Problem M15.1: Exploiting Parallelism (Spring 2014 Quiz 3, Part B)

Consider the following C code sequence:

```
const int size = 64 * 1024;
int a[SIZE], b[SIZE], c[SIZE];
for (int i = 0; i < SIZE; i++) {
    if (a[i] > b[i]) {
        c[i] = a[i] + b[i];
    }
}
```

This is a repetitive computation with a simple dependency graph. If we look at the MIPS assembly code, we see that a large percentage of the instructions are doing bookkeeping. We'd like to reduce this overhead.

```
// R1 points to a, R2 points to b, R3 points to c
          // R6 is i
          ADD R6, R0, SIZE
          LD R4, 0(R1)
Loop:
          LD R5, 0(R2)
          SUB R8, R4, R5
          BGEZ R8, Skip
          ADD R4, R5, R4
          ST R4, 0(R3)
          ADD R1, R1, 4
Skip:
          ADD R2, R2, 4
          ADD R3, R3, 4
          SUB R6, R6, 1
          BNEZ R6, Loop
```

Problem M15.1.A

Circle the MIPS instructions in the assembly above that perform "useful work" rather than bookkeeping.

Shown in red above.

Problem M15.1.B

If the loads in the preceding code take four cycles, then this code sequence will stall and performance will suffer. Explain how an in-order, fine-grain multithreaded processor with two threads could mitigate this effect?

Fine-grain multithreaded processors use round robin to schedule threads. So with two threads, each thread executes one instruction (or tries to, at least) every two cycles. This effectively halves the load latency, and therefore leads to fewer stalls.

How would the program need to change for multhreading? (You do *not* need to write the code.)

You need to split the iterations evenly between the threads. This can be done in many ways; one simple way is to have the first do even iterations and the second to do odd iterations.

Problem M15.1.C

An alternative approach is to hide the load latency within a single thread by using loop unrolling. Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW version of the preceding code using the same VLIW instruction format as in Part A:

Memory operation	ALU operation	ALU operation / Branch
------------------	---------------	------------------------

Unroll the fewest number of loop iterations necessary to cover the load's latency. <u>Whatever degree</u> of unrolling you choose, assume it divides the array size. Also assume that predication is allowed:

(p1) instruction executes the instruction if predicate register p1 is set. cmp.gt p1, r1, r2 sets predicate register p1 if r1 is greater than r2.

Finally, R1 points to a, R2 points to b, R3 points to c, and R6 is i.

LD R4, 0(R1)		
LD R5, 0(R2)		
LD R4, 4(R1)		
LD R5, 4(R2)		
LD R4, 8(R1)		
LD R5, 8(R2)	ADD R6, R4, R5	CMP.GT P1, R4, R5
	ADD R1, R1, 12	ADD R2, R2, 12
(P1) ST R6, 0(R3)	ADD R6, R4, R5	CMP.GT P1, R4, R5
	ADD R3, R3, 12	SUB R6, R6, 3
(P1) ST R6, 4(R3)	ADD R6, R4, R5	CMP.GT P1, R4, R5
(P1) ST R6, -4(R3)	BNEZ R6, Loop	

Problem M15.1.D

Loop:

Skip:

Write a vector version using vector instructions and the vector mask register. Assume that the vector machine can do up to 64 operations per instruction, and note that SIZE is a multiple of 64.

VLR register stores the vector length.

LV v1, r1, Imm loads vector register v1 with memory starting at address r1 and stride Imm. SV v1, r1, Imm behaves similarly for stores.

ADDV v1, v2, v3 adds v2 and v3 and puts the result in v1.

SGTVV v1, v2 sets the vector mask register for each vector element in v1 greater than the corresponding element in v2 (mask set means the operation is enabled).

CVM resets the vector mask register (turns on all elements).

SUB R6, R6, 64 BNEZ R6, Loop

```
// R1 points to a, R2 points to b, R3 points to c
// R6 is i
ADD R6, R0, SIZE
LI VLR, 64

CVM
LV V1, R1, 4
LV V2, R2, 4
SGTVV V1, V2
ADDV V1, V1, V2
SV V1, R3, 4

ADD R1, R1, 64*4
ADD R2, R2, 64*4
ADD R3, R3, 64*4
```

Problem M15.1.E

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your answer in one or two sentences.

This program is easy to write for GPUs because each iteration is completely independent. It may be inefficient, however, due to branch divergence, depending on the distribution of A[i] > B[i] within the array.

