
SOLUTIONS

Page 1 of 13

Computer System Architecture
6.823 Quiz #4
May 12, 2020

SOLUTIONS

Name: ___________________________

90 Minutes
 13 Pages

Notes:
• Not all questions are equally hard. Look over the whole quiz and budget your

time carefully.
• Please state any assumptions you make, and show your work.
• Please write your answers by hand, on paper or a tablet.
• Please email all 13 pages of questions with your answers, including this cover

page. Alternatively, you may email scans (or photographs) of separate sheets of
paper. Emails should be sent to 6823-staff@csail.mit.edu

• Do not discuss a quiz's contents with students who have not yet taken the quiz.
• Please sign the following statement before starting the quiz. If you are emailing

separate sheets of paper, copy the statement onto the first page and sign it.

I certify that I will start and finish the quiz on time, and that
I will not give or receive unauthorized help on this quiz.

Sign here: _______________________________

 Part A ________ 19 Points
 Part B ________ 32 Points
 Part C ________ 24 Points

TOTAL ________ 75 Points

SOLUTIONS

Page 2 of 13

Part A: Scalar vs. VLIW Processors (19 points)

Ben Bitdiddle wants to examine the execution of the following C loop on different machines.
This code operates on two arrays of length N, containing 32-bit floating point numbers:

for (i = 0; i < N; i++)
 A[i] = A[i] * (B[i] + 1.0);

Ben starts by compiling the loop to run on a scalar machine. The compiler generates the
following instructions for the body of the loop:

;; Initial values:
;; f1 := 1.0
;; r1 := &A[0] and r2 = &B[0]
;; r3 := &A[N] (first address after vector A)

I1: loop: ld f0, 0(r2) ;; Load B[i]
I2: ld f2, 0(r1) ;; Load A[i]
I3: fadd f3, f0, f1
I4: addi r1, r1, 4
I5: fmul f4, f2, f3
I6: addi r2, r2, 4
I7: st f4, -4(r1) ;; Store A[i]
I8: bne r1, r3, loop

Question 1 (6 points)

The code above runs on an in-order, pipelined, single-issue scalar processor with perfect branch
prediction and full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to
bypassing, consecutive dependent ALU operations execute without stalling), loads have a 2-
cycle latency, and floating-point operations have a 3-cycle latency.

(a) How many cycles will the processor stall per loop iteration? Briefly explain your answer.

No stalls for the I1àI3 or I2àI5 load-use dependencies, as the compiler has scheduled these
instructions far enough apart.
I3àI5 and I5àI7 each require one stall to wait for a floating-point operation.
Total: 2 stalls

(b) How many floating-point arithmetic operations per cycle will the processor perform on

average in steady state?

8 instructions + 2 stalls = 10 cycles per iteration, so with 2 floating point operations this
gives: 2/10 = 1/5 = 0.2 FLOPs/cycle

SOLUTIONS

Page 3 of 13

Question 2 (4 points)

If you applied unrolling to the loop, what is the minimum unrolling factor needed to remove all
stalls in steady-state execution? The unrolling factor is the total number of copies of code you
end up with for the computation in the loop. Briefly explain your answer.

Unrolling by 2 is sufficient. We could simply interleave instructions from two iterations, which
works since the original loop never required two stalls for a single instruction. Although not
required, for this particular loop, we can also reduce the bookkeeping instructions and an
unrolling factor of 2 is still sufficient. The following code with only two additions (which is the
minimum possible) still has zero stalls:

I1: loop: ld f0, 0(r2) ;; Load B[i]
I2: ld f5, 4(r2) ;; Load B[i+1]
I3: ld f2, 0(r1) ;; Load A[i]
I4: ld f6, 4(r1) ;; Load A[i+1]
I5: fadd f3, f0, f1
I6: fadd f7, f5, f1
I7: addi r1, r1, 8
I8: fmul f4, f2, f3
I9: fmul f8, f6, f7
I10: addi r2, r2, 8
I11: st f4, -8(r1) ;; Store A[i]
I12: st f8, -4(r1) ;; Store A[i+1]
I13: bne r1, r3, loop

