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Computer System Architecture  
6.823 Quiz #4 

May 17th, 2017 
Professors Daniel Sanchez and Joel Emer 

 
 

 
Name: ____________Solutions____________        

 
This is a closed book, closed notes exam. 

85 Minutes 
18 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 19 and 20 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
  

    Part A  ________     27 Points 
    Part B  ________     24 Points 
   Part C  ________     25 Points 
   Part D  ________     24 Points 

 
 

TOTAL          ________  100 Points 
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Part A: VLIW Programming (27 points) 
 
Consider the following C code sequence. Arrays A, B, C, and D contain N 32-bit integer elements. 
 
 for (int i = 0; i < N; i++) {  

  if (A[i] >= B[i]) {  
    C[i] = A[i] - B[i];  
  } else { 
    D[i] = B[i] – A[i]; 
  } 
} 

 
A corresponding MIPS implementation is shown below. 
 
 ;; Initial values: 

;;  r1 := &A[0], r2 := &B[0], r3 := &C[0], r4 := &D[0] 
;;  r5 := &A[N] (first address after array A) 
 
loop: LD  r6, 0(r1)  
      LD  r7, 0(r2) 
      SUB r8, r6, r7 
      BLZ r8, else 
      ST  r8, 0(r3) 
      J   next 
else: SUB r8, r7, r6 
      ST  r8, 0(r4) 
next: ADDI r1, r1, 4  
      ADDI r2, r2, 4  
      ADDI r3, r3, 4  
      ADDI r4, r4, 4  
      BNE r1, r5, loop 

 
In the rest of the problem, assume a VLIW processor with the following characteristics: 

• Functional units and load/store units are fully pipelined and latch their inputs. 
• The data cache has two read/write ports and is fully pipelined (i.e., it can accept two new 

requests every cycle).  
• All load instructions hit in the cache and take 4 cycles including writeback (i.e., if load 

instruction I starts execution at cycle K, then instructions that depend on the result of I 
can only start execution at or after cycle K+4).  

• All other instructions take 1 cycle due to bypassing logic. 
• Perfect branch prediction and 100% hit rate in the instruction and data caches. 
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Question 1 (8 points) 
 
Consider a VLIW processor. Each instruction can contain up to two integer ALU operations (including branches) and two memory 
operations. In addition, in this machine, any operation can be predicated on inequality with any general-purpose register. For example:  
 
[r4>=0] ADDI r1, r1, 1 executes the add instruction only if r4 is greater than or equal to zero; similarly,  
[r4<0]  ADDI r2, r2, 1 executes the add instruction only if r4 is negative.  
 
Write VLIW code for the original instruction sequence, assuming the VLIW architecture has the fixed latencies previously mentioned, 
and no stall logic except for cache misses. You may reorder and modify the code, and use registers r1 to r30. For full credit, your 
implementation should use the minimum number of VLIW instructions (but no unrolling or software pipelining). 
 

Label Memory Unit Memory Unit ALU/Branch ALU/Branch 
loop LD r6, 0(r1)  LD r7, 0(r2)   
   ADD r1, r1, 4 ADD r2, r2, 4 
   ADD r3, r3, 4 ADD r4, r4, 4 
     
   SUB r8, r6, r7 SUB r9, r7, r6 
 [r8>=0] SW r8,-4(r3) [r8<0] SW r9,-4(r4) BNE r1, r5 loop  
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Question 2 (13 points) 
 
Fill in the following table by unrolling three loop iterations. For full credit, your implementation should use the minimum number of 
VLIW instructions, but no software pipelining. Assume you may use registers r1 to r30. Assume N = 3k, for any integer k >= 1. 
 

Label Memory Unit Memory Unit ALU/Branch ALU/Branch 
loop LD r6, 0(r1)  LD r7, 0(r2)   
 LD r8, 4(r1)  LD r9, 4(r2) ADD r3, r3, 12 ADD r4, r4, 12 
 LD r10, 8(r1)  LD r11, 8(r2)   
   ADD r1, r1, 12 ADD r2, r2, 12 
   SUB r20, r6, r7 SUB r21, r7, r6 
 [r20>=0] SW r20,-12(r3) [r20<0] SW r21,-12(r4) SUB r22, r8, r9 SUB r23, r9, r8 
 [r22>=0] SW r22,-8(r3) [r22<0] SW r23,-8(r4) SUB r24, r10, r11 SUB r25, r11, r10 
 [r24>=0] SW r24,-4(r3) [r24<0] SW r25,-4(r4) BNE r1, r5 loop  
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Question 3 (6 points) 
 
Let’s see how well loop unrolling improved performance. 
 
 
a) For your non-unrolled VLIW code in Question 1, what is the number of cycles per loop 

iteration in steady state? 
 