Problem M15.2: VLIW, Vector Machines, and GPUs (Spring 2015 Quiz 4, Part C)

Consider the following C code fragment:

```
for(int i = 0; i < 301; i++)
{
    if(A[i] != B[i])
        C[i] = A[i] + 1;
    else
        C[i] = A[i] - 1;
}</pre>
```

A, B and C are arrays of 301 integers each. (Note: sizeof(int) = 4 bytes). Assume that A, B and C are stored in non-overlapping regions of memory.

The MIPS assembly for this code is shown below.

```
# R1 points to A[0]
# R2 points to B[0]
# R3 points to C[0]
# R4 contains a value of 301
                 R5, 0(R1)
loop:
        LW
                 R6, 0(R2)
        LW
        BEQ
                R5, R6, else
        ADDI
                R5, R5, #1
                 next
        J
                 R5, R5, #-1
else:
        ADDI
                R5, 0(R3)
next:
        SW
        ADDI
                R1, R1, #4
                R2, R2, #4
        ADDI
        ADDI
                R3, R3, #4
                 R4, R4, #-1
        ADDI
                R4, loop
        BNEZ
```

In the rest of the problem, assume that <u>load instructions that hit in the cache take 4 cycles (i.e., if</u> load instruction I1 starts execution at cycle N, then instructions that depend on the result of I1 can only start execution at or after cycle N+4) while <u>all other instructions take 1 cycle</u>. Assume the data cache has two read ports, two write ports, and is pipelined (i.e., it can accept a new request every cycle). Also assume perfect branch prediction and 100% hit rate in the instruction and data caches.

Problem M15.2.A

Consider a VLIW processor. Each instruction can contain up to two integer ALU operations (including branches) and two memory operations. In addition, in this machine, any operation can be predicated with any general-purpose register. For example:

[R3] SW R1, 0 (R2) executes the store instruction only if R3 is not zero; similarly, [!R3] SW R1, 0 (R2) executes the store only if R3 is zero.

Fill in the following table by unrolling enough loop iterations to eliminate the stall cycles in the main loop. Do not use software pipelining.

Label	Mem	Mem	ALU/Branch	ALU/Branch
	LW R5, 0(R1)	LW R6, 0(R2)		
			ADDI R1, R1, #4	ADDI R2, R2, #4
			ADDI R3, R3, #4	ADDI R4, R4, -1
			SUB R7, R5, R6	
			[R7] ADDI R5, R5, #1	
			[!R7] ADDI R5, R5, #-1	
	SW R5, -4(R3)			
loop:	LW R5, 0(R1)	LW R6, 0(R2)		
	LW R8, 4(R1)	LW R9, 4(R2)		
			ADDI R4, R4, #-2	ADDI R3, R3, #8
			ADDI R1, R1, #8	ADDI R2, R2, #8
			SUB R7, R5, R6	
			[R7] ADDI R5, R5, #1	SUB R10, R8, R9
			[!R7] ADDI R5, R5, #-1	[R10] ADDI R8, R8, #1
	SW R5, -8(R3)			[!R10] ADDI R8, R8, #-1
	SW R8, -4(R3)		BNEZ R4, loop	

Problem M15.2.B

Inst	ruction	Meaning
MTC1	VLR, Ri	Set VLR (vector length register) to the value of register Ri.
CVM		Set all elements in vector-mask (VM) register to 1.
LV	Vi, Rj	Load vector register Vi from memory starting at address Rj (under mask vector).
SV	Vi, Rj	Store Vi to memory starting at address Rj (under mask vector).
ADDVV	Vi, Vj, Vk	Add elements of Vj and Vk and then put each result in Vi
		(under mask vector).
ADDVS	Vi, Vj, Rk	Add Rk to each element of Vj and then put each result in Vi
		(under mask vector).
SUBVV	Vi, Vj, Vk	Subtract elements of Vk from Vj and then put each result in Vi
		(under mask vector).
SUBVS	Vi, Vj, Rk	Subtract Rk from elements of Vj and then put each result in Vi
		(under mask vector).
SVV	Vi, Rj	Compare the elements (EQ, NE, GT, LT, GE, LE) in Vi and Vj. If the
		condition is true, put a 1 in the mask vector (VM), otherwise put 0.

Now consider a vector machine. In addition to scalar registers, the machine has 32 vector registers, each 32-elements long. Vector instructions are described in the following table.

