
ROB, and that both threads always have instructions ready to be issued into the ROB.
Thus, the aggregate throughput of the machine depends only on how the threads share
ROB entries.

For your convenience, we provide plots that visualize the throughput profiles:

Throughput of thread T1

Page 13 of 18

Throughput of thread T2

We also provide a table of each thread's throughput for different numbers of instructions
in flight:

N1 ThroughputT1 N2 ThroughputT2
0 0 0 0
1 0.1 1 0.8
2 0.2 2 1.13
3 0.3 3 1.39
4 0.4 4 1.6
5 0.5 5 1.79
6 0.6 6 1.96
7 0.7 7 2.12
8 0.8 8 2.26
9 0.9 9 2.4

10 1 10 2.53
11 1.1 11 2.65
12 1.2 12 2.77
13 1.3 13 2.88
14 1.4 14 2.99
15 1.5 15 3.09
16 1.6 16 3.2
17 1.7 17 3.29
18 1.8 18 3.39
19 1.9 19 3.49
20 2 20 3.58

Page 14 of 18

Question 1 (8 points)

Ben's initial instinct is to use a round-robin policy. The round-robin policy alternates which
thread to fetch instructions from at every cycle.

a) Which thread would have more instructions in flight with the round-robin policy?
Explain. (4 points)

Round-robin will eventually equalize the throughput of two threads, since at
steady state the commit throughput of two threads will be the same as the fetch
throughput.

b) Calculate the machine’s aggregate throughput with the round-robin policy.
(4 points)

T1 = T2 = 1.6 when N1 = 16 and N2 = 4. Thus, aggregate throughput = 3.2 IPC

Page 15 of 18

Question 2 (8 points)

Alyssa proposes to use the ICOUNT policy. Recall that ICOUNT issues instructions into
the ROB from the thread with the fewest instructions in flight.

a) Calculate the machine’s aggregate throughput with the ICOUNT policy.
(4 points)

ICOUNT policy implies that entries from each thread are adjusted until they
occupy the same number of ROB entries. Thus, we calculate the aggregate
throughput when N1 = N2 = 10, which is T1 + T2 = 1 + 2.53 = 3.53

b) Fill in the table below to indicate how the number of instructions in flight for each
thread and the aggregate throughput change with the ICOUNT policy compared to
round-robin. For each row, place a check mark on the increase or decrease column.
(4 points)

 Increase Decrease

Number of Inst. in flight for T1 Ö

Number of Inst. in flight for T2 Ö

Aggregate throughput Ö

Page 16 of 18

Question 3 (6 points)

Do either round-robin or ICOUNT maximize the machine’s aggregate throughput? If so,
explain why this is. If not, how should the machine allocate ROB entries among threads to
achieve maximum throughput? Describe the general strategy, then calculate the maximum
aggregate throughput with the new allocation policy.

The optimal policy given two thread profiles that are monotonically increasing is to find a
point where the derivatives of the two are equal:

𝑑
𝑑𝑁*

	(0.1	 × 	𝑁*) 	= 	
𝑑
𝑑𝑁2

(0.8	4𝑁2)

We could build such a system by greedily allocating more entries to one thread until the
marginal gain in throughput for that thread equals the marginal loss of throughput in the
other thread.

Solving for above, we get N1 = 4 and N2 = 16, thus giving us an aggregate throughput of
3.6 IPC

Maximum Aggregate Throughput: ____________3.6_____________

Page 17 of 18

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not
grade this unless you tell us explicitly in the earlier pages.

Page 18 of 18