 
 
 
6 cycles/iteration 
 
 
 
 
 
 
 

b) For your unrolled VLIW code in Question 2, what is the number of cycles per unrolled loop 
iteration in steady state? 

 
 
 
 
 
 

8 cycles/iteration   (8/3 was also accepted) 
 
 
 
 
 

c) What is the speedup achieved by your unrolled VLIW code over your non-unrolled VLIW 
code?  

 
  
 

6  / (8 / 3) = 9/4 = 2.25x speedup 
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Part B: Trace Scheduling (24 points) 
 
In this part, you will analyze four trace schedules of the following MIPS code sequence, and 
write compensation code for them. Assume the following: 

• p is a pointer to a 32-bit integer, held in r1. 
• a is a 32-bit integer held in register r2, whose value is less than 100,000. 
• b is a 32-bit integer held in register r3. 
• The contents of r3 and r4 do not affect instructions at or after next. 

 
 ;; if (p != NULL) a += *(p + b); 
;; else a = (a + 1) / (b + 5); 
 

I0: 
I1: 
I2: 
I3: 
I4: 
I5: 
I6: 
I7: 

next: 
 

BNEZ r1, I5            ;; p != NULL ? 
ADDI r3, r3, 5         ;; r3 := b + 5 
ADDI r2, r2, 1         ;; r2 := a + 1 
DIV  r2, r2, r3        ;; a = (a + 1) / (b + 5) 
J    next 
ADD  r4, r1, r3        ;; r4 := p + b  
LD   r4, 0(r4)         ;; r4 := *(p + b) 
ADD  r2, r2, r4        ;; a += *(p + b) 
... 

 
To aid with trace scheduling, the ISA is augmented with two instructions discussed in lecture: 
load-speculate, which if used, is followed in the program by a load-check. 
 
Instruction Format and Description 
Load-
Speculate 

LD.S rt, offset(rs) 
Load the contents of the effective address of rs + offset into register rt, 
but if the access faults, instead load zero into rt and set its poison bit, and do 
not cause an exception. 

Load-Check CHK.S rt, target 
Check if register rt was written by a LD.S that set its poison bit (e.g., due to a 
segmentation or page fault). If so, jump to target to service the exception and 
handle any necessary cleanup. 

 
 
In the following questions, a trace scheduling compiler optimizes the above code sequence in 
different ways, assuming different properties of the branch I0. Write the compensation code for 
each given trace, or explain why the trace schedule has no possible compensation code. If CHK.S 
is necessary in your compensation code, do not worry about its target (e.g. use exception as 
the target).  
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Question 1 (6 points) 
 
The optimized trace below assumes I0 is frequently taken. 
 

I5: 
I0’: 
I6: 
I7: 

next: 
 
 
 
 
 
 
 
 
 

ADD  r4, r1, r3 
BEZ  r1, compensation 
LD   r4, 0(r4) 
ADD  r2, r2, r4 
... 

compensation: 
    ADDI r3, r3, 5 
    ADDI r2, r2, 1 
    DIV  r2, r2, r3 
 

  
Trace 1 

    J next 
Compensation 1 

 
 
Question 2 (6 points) 
 
The optimized trace below assumes I0 is rarely taken. 
 

I1: 
I2: 
I0: 
I3: 

next: 
 
 
 
 

 
 

 
 

 

ADDI r3, r3, 5 
ADDI r2, r2, 1 
BNEZ r1, compensation 
DIV  r2, r2, r3  
... 

compensation: 
    SUBI r2, r2, 1 
    ADD  r4, r1, r3 
    LD   r4, -5(r4) 
    ADD  r2, r2, r4 
 
 

  
Trace 2 

    J next 
Compensation 2 
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Question 3 (6 points) 
 
The optimized trace below assumes I0 is rarely taken. 
 

I1: 
I2: 
I3: 
I0: 

next: 
 
 
 
 

 
 

 
 

 

ADDI r3, r3, 5 
ADDI r2, r2, 1 
DIV  r2, r2, r3  
BNEZ r1, compensation 
... 

compensation: 
 
No compensation is possible 
because in general we cannot 
recover the remainder of integer 
division  
(a + 1) / (b + 5) 
 

  
Trace 3 

    J next 
Compensation 3 

 
 
Question 4 (6 points) 
 
The optimized trace below assumes I0 is taken slightly less often than not taken, so also 
speculatively loads *(p + b). 
 

