
 6.823

Computer System Architecture

 Lab 3

Assigned Apr. 11, 2020 Due Apr. 24, 2020

http://csg.csail.mit.edu/6.823/

Summary

Many modern multi-core computer systems support shared memory in hardware.

In a shared memory system, each of the processor cores may read and write to a single

shared address space. Cache coherence protocols, which manage the read and write

permissions of data in various caches, are an important component in ensuring the correct

operation of shared caches in a multi-core system.

Cache coherence protocols are challenging to design, in particular due to the

multitude of races and corner cases. Verifying their correctness is a necessary, but very

difficult aspect of the process. Sophisticated protocols have been developed and verified.

However, this remains an active research area. In this assignment, we will design and verify

a cache coherence protocol for a multi-core system.

To verify our coherence protocol, we will use Murphi, a formal verification tool.

Murphi employs model checking to verify the correctness of the specified coherence

protocol. Model checking is an automated technique that, given a finite-state model of a

system and a set of desired properties, checks if the properties hold for all reachable states

of the system, in that model. More concretely, we will describe the finite-state machine

corresponding to the coherence protocol in the Murphi description language, and

enumerate a set of desired properties or invariants. The Murphi verifier will systematically

enumerate the entire space of reachable states, and check that the specified invariants are

not violated.

Murphi may be downloaded from the following web page:

http://formalverification.cs.utah.edu/Murphi/ However, we have already provided you

with the necessary materials. As always, this lab is to be completed individually. You are

encouraged to discuss lab concepts with fellow classmates.

Setting up

To obtain the materials for lab 3, use the following commands, assuming that you start in

your individual repository (cd $USER) from the previous labs:

 % cp -r $LAB3FILES ./
 % git add lab3handout
 % git commit -m "Lab 3 Initial Check-in"

http://formalverification.cs.utah.edu/Murphi/

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

 In the lab3handout directory that was just created, you should find the Murphi

source code and a protocol sub-folder, which contains some examples and the framework

code to get you started. Type the following at the command prompt:

 % cd lab3handout

 First, build the Murphi compiler.

% cd Murphi/src
% make mu
% make install
% ln -s ../bin/mu.x86_64 ../bin/mu

 Let us test a simple model. Run the following commands (assuming you start from

lab3handout):

 % cd protocol
 % ../Murphi/bin/mu pingpong.m

pingpong.m contains a simple example written in the Murphi description

language. Running it through the Murphi compiler should generate pingpong.C file. You

can then compile the generated C code:

 % make pingpong

This builds the final verifier, which you can run as:

 % ./pingpong -v

 You can find other examples in the Murphi directory (../Murphi/ex). The

Murphi user manual is a useful resource to understand the language constructs. It is

available within the Murphi directory (../Murphi/doc/User.Manual).

Lab Task

You will design and verify an invalidation-based cache coherence protocol. The protocol

you develop will have a number of characteristics:

1. It uses an interconnect network that supports only point-to-point communication.

All communication is done by sending and receiving messages. The interconnect

network may reorder and delay messages, but it will always deliver messages

eventually. Messages are never lost, corrupted or replicated. Message delivery

cannot generally be assumed to be in the same order as they were sent, even for the

same sender and receiver pair.

2. At the receiving side of the interconnect system, messages are delivered to a receive

port. Once a message has been delivered to the receive port, it will block all

subsequent messages to this port until the message is read. Consider this behavior

equivalent to that of a mail-box with room for only one letter: you have to remove

the letter from the mailbox before you can receive the next one. On the sending

side, there is no such restriction: you can always send messages.

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

3. For the purpose of this assignment, assume the interconnect system has enough

buffer space to queue messages. If your network runs out of space, you may

increase the constant NetMax to any finite value. However, this increases the size

of the state space, making verification slower. Therefore, if you increase NetMax,

you should increase it only to the minimum finite value needed for your solution to

work, and you should explain this in your answer to the lab questions.

4. You may assume that the interconnect network supports multiple lanes (a.k.a.

virtual channels or VCs). For each lane, you have a separate set of send- and

receive-ports for each unit. Messages will never switch lanes. Note that using fewer

lanes is better.

5. Note that in msi.m, VCs have different priorities which affect how messages are

received. A node will only receive a message if there are no messages with higher

priority. You may try to take advantage of this, but note that a solution exists in

which all messages have the same priority.

