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Computer System Architecture  
6.823 Quiz #3 

April 28th, 2017 
Professors Daniel Sanchez and Joel Emer 

 
 

 
Name: ________Solutions__________        

 
This is a closed book, closed notes exam. 

85 Minutes 
15 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 16 and 17 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
  

    Part A  ________     26 Points 
    Part B  ________     26 Points 
   Part C  ________     24 Points 
   Part D  ________     24 Points 

(+10 Bonus Points) 
 

TOTAL          ________  100 Points 
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Part A: Cache Coherence (26 points) 
 
We want to study the tradeoffs between the standard directory-based MSI and MESI coherence 
protocols. The figures below show their state-transition diagrams. 

 

 
Figure A-1: MSI protocol state transition diagram. 

 
 
 
 

 
Figure A-2: MESI protocol state transition diagram. 
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Question 1 (6 points) 
 
Consider the four-core system below. Each core has a private cache, and caches are kept 
coherent with a directory protocol. Each core runs a thread that issues a load followed by a store 
to a single address, as shown below. Each thread accesses a different address (core 1’s thread 
accesses A, core 2’s thread accesses B, etc.). These thread-private addresses are on different 
cache lines. The number in parenthesis indicates the global order of the accesses (i.e. LD A 
happens before ST A, which happens before LD B, etc.). Each access completes before the next 
one begins. 
 

 
 

(1) LD A 
(2) ST A 

(3) LD B 
(4) ST B 

(5) LD C 
(6) ST C 

(7) LD D 
(8) ST D 

 
 
For this sequence of 8 accesses, provide in the table below the total number of share and 
exclusive requests from caches to directory (ShReq and ExReq), and the total number of 
invalidation and downgrade requests from the directory to caches (InvReq and DownReq) for 
the MSI and MESI protocols. If a single shared or exclusive request causes the directory to issue 
invalidation or downgrade requests to multiple caches, you should count each of those messages 
as a separate request. Ignore coherence responses. Assume all caches are initially empty. 
 
 # of ShReq # of ExReq # of InvReq # of DownReq 

MSI 
 

4 4 0 0 

MESI 
 

4 0 0 0 

With MESI, each cache transitions from I->E, then silently upgrades E->M 
 
  

Core	1 Core	2 Core	3 Core	4

Cache	1 Cache	2 Cache	3 Cache	4
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Question 2 (6 points) 
 
Consider a different program where each thread reads globally shared data, as shown below. 
 

 
 

(1) LD A (2) LD A (3) LD A (4) LD A 
 
 
For this sequence of 4 accesses, fill in the table below for the MSI and MESI protocols. Ignore 
coherence responses. Assume all caches are initially empty. 
 
 # of ShReq # of ExReq # of InvReq # of DownReq 

MSI 
 

4 0 0 0 

MESI 
 

4 0 0 1 

 
With MESI, the directory responds to the first share request with E permission. When it receives 
the next share request, the directory must downgrade that first cache E->S.   

Core	1 Core	2 Core	3 Core	4

Cache	1 Cache	2 Cache	3 Cache	4
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Let’s try to improve on MSI by using a predictor. The idea is to predict whether a load that 
misses will be followed by a store to the same cache line. We leave the MSI protocol unchanged, 
but augment each private cache with a new ShReq-vs-ExReq predictor. On a store miss, the 
cache always sends an exclusive request to the directory, as in normal MSI. However, on a load 
miss, the cache can send either a shared request or an exclusive request, deferring the decision to 
the predictor. This way, on a load miss, the core may send an ExReq and acquire the line in M 
instead of S. 
 
Question 3 (7 points) 
 
Consider the private read/write access sequence in Question 1 (repeated below for convenience).  
 

 
 

(1) LD A 
(2) ST A 

(3) LD B 
(4) ST B 

(5) LD C 
(6) ST C 

(7) LD D 
(8) ST D 

 
Assume all private caches use the MSI protocol with predictor, and make the same prediction. 
 
a) What is the correct prediction (ShReq or ExReq) for this sequence of accesses? 
 

ExReq, since the load will be followed by a store. 
 
 
 

b) What is the incorrect prediction (ShReq or ExReq) for this sequence of accesses? 
 

ShReq 
 
 
 
c) For the sequence of 8 accesses, fill in the table below for MSI with correct and incorrect 

predictions.  Ignore coherence responses. Assume all caches are initially empty. 
 

 # of ShReq # of ExReq # of InvReq # of DownReq 
MSI with  

Correct Prediction 
0 4 0 0 

MSI with  
Incorrect Prediction 

4 4 0 0 

Correct: each cache sends an ExReq to get their private data in M state. 
Incorrect: same as MSI in Question 1.  