I5: 
I6’: 
I1: 
I2: 
I0: 
I3: 

next: 
 
 

 
 

 
 

 

ADD  r4, r1, r3 
LD.S r4, 0(r4) 
ADDI r3, r3, 5 
ADDI r2, r2, 1 
BNEZ r1, compensation 
DIV  r2, r2, r3  
... 

compensation: 
    CHK.S r4, exception 
    SUBI r2, r2, 1 
    ADD  r2, r2, r4 
 
 

  
Trace 4 

    J next 
Compensation 4 
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Part C: Transactional Memory (25 points) 
 
In this part you will analyze the operation of different hardware TM (HTM) designs, and the 
concurrency they achieve for different transaction schedules on a 2-core system. For any HTM 
design, the memory system dynamically tracks the set of addresses read or written by each 
transaction (i.e., its read set and write set) as accesses are performed. 
 
Consider two HTM designs: 
 

• Eager & Pessimistic HTM uses eager version management and pessimistic conflict 
detection. For every transactional load, the memory system checks whether this load 
reads an address in the write set of any other transaction, and declares a conflict if so. For 
every transactional store, the memory system checks whether this store writes an address 
in the read set or write set of any other transaction, and declares a conflict if so. Upon a 
conflict, the transaction receiving an invalidation or downgrade aborts, i.e. the requester 
wins.  
 

• Lazy & Optimistic HTM uses lazy version management and optimistic conflict 
detection. Conflicts are detected when a transaction attempts to commit. The finished 
transaction validates its write-set with coherence actions. If any of its writes appear in the 
read- or write-set of other transactions in the system, a conflict is declared. Analogous to 
pessimistic requester-wins, the committer wins. 

 
The system runs a program consisting of the following two transactions.  
 

Transaction X  Transaction Y 
Begin  Begin 
Read A  Read A 
Write A  Read B 
Read B  Write B 
End  End 

 
In the following questions, for timing, assume conflict detection and coherence happen in the 
same cycle a memory access executes.  
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Question 1 (6 points) 
 
Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would 
produce the following schedule. 
 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X Begin  Rd A  Wr A  Rd B  End  
Transaction Y  Begin  Rd A  Rd B  Wr B  End 

 
 
a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved in 

the given order, would the transactions be serializable? If so, circle what would be the 
apparent commit order of the transactions, or circle “Not serializable”. 
 

 
X before Y Y before X Not serializable 

 
 

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 
conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 

20 
 Y 

Lazy & 
Optimistic 

40 
 Y 
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Question 2 (6 points) 
 
Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would 
produce the following schedule. 
 

 
 
a) In the absence of conflict detection, if the memory operations interleaved in the given order, 

would the transactions be serializable? If so, circle what would be the apparent commit order 
of the transactions, or circle “Not serializable”. 
 

 
X before Y Y before X Not serializable 

 
 

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 
conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 

30 
 Y 

Lazy & 
Optimistic 

 
 Neither 

 
 
  

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 
Transaction X Begin  Rd A    Wr A   Rd B  End 
Transaction Y  Begin  Rd A  Rd B  Wr B End    
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Question 3 (6 points) 
 
Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would 
produce the following schedule. 
 

 
 
a) In the absence of conflict detection, if the memory operations interleaved in the given order, 

would the transactions be serializable? If so, circle what would be the apparent commit order 
of the transactions, or circle “Not serializable”. 
 

 
X before Y Y before X Not serializable 

 
 

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 
conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 

20 
 X 

Lazy & 
Optimistic 

50 
 Y 

 
 
 
  

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 
Transaction X Begin  Rd A Wr A    Rd B   End  
Transaction Y  Begin   Rd A  Rd B   Wr B  End 
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Question 4 (7 points) 
 
Consider a different program consisting of the following transactions: 
 

Transaction W  Transaction Z 
Begin  Begin 
Write A  Read A 
Read A  Read B 
Read B  Write B 
Write B  Read B 
End  End 

 
Suppose transaction W starts at cycle 0 and transaction Z starts at cycle 5, and they would 
produce the following schedule. 
 
 

 
 
a) In the absence of conflict detection, if the memory operations interleaved in the given order, 

would the transactions be serializable? If so, circle what would be the apparent commit order 
of the transactions, or circle “Not serializable”. 
 