Question 3 (9 points)

Ben now considers a VLIW machine, where each instruction has slots for up to three operations:

• One (integer) ALU or branch operation (which always completes in a single cycle)
• One memory operation (which takes 2 cycles, as in the in-order processor)
• One floating point operation (which takes 3 cycles, as in the in-order processor)

The compiler must generate no-ops to stall the machine for data dependencies. Ben observes a
compiler for this VLIW machine generates the following VLIW code when loop unrolling and
software pipelining are disabled:

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1 loop: addi r1, r1, 4 ld f0, 0(r2) nop
2 addi r2, r2, 4 ld f2, -4(r1) nop
3 nop nop fadd f3, f0, f1
4 nop nop nop
5 nop nop nop
6 nop nop fmul f4, f2, f3
7 nop nop nop
8 nop nop nop
9 bne r1, r3, loop st f4, -4(r1) nop

SOLUTIONS

Page 4 of 13

(a) Ben is disappointed that this VLIW code takes nine cycles per iteration and has some
instructions consisting entirely of no-ops. To address this, Ben considers loop unrolling.
What is the minimum factor by which the loop must be unrolled so every instruction in
steady state performs at least one memory or floating point operation? Whatever degree of
unrolling you choose, assume it divides the number of loop iterations exactly. Identify which
data dependencies are most critical in determining your answer.

Unrolling by 3 is sufficient. The most critical dependencies are faddàfmulàst, due to the
long-latency floating-point ops which take 3 cycles. Unrolling by a factor of 2 does not give
enough ops to fill the cycles (since we aren’t satisfied to fill a cycle with just an integer ALU
op). Once you unroll by 3, matching the longest latency, you can interleave ops from three
faddàfmulàst chains to put at least one op in each cycle. For example, you could have
extended and filled in the table on the previous page to get this schedule for unrolling by 3:

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1 ld f0, 0(r2)
2 ld f5, 4(r2)
3 ld f9, 8(r2) fadd f3, f0, f1
4 addi r2, r2, 12 ld f2, 0(r1) fadd f7, f5, f1
5 ld f6, 4(r1) fadd f11, f9, f1
6 ld f10, 8(r1) fmul f4, f2, f3
7 addi r1, r1, 12 fmul f8, f6, f7
8 fmul f12, f10, f11
9 st f4, -12(r1)
10 st f8, -8(r1)
11 bne r1, r3, loop st f12, -4(r1)

(b) Assume the VLIW processor has appropriate support for software pipelining (e.g., a rotating

register file). If you can overlap any number of iterations and apply software pipelining, what
is the maximum achievable throughput, in floating-point arithmetic operations per cycle?

The loop performs 3 memory operations for every 2 floating point operations. We can issue
at most 1 memory op per cycle, so the peak throughput is 2/3 = 0.67 FLOPs/cycle.

(Addendum: Software pipelining and its associated hardware support is not actually needed
to achieve this ideal throughput: simply unrolling by a larger factor can result in enough
memory ops to keep the memory unit fully utilized.)

SOLUTIONS

Page 5 of 13

Part B: Vector Processors and GPUs (32 points)

Ben moves on to consider using a vector machine. Ben’s vector processor has these features:

• Single-issue, in-order execution.
• Scalar instructions execute on a 5-stage, fully-bypassed pipeline.
• 32 vector registers named V0 through V31. Each vector register holds 32 floating-point

elements. The register files have enough ports to keep all lanes busy.
• Four vector lanes, each with one floating-point ALU and one load-store unit. Vector

loads and arithmetic take four cycles to produce results and one cycle for writeback.
• No support for vector chaining.

