
L05-1MIT 6.823 Spring 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Modern Virtual Memory
Systems

March 2, 2021

MIT 6.823 Spring 2021

Recap: Virtual Memory Systems
Illusion of a large, private, uniform store

March 2, 2021

Protection & Privacy
• several users, each with their private

address space and one or more shared
address spaces
• page table name space

Demand Paging
• Provides the ability to run programs

larger than the primary memory
• Hides differences in machine

configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping

TLB

L05-2

MIT 6.823 Spring 2021

Reminder: Translation Lookaside Buffers

March 2, 2021

Address translation is very expensive!
In a hierarchical page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit Single-cycle Translation

TLB miss Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

L05-3

MIT 6.823 Spring 2021

Reminder: TLB Designs

• Typically 32-128 entries, usually highly associative

• Keep process information in TLB?
– No process id Must flush on context switch

– Tag each entry with process id No flush, but costlier

• TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

March 2, 2021 L05-4

MIT 6.823 Spring 2021

Reminder: TLB Designs

• Typically 32-128 entries, usually highly associative

• Keep process information in TLB?
– No process id Must flush on context switch

– Tag each entry with process id No flush, but costlier

• TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

March 2, 2021

64 entries * 4 KB = 256 KB (if contiguous)

L05-4

MIT 6.823 Spring 2021

Reminder: TLB Designs

• Typically 32-128 entries, usually highly associative

• Keep process information in TLB?
– No process id Must flush on context switch

– Tag each entry with process id No flush, but costlier

• TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

• Ways to increase TLB reach
– Multi-level TLBs (e.g., Intel Skylake: 64-entry L1 data TLB,

128-entry L1 instruction TLB, 1.5K-entry L2 TLB)

– Multiple page sizes (e.g., x86-64: 4KB, 2MB, 1GB)

March 2, 2021

64 entries * 4 KB = 256 KB (if contiguous)

L05-4

MIT 6.823 Spring 2021

Variable-Sized Page Support

March 2, 2021

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset

01112212231

10-bit
L1 index

10-bit
L2 index

L05-5

MIT 6.823 Spring 2021

Variable-Size Page TLB

March 2, 2021

VPN offset

physical address PPN offset

virtual address – small page

large page

hit?

V RWD Tag PPN L

VPN offset

Large
page?

L05-6

MIT 6.823 Spring 2021

Variable-Size Page TLB

March 2, 2021

VPN offset

physical address PPN offset

virtual address – small page

large page

hit?

V RWD Tag PPN L

Alternatively, have a separate TLB
for each page size (pros/cons?)

VPN offset

Large
page?

L05-6

MIT 6.823 Spring 2021

Handling a TLB Miss

March 2, 2021

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

L05-7

MIT 6.823 Spring 2021

Hierarchical Page Table Walk:
SPARC v8

March 2, 2021

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0
Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

L05-8

MIT 6.823 Spring 2021

Address Translation:
putting it all together

March 2, 2021

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is

memory memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

L05-9

MIT 6.823 Spring 2021

Topics

March 2, 2021

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

L05-10

MIT 6.823 Spring 2021

Interrupts:
altering the normal flow of control

March 2, 2021

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

L05-11

MIT 6.823 Spring 2021

Causes of Interrupts

• Asynchronous: an external event

– input/output device service-request

– timer expiration

– power disruptions, hardware failure

• Synchronous: an internal event (a.k.a. exception)

– undefined opcode, privileged instruction

– arithmetic overflow, FPU exception

– misaligned memory access

– virtual memory exceptions: page faults,
TLB misses, protection violations

– traps: system calls, e.g., jumps into kernel

March 2, 2021

Interrupt: an event that requests the attention of the processor

L05-12

MIT 6.823 Spring 2021

Asynchronous Interrupts
Invoking the interrupt handler

• An I/O device requests attention by asserting one
of the prioritized interrupt request lines