 
W before Z Z before W Not serializable 

 
 

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 
conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(W, Z, or Neither) 

Eager & 
Pessimistic 

15 
 Z 

Lazy & 
Optimistic 

65 
 Z 

 
  

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
Transaction W Beg.   Wr A  Rd A    Rd B  Wr B   End  
Transaction Z  Beg. Rd A    Rd B  Wr B  Rd B    End 
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Part D: Vector vs. GPU Access Patterns (24 points) 
 
In this part you will consider the performance effect of memory access patterns for vector 
processors and GPUs. The vector processor has the following features: 

• Single-issue, in-order execution. 
• Scalar instructions execute on a 5-stage, fully-bypassed pipeline. 
• 32 4-byte floating-point vector registers, 16 elements per vector register. 
• Four vector lanes, with one ALU and one load-store unit per lane. Both units are fully-

pipelined and can process vector elements from independent instructions. 
• No support for vector chaining (a vector instruction stalls until all the elements of its 

source operands are available in the vector register file). 
• The ALUs have a 4-cycle latency (3 for FP add/mul and 1 for writeback). 
• The vector memory system has no cache and consists of 16 banks, with 4-byte word 

interleaving (0x0 maps to bank 0, 0x4 to bank 1, etc.). Memory access latency is 16 
cycles with a 2-cycle bank busy time (additional cycles between accesses to the same 
bank). A vector lane’s load-store unit stalls if its required bank is busy. 

 

 
The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector 
instruction uses the lanes’ ALUs or load-store units for as many consecutive cycles as needed to 
produce all of its results. The vector register file has enough ports to keep the vector ALUs and 
load-store units fully utilized. The processor implements the MIPS ISA plus the following vector 
instructions: 
 
Instruction Meaning 
SETVLR Rs Set vector length register (VLR) to the value in Rs 
LV Vt, Rs, Stride Load vector register Vt starting at address in Rs, with stride immediate 
SV Vt, Rs, Stride Store vector register Vt starting at address in Rs, with stride immediate 
ADD.VV Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd 

addr
inst

Inst
Memory

0x4
Add

PC

Register	
File

Vector	
Register	
File

Scalar	
Load	Store	

Unit

4-lane	Vector
Load-Store	Units

4-lane
Vector    ALUs

X1 X2 X3 X4

Scalar ALU
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Question 1 (6 points) 
 
The following C code sums all rows of A, a 16 x 16-element array of 4-byte floats, into array Q. 
 

#define N (16) 
float A[N * N], Q[N]; 
for (int i = 0; i < N; i++) 
  for (int j = 0; j < N; j++) 
    Q[j] += A[(i * N) + j]; 

 
Consider its vectorized code below that stores the Q array in a vector register, and loads A with a 
memory access stride of 1. 
 

 
 
 
 
 
 
 

loop: 
 

;; Initial values: 
;;  r1 := &A[0], r2 := &A[N * N] (first entry after array A) 
;;  r3 := &Q[0] 
;;  v1 holds Q array, initially zero. 
 
ADDI    r20, r0, 16   ;; set r20 to 16 
SETVLR  r20           ;; use all 16 vector elements 
LV      v2, r1, 1     ;; access stride of 1 
ADD.VV  v1, v1, v2 
ADDI    r1, r1, 64    ;; point to the next row 
BNE     r1, r2, loop 
SV      v1, r3, 1     ;; access stride of 1 
 

 
In steady state, if the LV instruction issues at cycle X, when does the ADD.VV instruction issue? 
Assume &A[0] maps to bank 0, &A[1] maps to bank 1, …, &A[16] maps to bank 0, &A[17] 
maps to bank 1, etc. 
 
Instruction Banks accessed Cycle issued 
LV v2 0-3 X 
 4-7 X+1 
 8-11 X+2 
 12-15 X+3 
ADD.VV v1 N/A X + 19 = X + 3 + 16 
 
There are no bank conflicts so bank busy time does not apply. The last set of four loads issues at 
X + 3. However the question underspecifies when writeback occurs relative to the 16-cycle load 
latency. Therefore X + 19, X + 20, and even X + 21 could be accepted. 
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Question 2 (6 points) 
 
Now consider a different program that sums elements of A with stride 16 into array T, as shown 
below. You can think of this as summing the “columns” of A into T. 

