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Problem M16.1: Transactional Memory (Spring 2015 Quiz 4, Part B) 
 
Ben Bitdiddle wants to implement a transactional memory system with pessimistic conflict 
detection in a two-core processor. This system has the following characteristics:  

• When a transaction starts, it is assigned a unique global timestamp. 
• The memory system tracks the set of addresses read or written by each transaction (i.e., its 

read set and write set). 
• For every transactional load, the memory system checks whether this load reads an address 

in the write set of any other transaction, and declares a conflict if so. 
• For every transactional store, the memory system checks whether this store writes an 

address in the read set or write set of any other transaction, and declares a conflict if so. 
• On a conflict, the transaction with the later timestamp aborts. 
• An aborted transaction restarts execution 10 cycles later. 

 
Ben runs a program with two types of 
transaction: X and Y, shown below.  
 

Cycle relative to 
start Transaction X 

Cycle 0 Starts 
Cycle 10 Read B 
Cycle 20 Read A 
Cycle 30 Write A 
Cycle 40 Ends 

 
 

Problem M16.1.A  
 
Suppose the system is executing two transactions: a type X transaction that starts at cycle 0 and 
receives timestamp 0, and a type Y transaction that starts at cycle 5 and receives timestamp 5. Is 
there a conflict between these two transactions? If so, at what cycle does this conflict happen? 
 
There is a conflict at cycle 30 due the write A in transaction X. 
  

Cycle relative to 
start Transaction Y 

Cycle 0 Starts 
Cycle 10 Read B 
Cycle 20 Read A 
Cycle 30 Read B 
Cycle 40 Ends 



Last updated: 
4/30/2020 

 

Problem M16.1.B  
 
Ben implements conflict detection by extending a conventional MSI coherence protocol. 
Furthermore, drawing inspiration from the delay invalidation cache coherence protocol in Quiz 3, 
Ben wants to optimize his transactional memory system as follows: 
 

• When a core receives an abort for its currently running transaction, it delays the abort until 
the next local cache miss. If the transaction finishes without additional misses, it will 
commit successfully. 

 
With this optimization, assume the same scenario as in the previous question: a type X transaction 
that starts at cycle 0 and receives timestamp 0, and a type Y transaction that starts at cycle 5 and 
receives timestamp 5. Are any of these transactions aborted? If so, when do aborts happen? 
 
No, since the optimization delays the abort for transaction Y, and it does not miss after that, 
transaction Y will commit. This is logically same as Y starts before X. 
 
 
 
 
 
 
 
 
 
 
 
Does this optimization always provide correct transactional semantics? Explain your answer in 
one or two sentences. 
 
No, it does not provide correct transactional semantics. Consider the following example: 
 

Cycle relative to 
start Transaction X 

Cycle 0 Starts 
Cycle 20 Read A 

Cycle 30 Use value A to 
Write C 

Cycle 40 Ends 
 
If X starts at 0, and Y starts at 5, Y will abort at cycle 25 due to read miss, but X will read the data 
from Y since at cycle 20, it sees the write from Y. Finally, X commits will modification that should 
have abort. 
  

Cycle relative to 
start Transaction Y 

Cycle 0 Starts 
Cycle 10 Write A 
Cycle 20 Read B 
Cycle 30 Ends 
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Problem M16.1.C  
 
Ben believes this optimization works well and always needs fewer cycles to complete transactions. 
Is he correct? If so, explain why this always improves performance with one or two sentences. 
Otherwise, provide an example where this optimization causes a transaction to finish later.  
 
No, Ben is incorrect. This optimization is somehow similar to optimistic conflict detection, so it’s 
possible that it takes longer to finish transactions. For example, if a transaction should have abort 
at cycle 10, but delay the abort till later, it will start later and thus finish later. 
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Problem M16.2: Transactional Memory (Spring 2016 Quiz 4, Part D) 
 
You are designing a hardware transactional memory (HTM) system that uses pessimistic 
concurrency control (i.e., on each load/store, the HTM checks for conflicting accesses to the same 
address made by other transactions). Comment on whether the following conflict resolution 
policies suffer from either livelock (i.e., the system may reach a state where no single transaction 
makes forward progress) or starvation (i.e., the system may reach a state where at least one 
transaction does not make forward progress). State your reasoning. 
 

 
1. Requester wins: Upon a conflict, the transaction whose request initiated the conflict 

check is granted access to the data, and any conflicting transactions are aborted. After 
aborting, transactions immediately restart execution.  
 
This policy can livelock. Transactions A and B that conflict, can end up aborting each 
other similar to the scenario discussed in L23-19. This policy is also prone to starvation if 
a transaction gets aborted by conflicting transactions repeatedly. 
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2. Timestamp-based, retain timestamp on abort: Each transaction is assigned a unique 
timestamp when it first begins execution. Timestamps are monotonically increasing. 
Upon a conflict, if the requesting transaction’s timestamp is lower than the timestamps of 
all other conflicting transactions, the requester is granted access to the data, and other 
conflicting transactions are aborted. Otherwise, the requesting transaction is aborted. 
 
After aborting, transactions immediately restart execution. Aborted transactions retain 
their original timestamp when they restart execution. 
 
Cannot livelock or starve. At some point, a transaction becomes the oldest transaction in 
the system (i.e. with the lowest timestamp), and can proceed to completion (commit) at 
that point. 

 
 
 
 
 
 
 
 
 

 
 

3. Timestamp-based, discard timestamp on abort: Like the previous policy, except that 
aborted transactions discard their previous timestamp and acquire a new one when they 
restart execution. 
 
This policy cannot livelock since the lowest timestamp transaction at any point can 
commit. However, this policy can lead to starvation, since an aborted transaction acquires 
a new timestamp on restarting execution. It is possible that it repeatedly conflicts with 
lower timestamp transactions, and is aborted. 
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4. Random-number-based, retain random number on abort: Each transaction is 
assigned a unique random number when it first begins execution. Upon a conflict, if the 
requesting transaction’s random number is lower than the random numbers of all other 
conflicting transactions, the requester is granted access to the data, and other conflicting 
transactions are aborted. Otherwise, the requesting transaction is aborted. 
 
After aborting, transactions immediately restart execution. Aborted transactions retain 
their original random number when they restart execution. 

 
This policy cannot livelock. The lowest timestamp transaction will complete unless a new 
conflicting transaction with lower timestamp arrives in the system (and issues a 
conflicting memory access) before completion of this transaction. Eventually, we should 
generate a transaction with minimum random number allowing it to complete. The policy 
can however lead to starvation if a transaction is assigned the maximum possible random 
number. 
 

 
 
 
 
 
 
 
 

5. Random-number-based, discard random number on abort: Like the previous policy, 
except that aborted transactions discard their previous random number and acquire a new 
one when they restart execution. 
 
This policy cannot livelock (reason similar to the previous question). Since an aborted 
transaction receives a new timestamp on restarting execution, this policy avoids 
starvation. 

 
 
 
 
 
 
 
 