This schematic shows a simplified view of the processor:

The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector
instruction uses either all lanes’ ALUs or all lanes’ load-store units for as many cycles as needed
to produce all of its results. Vector units are pipelined, so independent operations can be issued
in sequence such that each stage in each vector unit operates on different values every cycle. A
vector load or store can execute in parallel with independent operations that use the vector
ALUs, and vector operations can execute in parallel with scalar operations. If a vector instruction
depends on the result of a prior instruction, it stalls until the prior instruction finishes writing
back all of its results. The processor implements MIPS plus the following vector instructions:

Instruction Meaning
setvlr rs Set vector length register (VLR) to the value in rs
lv Vt, rs Load vector register Vt starting at address in rs
sv Vt, rs Store vector register Vt starting at address in rs
fadd.vv Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd
fmul.vv Vd, Vs, Vt Multiply elements in Vs, Vt, and store result in Vd
fadd.vs Vd, Vs, ft Add floating-point scalar ft to each element in Vs, store result in Vd
fmul.vs Vd, Vs, ft Multiply each element in Vs by scalar ft, and store result in Vd

addr
inst

Inst
Memory

0x4
Add

PC

Register	
File

Vector	
Register	
File

Scalar	
Load	Store	

Unit

Vector Load-Store Unit
Vector ALU

M1 M2 M3 M4

X1 X2 X3 X4

Scalar ALU

SOLUTIONS

Page 6 of 13

Question 1 (8 points)

Ben wants to analyze the performance of this vector processor on the same loop as in Part A:

for (i = 0; i < N; i++)
 A[i] = A[i] * (B[i] + 1.0);

For this part, assume that N is a multiple of 32. For your convenience, we’ve reproduced the
original scalar assembly code for this loop:

;; Initial values:
;; f1 := 1.0
;; r1 := &A[0] and r2 = &B[0]
;; r3 := &A[N] (first address after vector A)

I1: loop: ld f0, 0(r2) ;; Load B[i]
I2: ld f2, 0(r1) ;; Load A[i]
I3: fadd f3, f0, f1
I4: addi r1, r1, 4
I5: fmul f4, f2, f3
I6: addi r2, r2, 4
I7: st f4, -4(r1) ;; Store A[i]
I8: bne r1, r3, loop

(a) Provide equivalent vector code. For full credit, your code should execute as quickly as

possible while using no more than two vector ALU instructions.

 addi r20, r0, 32 ;; set r20 to 32
 setvlr r20 ;; use all 32 vector elements
 loop: lv v0, r2
 lv v1, r1

fadd.vs v2, v0, f1
 fmul.vv v3, v1, v2
 sv v3, r1
 addi r1, r1, 128
 addi r2, r2, 128
 bne r1, r3 loop

(If you assume that the sv instruction allows an immediate offset/displacement, then the two
addi instructions could also be placed earlier. In this case, they can be placed almost
anywhere without affecting performance, since they will be issued while vector operations
are being executed in parallel on the vector lanes.)

SOLUTIONS

Page 7 of 13

(b) How many cycles are required in steady state for each vectorized loop iteration (which
corresponds to 32 iterations of the original loop)?

47 cycles

Each vector instruction takes 8 cycles (32 elements / 4 lanes) to get all its operands into the
lanes. There’s a 13-cycle latency between dependent vector instructions (8 cycles to get all
elements into lanes + 4 cycles for FU latency + 1 cycle for writeback). The following table
shows how the latencies add up to 47 cycles per iteration. The scalar instructions can be
issued while the vector lanes are busy and are not shown.

Instruction Iteration i Iteration (i+1)
lv 0 47 (must wait for sv to finish using load/store units)
lv 8
fadd.vs 13 (depends on first lv)
fmul.vv 26 (depends on fadd.vs)
sv 39 (depends on fmul.vv)

Question 2 (8 points)

Suppose we add chaining support to the processor. With chaining, a vector instruction that
depends on a previous instruction can start execution if the first set of elements it processes is
either already written to the vector register file or is available in the writeback stage (we add the
required bypass paths).