 
#define N (16) 
float A[N * N], T[N]; 
for (int i = 0; i < N; i++) 
  for (int j = 0; j < N; j++) 
    T[j] += A[i + (j * N)]; 

 
The vectorized code below now loads A with a memory access stride of 16. 
 

 
 
 
 
 
 
 

loop: 
 

;; Initial values: 
;;  r1 := &A[0], r2 := &A[N] (first entry after first row of A) 
;;  r3 := &T[0] 
;;  v1 holds T array, initially zero. 
 
ADDI    r20, r0, 16   ;; set r20 to 16 
SETVLR  r20           ;; use all 16 vector elements 
LV      v2, r1, 16    ;; A[i], A[i+16], A[i+32], ... 
ADD.VV  v1, v1, v2 
ADDI    r1, r1, 4     ;; point to the next column 
BNE     r1, r2, loop 
SV      v1, r3, 1     ;; access stride of 1 
 

 
In steady state, if the LV instruction issues at cycle X, when does the ADD.VV instruction issue? 
Assume &A[0] maps to bank 0, &A[1] maps to bank 1, …, &A[16] maps to bank 0, &A[17] 
maps to bank 1, etc. 
 
Instruction Banks 

accessed 
Cycle issued 

LV v2 0 X 
 0 X + 1 * 2 (for bank busy time) 
 0 X + 2 * 2 
 …  
 0 X + 15 * 2 
ADD.VV v1 N/A X + 46 = X + 15 * 2 + 16 
All bank accesses conflict so each of the 16 loads (following the first) suffers a busy bank 
penalty of 2 cycles. The last load issues at X + 15 * 2. However the question underspecifies 
when writeback occurs relative to the 16-cycle load latency, so X + 46 and X + 47 were 
accepted. X + 48 was accepted as long as it was not derived from assuming the first load suffers 
a bank busy penalty. 
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You now code these sequential and strided sums to run on a GPU with the following features: 
• 16 threads per warp that share the same PC and thus execute the same instruction in 

lockstep. 
• Each of the 16 lanes has one ALU and one load-store unit. 
• A 64 KB cache is shared among all threads in a warp. Cache lines are 64 bytes. If all 

threads in a warp hit in the cache, the memory access latency is low for all threads. If 
any thread in the warp misses in the cache, all threads in the warp stall for the long access 
to memory, even in some hit (this is because all threads in the warp execute in lockstep). 
The cache can process up to 16 misses in parallel. 

 
For the following questions, assume the cache is initially empty. Assume the base address of the 
16x16 array A is 0x1000, i.e. &A[0] = 0x1000. 
 
Question 3 (6 points) 
 
You translate the code in question 1, which performs sequential vector accesses, to run on a 
GPU. Each of the 16 threads of a warp executes a single iteration of the inner loop. Together, the 
threads of a warp load 16 contiguous elements of A at a time. 
 
Qualitatively compare the memory access latencies of the loads in the first and second iterations 
of the outer loop. Are the latencies equal or is one larger than the other? Why? 
 
 
The latencies are equal, because they both miss.  
 
All threads of a warp (inner loop iteration) load an address from the same cache line (16 threads 
* 4 bytes / thread). Because the cache is empty, the requests for the first iteration miss together in 
lockstep. In the next outer loop iteration, all threads of a warp access a different cache line. They 
miss together, and so on. There is no reuse when all threads of a warp access the same line. 
 
  



 18 

Question 4 (6 points) 
 
You translate the code in question 2, which performs 16-element strided vector accesses, to run 
on a GPU. Each of the 16 threads of a warp executes a single iteration of the inner loop. 
Together, the threads of a warp load 16 elements of A that are 16 locations away at a time. 
 
Qualitatively compare the memory access latencies of the loads in the first and second iterations 
of the outer loop. Are the latencies equal or is one larger than the other? Why? 
 
The latencies of the second iteration loads are less than the first iteration loads, because the 
former all hit together in lockstep. 
 
All threads of a warp (inner loop iteration) load an address from a different cache line (stride of 
16 elements is 64 bytes). Because the cache is empty, the requests for the first iteration miss 
together in lockstep. In the next outer loop iteration, each thread loads the next element 
contiguous to its first load. The first group load brought all 16 cache lines into the cache, so the 
second group load all hit together in lockstep. Each thread experiences 1 miss and 15 hits due to 
spatial locality. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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Extra VLIW Instruction Table 
Use this as scratch space or if you need a new one to answer one of the questions in Part A. 
 

Label Memory Unit Memory Unit ALU/Branch ALU/Branch 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

 