Rewrite the code fragment for this vector machine by filling in the table on the next page. For your convenience, part of the assembly code is already written for you. You may not need all the rows.

R1 points to A[0] # R2 points to B[0] # R3 points to C[0] # R4 contains a value of 301

LabelInstructionComment (Optional)

Image: Constraint of the system of the sy			
ANDI R5, R4, #31 Set R5 to R4%32 MTC1 VLR, R5 Set VLR to R5 SLL R6, R5, #2 Set R6 to R5*4 loop: CVM Set all elements in mask to 1 LV V1, R1 Itelements in mask to 1 LV V2, R2 Standard Set all elements in mask to 1 SNEVV V1, V2 ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 SUBVS V3, V1, R7 Standard Set all elements SV V3, R3 Standard Set all elements ADD SV V3, R3 ADD ADD ADD ADD R1, R1, R6 ADD ADD R3, R3, R6 SUB SUB R4, R4, R5 Set R5 to 32 MTC1 VLR, R5 Set VLR to R5			
ANDI R5, R4, #31 Set R5 to R4%32 MTC1 VLR, R5 Set VLR to R5 SLL R6, R5, #2 Set R6 to R5*4 loop: CVM Set all elements in mask to 1 LV V1, R1 Itelements in mask to 1 LV V2, R2 Standard Set all elements in mask to 1 SNEVV V1, V2 ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 SUBVS V3, V1, R7 Standard Set all elements SV V3, R3 Standard Set all elements ADD SV V3, R3 ADD ADD ADD ADD R1, R1, R6 ADD ADD R3, R3, R6 SUB SUB R4, R4, R5 Set R5 to 32 MTC1 VLR, R5 Set VLR to R5			
ANDI R5, R4, #31 Set R5 to R4%32 MTC1 VLR, R5 Set VLR to R5 SLL R6, R5, #2 Set R6 to R5*4 loop: CVM Set all elements in mask to 1 LV V1, R1 Itelements in mask to 1 LV V2, R2 Step and the set of the set			
ANDI R5, R4, #31 Set R5 to R4%32 MTC1 VLR, R5 Set VLR to R5 SLL R6, R5, #2 Set R6 to R5*4 loop: CVM Set all elements in mask to 1 LV V1, R1 Itelements in mask to 1 LV V2, R2 Step and the set of the set			
ANDI R5, R4, #31 Set R5 to R4%32 MTC1 VLR, R5 Set VLR to R5 SLL R6, R5, #2 Set R6 to R5*4 loop: CVM Set all elements in mask to 1 LV V1, R1 Itelements in mask to 1 LV V2, R2 Step and the set of the set			
MTC1VLR, R5Set VLR to R5SLLR6, R5, #2Set R6 to R5*4loop:CVMSet all elements in mask to 1LVV1, R1		ADDI R7, R0, #1	Set R7 to 1
SLLR6, R5, #2Set R6 to R5*4loop:CVMSet all elements in mask to 1LVV1, R1 IV LVV2, R2 IV SNEVV V1, V2 IV ADDVS V3, V1, R7 IV SUBVS V3, V1, R7 IV CVM IV SVV3, R3Image: Non-transformed state st			Set R5 to R4%32
SLLR6, R5, #2Set R6 to R5*4loop:CVMSet all elements in mask to 1LVV1, R1 IV LVV2, R2 IV SNEVV V1, V2 IV ADDVS V3, V1, R7 IV SUBVS V3, V1, R7 IV CVM IV SVV3, R3Image: Non-transformed state st		MTC1 VLR, R5	Set VLR to R5
loop:CVMSet all elements in mask to 1LVV1, R1 IV LVV2, R2 IV SNEVV V1, V2 IV ADDVS V3, V1, R7 IV SUBVS V3, V1, R7 IV CVM IV SVV3, R3Image: V3, R3 IV Image: V3, R3, R3 IV Image: V3, R3, R6 IV Image: V3, R3, R6 IV Image: V3, R3, R6 IV Image: V4, R4, R5 IV Image: V2, R2, R6, R4, R4, R5 IV Image: V3, R3, R6, SUB, R4, R4, R5 IV Image: V3, R3, R6, SUB, R4, R4, R5 IV Image: V3, R3, R6, Set R5 to 32 IV Image: V3, R3, R6, Set VLR to R5 IV			Set R6 to R5*4
LV V1, R1 LV V2, R2 SNEVV V1, V2 ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 CVM CVM SV V3, R3 ADD R1, R1, R6 ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5	loop:		
LV V2, R2 SNEVV V1, V2 ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 CVM CVM SV V3, R3 ADD R1, R1, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5 Set VLR to R5		LV V1, R1	
SNEVV V1, V2 ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 CVM SV V3, R3 ADD ADD R1, R1, R6 ADD R2, R2, R6 ADD SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADDVS V3, V1, R7 SEQVV V1, V2 SUBVS V3, V1, R7 CVM SV V3, R3 Image: SV V1, R5 Image: SV V1, R5 Image: SV V1, R5			
SEQVV V1, V2 SUBVS V3, V1, R7 CVM SV V3, R3 Image: Non-operative structure stru			
SUBVS V3, V1, R7 CVM			
CVM SV V3, R3 SV V3, R3			
SV V3, R3 ADD R1, R1, R6 ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5		SV V3, R3	
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
ADD R2, R2, R6 ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5		ADD R1, R1, R6	
ADD R3, R3, R6 SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5			
SUB R4, R4, R5 ADDI R5, R0, #32 Set R5 to 32 MTC1 VLR, R5 Set VLR to R5			
MTC1 VLR, R5 Set VLR to R5			
MTC1 VLR, R5 Set VLR to R5		ADDI R5, R0, #32	Set R5 to 32
			Set VLR to R5
		SLL R6, R5, #2	Set R6 to R5*4
BGTZ R4, loop		BGTZ R4, loop	