Core	1 Core	2 Core	3 Core	4

Cache	1 Cache	2 Cache	3 Cache	4
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Question 4 (7 points) 
 
Consider the shared read-only memory access sequence in Question 2. 
 

 
 

(1) LD A (2) LD A (3) LD A (4) LD A 
 
Assume all private caches use the MSI protocol with predictor, and make the same prediction. 
 
 
a) What is the correct prediction (ShReq or ExReq) for this sequence of accesses? 
 
 

ShReq 
 
 
 

b) What is the incorrect prediction (ShReq or ExReq) for this sequence of accesses? 
 
 

ExReq 
 
 
 
c) For the sequence of 4 accesses, fill in the table below for MSI with correct and incorrect 

predictions. Ignore coherence responses. Assume all caches are initially empty. 
 
 # of ShReq # of ExReq # of InvReq # of DownReq 

MSI with  
Correct Prediction 

4 0 0 0 

MSI with  
Incorrect Prediction 

0 4 3 0 

 
Correct: same as MSI in Question 2. 
Incorrect: the directory serializes ExReq requests. It grants some cache M state, then must 
invalidate that cache, grant another cache M state, invalidate that cache, and so on.  

Core	1 Core	2 Core	3 Core	4

Cache	1 Cache	2 Cache	3 Cache	4
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Part B: Memory Consistency (26 points) 
 
Consider two processes, P1 and P2, running on two different processors. 
Assume that memory locations A, B, and C contain initial value 0. 
 
 

P1 P2 
P1.1:  ST (A) ß 1 
P1.2:  LD RB  ß (B)  
P1.3:  ST (C) ß 1 

P2.1:  ST (B) ß 1 
P2.2:  LD RC  ß (C)  
P2.3:  LD RA  ß (A) 

 
 
Question 1 (10 points) 
 
Out of the following possible final values of (RA, RB, RC), circle the ones that could occur if the 
system is Sequentially Consistent (SC). 
 
 

(0,0,0) 
 
 

(0,0,1) (0,1,0) (0,1,1) 

(1,0,0) (1,0,1) (1,1,0) (1,1,1) 
 
 
 
 
 
 
Question 2 (5 points) 
 
Out of the following possible final values of (RA, RB, RC), circle the ones that could occur if the 
system enforces Total Store Order (TSO). TSO is a weak memory model where stores may be 
reordered after loads, i.e., a load may complete before a store that is earlier in program order if 
they access different addresses and there are no data dependencies. 
 
 
 

(0,0,0) 
 
 

(0,0,1) (0,1,0) (0,1,1) 

(1,0,0) (1,0,1) (1,1,0) (1,1,1) 
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Question 3 (5 points) 
 
Out of the following possible final values of (RA, RB, RC), circle the ones that could occur if the 
system enforces RMO. RMO is a weak memory model where loads or stores may be reordered 
after loads or stores, i.e., a load or a store may complete before a load or a store that is earlier in 
program order if they access different addresses and there are no data dependencies. 
 
 
 

(0,0,0) 
 
 

(0,0,1) (0,1,0) (0,1,1) 

(1,0,0) (1,0,1) (1,1,0) (1,1,1) 
 
 
Question 4 (6 points) 
 
Add the minimum number of memory barrier instructions (i.e., fences) to P1 and P2 such that 
the TSO machine produces the same register values as the SC machine for the given code. 
 
The following fine-grained barrier instructions are available: 

• MEMBARRR guarantees that all reads initiated before MEMBARRR will be performed before 
any read that follows the barrier. 

• MEMBARRW guarantees that all reads initiated before MEMBARRW will be performed before 
any write that follows the barrier. 

• MEMBARWR guarantees that all writes initiated before MEMBARWR will be performed 
before any read that follows the barrier. 

• MEMBARWW guarantees that all writes initiated before MEMBARWW will be performed 
before any write that follows the barrier. 

 
P1 P2 

 
P1.1:  ST (A) ß 1 
 

MEMBARWR 
 
P1.2:  LD RB  ß (B)  
 
 
 
P1.3:  ST (C) ß 1 
 

 
P2.1:  ST (B) ß 1 
 

MEMBARWR 
 
P2.2:  LD RC  ß (C)  
 
 
 
P2.3:  LD RA  ß (A) 

A MEMBARWR between P2.2 and P2.3 instead of between P2.1 and P2.2 is also correct.   
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Part C: Reliability (24 points) 
 
Consider the ACEness of different fields in an out-of-order machine. The machine uses a Data-
in-ROB design. Each instruction is allocated an entry in the reorder buffer (ROB) until commit. 
Assume the following: 

• An ROB entry’s src1 and src2 fields either hold the tag of the entry that will produce 
the instruction’s source operand(s), or the actual data when it becomes available. 