• When the processor decides to process interrupt

– It stops the current program at instruction Ii, completing
all the instructions up to Ii-1 (precise interrupt)

– It saves the PC of instruction Ii in a special register (EPC)

– It disables interrupts and transfers control to a designated
interrupt handler running in kernel mode

March 2, 2021 L05-13

MIT 6.823 Spring 2021

Asynchronous Interrupts
Invoking the interrupt handler

• An I/O device requests attention by asserting one
of the prioritized interrupt request lines

• When the processor decides to process interrupt

– It stops the current program at instruction Ii, completing
all the instructions up to Ii-1 (precise interrupt)

– It saves the PC of instruction Ii in a special register (EPC)

– It disables interrupts and transfers control to a designated
interrupt handler running in kernel mode

March 2, 2021 L05-13

MIT 6.823 Spring 2021

Interrupt Handler

• Saves EPC before enabling interrupts to allow
nested interrupts
– need an instruction to move EPC into GPRs

– need a way to mask further interrupts at least until EPC can be
saved

• Needs to read a status register that indicates the
cause of the interrupt

• Uses a special indirect jump instruction RFE
(return-from-exception) that
– enables interrupts

– restores the processor to the user mode

– restores hardware status and control state

March 2, 2021 L05-14

MIT 6.823 Spring 2021

Synchronous Interrupts

• A synchronous interrupt (exception) is caused by a
particular instruction

• In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

– With pipelining, requires undoing the effect of one or more
partially executed instructions

March 2, 2021 L05-15

MIT 6.823 Spring 2021

Synchronous Interrupts

• A synchronous interrupt (exception) is caused by a
particular instruction

• In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

– With pipelining, requires undoing the effect of one or more
partially executed instructions

• In case of a trap (system call), the instruction is
considered to have been completed

– A special jump instruction involving a change to privileged
kernel mode

March 2, 2021 L05-15

MIT 6.823 Spring 2021

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

March 2, 2021 L05-16

MIT 6.823 Spring 2021

Address Translation in CPU

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock

–

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock

– pipeline the TLB and cache access

–

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock

– pipeline the TLB and cache access

– virtual-address caches

–

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock

– pipeline the TLB and cache access

– virtual-address caches

– parallel TLB/cache access

March 2, 2021

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-17

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

L05-18

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-18

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-18

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

• one-step process in case of a hit (+)

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-18

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

• one-step process in case of a hit (+)

• cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-18

MIT 6.823 Spring 2021

Virtual-Address Caches

March 2, 2021

• one-step process in case of a hit (+)

• cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

• aliasing problems due to the sharing of pages (-)

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-18

MIT 6.823 Spring 2021

Aliasing in Virtual-Address Caches

March 2, 2021

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

L05-19

MIT 6.823 Spring 2021

Aliasing in Virtual-Address Caches

March 2, 2021

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

L05-19

MIT 6.823 Spring 2021

Concurrent Access to TLB & Cache

March 2, 2021

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

L05-20

MIT 6.823 Spring 2021

Concurrent Access to TLB & Cache

March 2, 2021

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

L05-20

MIT 6.823 Spring 2021

Concurrent Access to TLB & Cache

March 2, 2021

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

L05-20

MIT 6.823 Spring 2021

Concurrent Access to TLB & Cache

March 2, 2021

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

L05-20

MIT 6.823 Spring 2021

Concurrent Access to TLB & Cache

March 2, 2021

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

L05-20

MIT 6.823 Spring 2021

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

March 2, 2021

Can VA1 and VA2 both map to PA?

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

L05-21

MIT 6.823 Spring 2021

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

March 2, 2021

Can VA1 and VA2 both map to PA?

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Yes

L05-21

MIT 6.823 Spring 2021

Virtual-Index Physical-Tag Caches:
Associative Organization

March 2, 2021

Is this scheme realistic?