(a) How would you reorder the vector instructions in your vectorized loop from the previous

question to improve performance with chaining?

Put the fadd.vs between the two lv instructions (because the fadd.vs can use the vector
ALUs in parallel with the use of the vector load/store units by the loads).

SOLUTIONS

Page 8 of 13

(b) What is the resulting throughput in floating-point arithmetic operations per cycle in steady
state?

Dependent vector instruction issue 4 cycles after the previous one, and now the vector
load/store units are maximally utilized, with a vector load or store issuing every 8 cycles.

So, each iteration of the vectorized loop takes 24 cycles and performs 64 floating-point
operations, so the throughput is 64/24 = 8/3 = 2.67 FLOPs/cycle

This table shows how the latencies add up for one loop iteration:

Instruction Iteration i Iteration (i+1)
lv 0 24 (waits for sv to finish)
fadd.vs 4 (dependant on 1st lv)
lv 8 (waits for 1st lv to finish)
fmul.vv 12 (dependant on 2nd lv)
sv 16 (dependant on fmul.vv)

Question 3 (4 points)

So far, we have assumed that loads can execute within a few cycles, which is reasonable if the
data can be served by an L1 cache. Now consider if we are accessing arrays whose size far
exceeds the capacity of any of our caches. Explain how a GPU would enable us to obtain high
performance in this case.

A GPU executes many threads concurrently, overlapping many long-latency memory accesses
from independent threads (by switching warps).

SOLUTIONS

Page 9 of 13

Question 4 (12 points)

State whether each of the loops below can be vectorized on our vector processor. If the code
would require the vector processor to have additional features to be vectorizable, specify those
features. If the code cannot be vectorized regardless of what additional features the processor
were to implement, state your reasoning.

The loops operate on floating-point arrays A[N], B[N], and C[N]. These arrays do not overlap.

a) for (int i = 0; i < N; i++)

 if (A[i] < 0)
 A[i] = C[i] + B[i];

The code can be vectorized with additional support for vector masking.

b) for (int i = 0; i < N; i++)
 A[i] = A[i+1] * B[i] – 1.0;

Yes, the code can be vectorized (without any additional hardware support).

(Depending on the implementation, you could make a copy of some parts of array A, and that
is easily done without requiring new hardware features.)

c) for (int i = 0; i < N; i++)

 A[i] = 1.0 + A[i-1] * B[i];

No, the code cannot be vectorized. Each iteration depends on the value A[i-1] computed in
the previous iteration, forcing serialized execution.

d) for (int i = 0; i < N; i++)
 A[i] = A[i] + B[C[i]];

The code can be vectorized with additional support for vector gather.

SOLUTIONS

Page 10 of 13

Part C: Transactional Memory (24 points)

Ben Bitdiddle is designing a hardware transactional memory (HTM) system. He is concerned
about three potential issues arising in his system:

1. Deadlock: Some transactions stay stalled indefinitely on a cyclic waiting pattern, so they

neither commit nor abort.

2. Livelock: Some transactions can execute, but no transaction ever commits (e.g., due to
repetitive aborts and re-execution). Thus, the system does not make forward progress.

3. Starvation: Some transactions can commit, but at least one other transaction is prevented

from committing indefinitely. Thus, one or a subset of transactions does not make forward
progress.

Ben wants to classify each of the 4 HTM systems in Questions 1 to 4 as one of four types,
according to the forward progress guarantees they provide:

A. May deadlock
B. May livelock, but cannot deadlock
C. May starve, but cannot deadlock or livelock
D. Cannot deadlock, livelock, or starve

For Questions 1 to 4, write down the letter A, B, C, or D and explain your choice. You can
either explain intuitively why an issue cannot arise, or use an example to show that the system
suffers from the issue.

When you choose a particular option, you only need to explain the issues it differentiates
between. For example, if you choose B, you should explain why the system cannot deadlock, and
describe an example of how it may livelock.