• An ROB entry’s dest field holds the ID of the register the instruction writes, if any. 
• When an instruction is issued to execute, its operands are latched by the functional unit or 

load/store unit. 
• After execute, the output from a functional unit (or a load/store unit), if any, is written 

back to the data field in the ROB entry. This data, if any, is written to the dest register 
in the register file at commit. 

• All instructions are ACE (i.e. no wrong-path execution). 
 
For reference, here is a sample ROB entry for a subtract instruction that is waiting on data for its 
first operand. 

 
 
Question 1 (8 points) 
 
An ROB entry is allocated to instruction add R3,R1,R2, which adds the contents of registers 
R1 and R2, and writes the result to register R3. Indicate whether the following intervals in the 
lifetime of the specified ROB fields are ACE, unACE, or unknown. Explain any assumptions 
you make.  
 src1 src2 dest data 
Entry Allocation to 
Operands Available 
 

ACE ACE ACE unACE 

Operands Available to 
Issue 
 

ACE ACE ACE unACE 

Issue to Write-Back 
(i.e. executing) 
 

unACE unACE ACE unACE 

Write-Back to Commit 
 
 

unACE unACE ACE ACE 

 
The operands are latched at the adder at issue, so the src1/src2 fields are unACE after issue. The 
dest field is read at commit to update architectural state of R3, so remains ACE through its 
lifetime. The data field value is produced at write-back and is not read until commit.  

Tag Inum PC Use Ex Op p1 src1 p2 src2 pd dest data

T8 I8 0xb4 1 sub T6 1 2 R5
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Question 2 (8 points) 
 
An ROB entry is allocated to instruction st R4,0(R7), which stores the contents of register R4 
into the effective memory address contained in register R7. Indicate whether the following 
intervals in the lifetime of the specified ROB fields are ACE, unACE, or unknown. Explain any 
assumptions you make. 
 
 src1 src2 dest data 
Entry Allocation to 
Operands Available 
 

ACE ACE unACE unACE 

Operands Available to 
Issue 
 

ACE ACE unACE unACE 

Issue to Write-Back 
(i.e. executing) 
 

unACE unACE unACE unACE 

Write-Back to Commit 
 
 

unACE unACE unACE unACE 

 
The effective address (from R7) and data (from R4) are latched at the load/store unit at issue, so 
the src1/src2 fields are unACE after issue. This instruction type never updates architectural state 
of a register, so the dest and data fields are always unACE. 
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Question 3 (8 points) 
 
Consider a 16-entry load buffer that holds the virtual addresses of issued loads. On average, a 
load is issued every 5 cycles, i.e., an address is allocated a new entry once every 5 cycles. The 
cache hit rate of this access stream is 90%, and accesses that hit in the cache hold their entry for 
10 cycles on average. Those accesses that miss take 110 cycles on average to release their entry. 
 
a) In steady state, how many load buffer entries are in use on average? 

 
T = 1 allocation / 5 cycles = 0.2 allocations/cycle 
L = 0.9 * 10 cycles + 0.1 * 110 cycles = 9 + 11 = 20 cycles 
Little’s law: 
N = T * L = 4 entries 
 
 
 

 
 
 
 
 

b) You profile the memory access stream. Of those loads that miss in the cache, you find that 
5% are issued from wrong-path execution, 15% are dynamically dead, and the rest are used 
by ACE instructions. Of those addresses that hit in the cache, 2% are issued from wrong-path 
execution, 18% are dynamically dead, and the rest are used by ACE instructions. For the 
given access stream, what is the Architectural Vulnerability Factor (AVF) of this load buffer? 

 
AVF is the fraction of cycles an entry contains ACE state. 
 
AVF = Nace / Ntotal 
Ntotal = 16 entries 
 
We can use Little’s Law to find the average number of ACE entries in a cycle. 
The throughput of allocated entries remains the same. 
T = 0.2 allocations/cycle (from part a) 
 
We need to determine the average latency for ACE loads. 
Lace  = 0.9 * (1 – 0.02 – 0.18) * 10 cycles + 0.1 * (1 – 0.05 – 0.15) * 110 cycles 

= 7.2 + 8.8 = 16 cycles 
 

AVF = T * Lace / Ntotal = (0.2 * 16) / 16 = 0.2 (unitless), between 0 and 1.0 
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Part D: On-Chip Networks (24 points + 10 bonus) 
 
You are choosing between two topologies for your on-chip network, shown below. 

 
For a system of N nodes, the 2-D Torus topology consists of 𝑘 = 𝑁 rows and columns, where 
each row or column is a ring. 
 
Question 1 (10 points) 
 
Your first task is to compare the topologies along key metrics. Fill in the table below as a 
function of the number of nodes in the network, N. The units for each cell are hops or links. For 
average distance, assume uniform random traffic (where each node sends 1/Nth of the traffic to 
each destination, including itself). 
To ease your derivations, you can define a variable 𝑘 = 𝑁, and assume k is an even integer. 
For partial credit, give the asymptotic growth instead. 
 