Problem M15.2.C

Suppose this vector machine has four lanes. Each lane has one ALU for adds, one ALU for comparisons, and a load-store unit with one read port and one write port. Both ALUs take a single cycle, and memory takes 4 cycles. Assume we use vector chaining to reduce stalls due to data dependences. The machine can chain a load to an ALU instruction, or an add ALU instruction to a compare ALU instruction. Also

assume that the mask register is updated at the end of the cycle when an entire S—VV instruction is finished.

In this question, assume each vector register has at least N elements. If we run the same program but with N iterations (instead of 301) on this vector machine, what is the average number of cycles per element for this loop in steady state for a very large value of N?

The answer to this question is based on the answer of Question2-1. We give you full grades if your calculation is correct based on the program you wrote.

Since the program has N iterations and each vector register has N elements, there is only one iteration.

(1) If we assume that the machine cannot chain a compare ALU instruction to an add ALU instruction:

LV V1, R1	-> N/4
LV V2, R2	-> + N/4
SNEVV V1, V2	-> + 4 (chaining: start after first 4 elements in V2 finish loading)
ADDVS V3, V1, R7	-> + N/4 (no chaining: start after SNEVV is done)
SEQVV V1, V2	-> +1 (start a cycle after ADDVS to avoid overwriting mask)
SUBVS V3, V1, R7	-> + N/4 (no chaining: start after SEQVV is done)
CVM	-> +1
SV V3, R3	-> + N/4

Since N is very large, the average number of cycles per element is (N*5/4)/N = 5/4

(2) If we assume that the machine can chain a compare ALU instruction to an add ALU instruction:

LV V1, R1	-> N/4
LV V2, R2	-> + N/4
SNEVV V1, V2	-> + 4 (chaining: start after first 4 elements in V2 finish loading)
ADDVS V3, V1, R7	-> +1 (chaining with SNEVV)
SEQVV V1, V2	-> + (N/4 - 1) (start after SNEVV is done)
SUBVS V3, V1, R7	-> +1 (chaining with SEQVV)
CVM	-> +1
SV V3, R3	-> + N/4

Since N is very large, the average number of cycles per element is (N*4/4)/N = 1

Problem M15.2.D

Suppose we code this program to run on a GPU with N warps. Each warp has 32 threads sharing the same PC and thus executing the same instruction. Assume each operation takes 16 cycles to execute. At most one instruction can be issued per cycle. In this GPU, each lane has one ALU and one load-store unit.

(1) If the machine has 32 lanes, what is the minimum value of N to achieve the highest pipeline utilization?

With 32 lanes, issuing 32 threads in a warp takes 1 cycle (1=32/32). To achieve the highest pipeline utilization, we need at least 16 warps (16 warps = 16 cycle / 1 cycle per warp).

(2) If the machine has 16 lanes, what is the minimum value of N to achieve the highest pipeline utilization?

With 16 lanes, issuing 32 threads in a warp takes 2 cycles (2=32/16). To achieve the highest pipeline utilization, we need at least 8 warps (8 warps = 16 cycle / 2 cycle per warp).