6. Each processor has a private cache. All caches must be kept coherent by your cache

coherence protocol. Processors may issue load and store operations. Because this

assignment only deals with cache coherence and not with consistency issues, you

will be concerned with only one storage location (address). However, you need

to model cache conflicts. To do this, the processor can initiate a third operation

besides load and store: a cache eviction. Evictions may occur at any time between

any pair of load/store operations. If the cache is in a clean state, you may simply

set it to be invalid or take the appropriate action according to your coherence

protocol. If the cache is dirty (modified), you must write the evicted cache line back

to memory.

7. You should assume that the coherence unit is equal to one word and that all loads

and stores read or write the entire word.

8. Besides processors with their caches, there is one memory unit in your system. The

memory unit has a directory-based cache-consistency controller which ensures that

only one processor can write to the memory block at a time (exclusive-ownership

style protocol). The directory representation is unimportant for this assignment.

You can assume that you have a full directory (bit vector) that can keep track of all

sharers.

9. The interconnect system can send messages from any unit to any other unit. It is

OK if your protocol requires that a cache sends a message to another cache.

For this assignment, your cache coherence protocol should not worry about consistency

issues. Because of that, you may assume that the memory of this machine has only one

word. Your protocol must ensure that loads from up to three (3) processors always return

the value of the most recent stores. In this context, this means that loads and stores issued

by one processor are seen by that processor in program order.

The baseline protocol shall deliver data always in the state needed by the requesting

processor. In other words, do not bother with speculating on supplying data in an exclusive

state for a normal load. Exclusivity is always a consequence of a store. Therefore, in this

case you only have 3 cache states: I = invalid, S = shared (read-only) and M = modified

(exclusive and dirty). The memory unit could be regarded as a home-node without a

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

processor, so it will never do anything on its own. For example, it will never issue an

unsolicited recall-request.

3-hop vs 4-hop protocol:

A simple incarnation of the MSI protocol is the 4-hop protocol, where the directory is

responsible for satisfying all data requests from the processors. Here, all requests for data

are satisfied with at most 4 hops (one such 4-hop transaction is show in Figure 1).

Figure 1: 4-hop transaction. Assume P2 originally has the address in M state. When
P1 issues a ShReq, the directory D issues a downgrade request to P2, which writes
back the data to the directory, which then forwards it to the requestor P1.

An optimization to reduce the latency of requests, is to allow P2 to respond to P1 directly

with the data in the above scenario. The resulting transaction is shown in Figure 2.

Allowing such forwarding of requests transforms the protocol to a 3-hop protocol.

Figure 2: 3-hop transaction. P2 originally has the address in M state. When P1
issues a ShReq, the directory instead of issuing just a downgrade request, sends a
FwdReadReq which contains the id of the requestor. P2 then sends the data to
both the directory and P1, and also downgrades to the S state.

Your task is to write a 3-hop directory-based cache-coherence protocol based on

the MSI protocol discussed in the lecture.

P1 D P2

1:	ShReq 2:	Downgrade

DirectoryProcessor	1 Processor	2

3:	Data4:	Data

P1 D P2

1:	ShReq 2:	FwdReadReq

DirectoryProcessor	1 Processor	2

Data

3:	Data

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

To help you get started we have provided you with framework code in

protocol/msi.m. In addition, we have also provided a 4-hop Valid-Invalid (VI) protocol

in protocol/twostate.m. along with some guidelines on how you may proceed in

developing your MSI protocol. Since the 3-hop MSI protocol is slightly more complex,

you may benefit from starting with the 4-hop MSI protocol, and then enable the forwarding

optimization. We will grant partial credit for turning in a correct 4-hop MSI protocol.

Although your solution will not be graded on its performance in terms of wall clock

time, you should note that your Teaching Assistant is impatient. It is possible to design a

protocol that can be verified within a few seconds. For grading purposes, we will allow

your tool to run for up to 30 minutes. After 30 minutes, we will kill your submission and

assign a grade accordingly.

When you have completed the lab to your satisfaction, submit your changes to the

git repository. The deadline for submission is 23:59:59 EDT 24 April 2020. We'll grade

whatever code you have committed and pushed by the deadline. No Late Submissions will

be accepted! Seriously.

Tips and Hints

Protocol design:

You might want to use pencil and paper and draw out timelines. Identify stable state(s)

you'd like to reach, and work to ensure those states are reached in a few steps if no more

requests occur.

Sometimes races need to be solved by making a particular agent responsible for

recognizing the race, and deciding which actions get prioritized. Sometimes you need to

make an agent wait for acknowledgements before they are allowed to make other requests.