 Ring 2-D Torus 
Number 
of links 

N 2N 

Diameter 
 

𝑵
𝟐  𝑵 

Average 
distance 

𝑵
𝟒  𝑵

𝟐  
Bisection 
bandwidth 

2 2 𝑵 

 

Legend

Core

Router

Link

Ring	Topology 2-Dimensional	Torus	Topology
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Question 2 (8 points) 
 
As discussed in lecture, higher-dimensional topologies have smaller diameter, but the routers are 
more expensive. For what range of number of nodes, N, is the average latency in cycles of a 2-D 
torus topology lower than the average latency in cycles of a ring topology? (Provide an 
inequality on N.) 
 
Assume the following: 

• Traversing one link requires 1 cycle 
• Traversing one router requires 1 cycles in the ring topology 
• Traversing one router requires 4 cycles in the 2-D torus ring topology 
• Entering and exiting the network at a router counts as traversing the router 
• Traffic is uniform random 

(For example, in a 4-node ring, the latency to send a flit from a node to a node two hops away is 
5 cycles: 1 cycle to enter the network at the first router, 2 cycles for two link traversals, 1 cycle 
for one router traversal, and 1 cycle to exit the network at the last router.) 
 
Consider the Ring topology. 
Every hop takes 2 cycles (1 for link, 1 for router, including the exit router). 
The average distance in hops for uniform random traffic is N/4. 
Add 1 cycle to enter the network. 
Lring = N/4 * 2 + 1 = N/2 + 1 
 
Consider the 2-D Torus topology. 
Every hop takes 5 cycles (1 for link, 4 for router) 
Average distance in hops is √N/2. 
Add 4 cycles to enter the network. 
Ltorus = √N/2 * 5 + 4 = 5/2√N + 4 
 
When is Ltorus < Lring? 
=> 5/2√N + 4 < N/2 + 1 
=> 0 < N - 5√N - 6  
=> 0 < (√N - 6)(√N +1) 
=> N > 36 
 
Since N is an even square, N >= 64.  
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Question 3 (6 points) 
 
In a stroke of genius, you realize that a Hierarchical Ring topology (shown below) can bridge the 
low-latency routing of a Ring topology with the lower diameter of a 2-D Torus topology. For a 
system of N nodes, the Hierarchical Ring topology consists of one global ring surrounded by 
𝑘 = 𝑁 local rings. Each local ring has one node that also bridges with the global ring. 
 
Fill in the table below as a function of the number of nodes in the network, N. The units for each 
cell are hops or links. To ease your derivations, you can define a variable 𝑘 = 𝑁, and assume k 
is an even integer. For partial credit, give the asymptotic growth instead. 
 
 
 
 

 
 
Each of the 𝑁 local rings contains 𝑁 links. The single global ring contains 𝑁 links. 
 
The diameter within a ring is '

(
 . In the worst case, such a diameter is crossed for three rings: 

one end of a local ring to the bridge to enter the global ring, to the most distant bridge to exit the 
global ring, then to the end of that local ring. 
 
  

 Hierarchical Ring 
Number 
of links 

𝑵+ 𝑵 

Diameter 
 

𝟑
𝟐 𝑵 

Bisection 
bandwidth 

2 

Hierarchical	Ring Topology

Global
Ring

Local
Ring
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Bonus Question (10 points) 
 
Warning: This question is harder than others, so we recommend finishing as much of the 
quiz as you can before attempting it! 
 
Derive the average distance (in hops or links) for a Hierarchical Ring topology as a function of 
the number of nodes in the network, N. Assume uniform random traffic (where each node sends 
1/Nth of the traffic to each destination, including itself). To ease your derivations, you can define 
a variable 𝑘 = 𝑁, and assume k is an even integer. Only exact answers are accepted, no partial 
credit. 
 
 
With probability  +

,
   the source and destination are in the same ring. 

The average distance in this case is ,
-
. 

 
With probability  ,.+

,
   the source and destination are in different rings. 

The average distance to enter the global ring is ,
-
 (this includes when the source is a bridge node). 

The average distance to exit the global ring is ,
-
 (this includes when the destination is a bridge). 

The average distance to traverse the global ring is not ,
-
, because we have assumed the source 

and destination are in different rings; we scale the average distance for a ring by ,
,.+

. 
 
The average distance is therefore: 

1
𝑘 ∙
𝑘
4 +

𝑘 − 1
𝑘

𝑘
4 +

𝑘
4 +

𝑘
4 ∙

𝑘
𝑘 − 1 =

3 𝑁 − 1
4  
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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