
 6.823 Spring 2019

Page 1 of 2

Quiz 4 Handout

Consider a vector processor with the following features:

• Single-issue, in-order execution
• Scalar instructions execute on a 5-stage, fully-bypassed pipeline
• 32 vector registers, 16 elements per vector register
• Four vector lanes, with one ALU and one load-store unit per lane. Both take four cycles,

are fully pipelined, and can process vector elements from independent instructions at the
same time (the vector register file has enough ports per lane to feed both functional units)

• No support for vector chaining

The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector
instruction uses the lanes’ ALUs or load-store units for as many consecutive cycles as needed to
produce all of its results. Vector instructions are maskable, but each lane always processes all its
vector elements and turns off writeback for the masked ones. A vector instruction stalls if either
its functional unit is unavailable, or if it depends on the result of a prior instruction, in which case
it stalls until the prior instruction finishes writing back all of its elements. The vector register file
has enough ports to keep the vector ALUs and load-store units fully utilized. The processor
implements the MIPS ISA plus the following vector instructions:

addr
inst

Inst
Memory

0x4
Add

PC

Register
File

Vector
Register

File

Scalar
Load Store

Unit

4-lane Vector
Load-Store Units

4-lane
Vector ALUs

X1 X2 X3 X4

Scalar ALU

 6.823 Spring 2019

Page 2 of 2

Instruction Meaning
setvlr Rs Set vector length register (VLR) to the value in Rs
lv Vt, Rs Load vector register Vt starting at address in Rs
sv Vt, Rs Store vector register Vt starting at address in Rs
add.vv Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd
mul.vv Vd, Vs, Vt Multiply elements in Vs, Vt, and store result in Vd
add.vs Vd, Vs, Rt Add Rt to each element in Vs, and store result in Vd
mul.vs Vd, Vs, Rt Multiply each element in Vs by Rt, and store result in Vd
s--.vs Vd, Rs Compare the elements (eq, ne, gt, lt, ge, le) in Vd and Rs. For each

element, if the condition is true, set the corresponding bit of the
vector mask register to 1. If the condition is false, set the
corresponding bit of the vector mask register to 0.

cvm Set all elements in vector mask register to 1.
lvi Vt, Rs, Vs Gather load of vector register Vt starting at address in Rs and

offsets from Vs. The i-th element of vector register Vt is loaded
from an address that is the sum of Rs and the i-th element of Vs.

svi Vt, Rs, Vs Scatter store of vector register Vt starting at address in Rs and
offsets from Vs. The i-th element of vector register Vi is stored at
an address that is the sum of Rs and the i-th element of Vs.