If long-delayed messages are received after they are no longer relevant, consider whether

you could have made some agent wait for that message earlier, or perhaps made some agent

wait for an acknowledgement of that message. Try to be consistent in your choices of how

actions are prioritized.

In some states, you may want to refuse to process certain requests until some pending

action completes. You can set msg_processed := false to make the network hold a

message for you to process later. You can think of this as being equivalent to responding a

message by sending a NACK, and having the recipient of the NACK retry sending the

original message at a later time. You do not need to explicitly model NACKs or retry

messages.

Debugging:

Throughout the course of the lab, you will often have to debug your protocol design by

looking at which sequence of actions resulted in violation of an invariant. Murphi does not

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

output the offending trace by default, so you should run your protocol with the following

option if you want to view the error trace:

% ./msi -tv

The -tv option produces the shortest trace that violates any invariant. Note that there are

also other command line options that you may find useful in the Murphi user manual (see

Section 2.5).

When examining a trace, you may find that things start to go wrong but a violation of an

invariant does not occur until several steps later, resulting in a long and complex trace. To

make debugging easier, you may add invariants beyond those we have provided. However,

do not change the provided invariants.

During debugging, you may wish to temporarily decrease ProcCount from 3 to 2 and see

what happens in the simpler case of two processors.

Drawing graphs:

You will have to draw state transition diagram(s) to describe your protocol in the lab report

(see next section). You may find it convenient to use PowerPoint to draw the diagrams and

convert them to images/pdfs. If, however, you want to use visualization tools geared

towards graphs, here are a couple:

 Graphviz (http://www.graphviz.org/) is a popular tool visualizing graphs,

especially directed graphs. You just specify the nodes, edges, labels, etc, and it will

automatically try to place the nodes in a sensible way and then draw the edges as

splines that curve around so that edges don't cross over nodes or labels. This tends

to result in figures that look spaghetti-like at a glance and are distinctively

automatically generated, but are actually decent for automation purposes:

http://stackoverflow.com/questions/6714068/tighten-the-dot-graph-making-it-

more-symmetric

 If you're writing your report in Latex, several packages exist that are capable of

drawing diagrams and schematics. See:

https://tex.stackexchange.com/questions/20784/which-package-can-be-used-to-

draw-automata

Lab Deliverables

Your final deliverable will be a 3-hop MSI protocol, specified and verified using the

Murphi language. You should also turn in the following:

(1) A description of your protocol.

(2) State transition diagram(s) documenting the complete state machine for your

protocol.

(3) The output from ./msi -v showing that no errors were found, the number of states

explored and running time.

http://www.graphviz.org/
http://stackoverflow.com/questions/6714068/tighten-the-dot-graph-making-it-more-symmetric
http://stackoverflow.com/questions/6714068/tighten-the-dot-graph-making-it-more-symmetric
https://tex.stackexchange.com/questions/20784/which-package-can-be-used-to-draw-automata
https://tex.stackexchange.com/questions/20784/which-package-can-be-used-to-draw-automata

Assigned Apr. 10, 2020 6.823 Lab 3 Due Apr. 24 2020

When you have answered these questions to your satisfaction, put them in a file called

lab3questions.pdf (or lab3questions.doc) in your lab3handout directory, then run the

following to add them and commit them.

% git add lab3questions.pdf
% git commit -m "Lab 3 Questions Check-In"
% git push origin master

 As with the lab code, we'll grade whatever you have checked in by the deadline.

Lab Grading

10%: Submission compiles

60%: Grade based on your protocol

 40%: Correct 4-hop MSI protocol

 60%: Correct 3-hop MSI protocol

30%: Quality of lab response

Advice on Mine Sweeping

There may be bugs in either our code or infrastructure. If you notice any `interesting' or

`unexpected' behavior it could be a problem in the code or infrastructure that we provided.

Report these bugs immediately to the TAs. This will help to ensure prompt fixing of any

issues that may arise.

Guides for the perplexed

http://formalverification.cs.utah.edu/Murphi/ - Murphi home page

https://help.github.com/articles/git-and-github-learning-resources - Git learning resources

https://git-scm.com/book/en/v2 - ProGit ebook

Acknowledgements

Brian T. Gold, Carnegie Mellon University

http://formalverification.cs.utah.edu/Murphi/
https://help.github.com/articles/git-and-github-learning-resources
https://git-scm.com/book/en/v2