SOLUTIONS

Page 11 of 13

Question 1 (4 points)

HTM 1: Optimistic conflict detection, lazy versioning, and committer-wins resolution policy.
Assume there is enough capacity for versioning (so transactions do not overflow speculative
buffers, e.g., the L1 cache).

The committer-wins resolution policy works as follows. Upon a conflict, the committing
transaction wins and any conflicting transactions are aborted. After aborting, transactions
immediately restart execution.

C.

This system cannot livelock, because transactions can only be aborted by committing
transactions, so forward progress for at least one transaction is guaranteed.

But it suffers from starvation. Example:
A long transaction can be repetitively aborted by many short transactions that update the data it
reads.

Question 2 (4 points)

HTM 2: Pessimistic conflict detection, lazy versioning, and requester-wins resolution policy.
Assume there is enough capacity for versioning.

The requester-wins resolution policy works as follows. Upon a conflict, the transaction that
triggers the detection (the requester) wins and any conflicting transactions are aborted. After
aborting, transactions immediately restart execution.

B.

This system cannot deadlock because no transaction is stalled due to conflicts.

But it may livelock. Example:
Two conflicting transactions that write the same data can repetitively abort each other.

SOLUTIONS

Page 12 of 13

Question 3 (4 points)

HTM 3: Pessimistic conflict detection, eager versioning, and requester-stalls resolution policy.
Assume there is enough capacity for versioning.

The requester-stalls resolution policy works as follows. Upon a conflict, the transaction that
triggers the detection (the requester) stalls until the conflicting transactions abort or commit.
After aborting, transactions immediately restart execution.

A.

This system can deadlock. Example:

TX0: LD A ST B (TX0 stalls, waiting for TX1’s commit/abort)
TX1: LD B ST A (TX1 stalls, waiting for TX0’s commit/abort)

Question 4 (4 points)

HTM 4: Pessimistic conflict detection, lazy versioning, and oldest-wins resolution policy.
Assume there is enough capacity for versioning.

The oldest-wins resolution policy works as follows. Each transaction is assigned a unique,
monotonically increasing timestamp when it first begins execution. Upon a conflict, if the
requesting transaction’s timestamp is lower than the timestamps of all other conflicting
transactions, the requesting transaction commits and other conflicting transactions are aborted.
Otherwise, the requesting transaction is aborted. After aborting, transactions immediately restart
execution. Aborted transactions retain their original timestamp when they restart execution.

D.

This system is free from deadlocks, livelocks, and starvations.
The transaction with the lowest/oldest timestamp is guaranteed to commit. Because timestamps
are assigned when beginning execution, starvation cannot happen: each transaction is guaranteed
to eventually become the oldest one in the system.

SOLUTIONS

Page 13 of 13

Question 5 (4 points)

Consider HTM 1, HTM 2, HTM 3, and HTM 4.
Which HTM(s) may suffer from serialization bottlenecks when running only non-conflicting
transactions concurrently? Point out such bottlenecks for each machine.

HTM 1: Potentially serialized commits
HTM 4: Potentially serialized timestamp assignment
Lazy versioning is slow during commits but it happens locally and does not involve serialization
among multiple transactions.

Question 6 (4 points)

Consider an HTM system. Suppose N identical transactions are running simultaneously on N
cores. All the transactions read and write to the same memory location, causing conflicts
between any pair of them.

Does the HTM design guarantee that all the transactions can commit in the end? If so, what is the
maximum number of aborts?

Answer the questions above for each of HTM 1, HTM 2, and HTM 3, respectively.

HTM 1: Yes, (N-1)N/2
HTM 2: No, due to livelocks
HTM 3: No, due to deadlocks

EDIT: The question is not clear about how many memory locations receive conflicted accesses.
If there is only one such location, deadlock won’t happen on HTM 3. We’ve adjusted the scores
for students who reason in this way.