VPN a L = k-b b

TLB
Direct-map
2L blocks

PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L blocks

2a

=

2a

After the PPN is known, 2a physical tags are compared

L05-22

MIT 6.823 Spring 2021

A solution via Second-Level Cache

March 2, 2021

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache
Unified L2

Cache

RF Memory

Memory

Memory

Memory

L05-23

MIT 6.823 Spring 2021

Anti-Aliasing Using L2: MIPS R10000

March 2, 2021

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa DataVA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision Field a is different.

L05-24

MIT 6.823 Spring 2021

Anti-Aliasing Using L2: MIPS R10000

March 2, 2021

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa DataVA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision

• VA1 will be purged from L1, and VA2 will
be loaded no aliasing!

Field a is different.

L05-24

MIT 6.823 Spring 2021

Anti-Aliasing Using L2: MIPS R10000

March 2, 2021

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa DataVA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision

• VA1 will be purged from L1, and VA2 will
be loaded no aliasing!

Field a is different.

L05-24

MIT 6.823 Spring 2021

Anti-Aliasing Using L2: MIPS R10000

March 2, 2021

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa DataVA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision

• VA1 will be purged from L1, and VA2 will
be loaded no aliasing!

Field a is different.

a2

L05-24

MIT 6.823 Spring 2021

Anti-Aliasing Using L2: MIPS R10000

March 2, 2021

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa Data

PPNa Data

VA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision

• VA1 will be purged from L1, and VA2 will
be loaded no aliasing!

Field a is different.

a2

L05-24

MIT 6.823 Spring 2021

Virtually Addressed L1:
Anti-Aliasing using L2

March 2, 2021

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically addressed L2 can also be
used to avoid aliases in virtually
addressed L1

L05-25

MIT 6.823 Spring 2021

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

March 2, 2021 L05-26

MIT 6.823 Spring 2021

Page Fault Handler

• When the referenced page is not in DRAM:

– The missing page is located (or created)

– It is brought in from disk, and page table is updated

Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out

Pseudo-LRU replacement policy

• Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

– Untranslated addressing mode is essential to allow kernel
to access page tables

March 2, 2021 L05-27

MIT 6.823 Spring 2021

Translation for Page Tables

• Can references to page tables cause TLB misses?

• Can this go on forever?

March 2, 2021

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

L05-28

MIT 6.823 Spring 2021

Translation for Page Tables

• Can references to page tables cause TLB misses?

• Can this go on forever?

March 2, 2021

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

A program that traverses the page table
needs a “no translation” addressing mode.

L05-28

MIT 6.823 Spring 2021

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

 a page of a PT can be swapped out only
if none of its PTE’s point to pages in the
primary memory

Why?__________________________________

Swapping a Page of a Page Table

March 2, 2021 L05-29

MIT 6.823 Spring 2021

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

 a page of a PT can be swapped out only
if none of its PTE’s point to pages in the
primary memory

Why?__________________________________

Swapping a Page of a Page Table

March 2, 2021

Pointed-to pages become inaccessible
(page fault due to swapped-out PT page)

L05-29

MIT 6.823 Spring 2021

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

 a page of a PT can be swapped out only
if none of its PTE’s point to pages in the
primary memory

Why?__________________________________

Swapping a Page of a Page Table

March 2, 2021

Pointed-to pages become inaccessible
(page fault due to swapped-out PT page)

May cause deadlock!

L05-29

MIT 6.823 Spring 2021

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage: The size is
proportional to the size of the
primary memory

• What is the disadvantage?

March 2, 2021

VPN

PARs

PPN

L05-30

MIT 6.823 Spring 2021

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage: The size is
proportional to the size of the
primary memory

• What is the disadvantage?

March 2, 2021

VPN

PARs

PPN

Must check all PARs!

L05-30

MIT 6.823 Spring 2021

Hashed Page Table:
Approximating Associative Addressing

• Hashed Page Table is typically 2 to 3 times
larger than the number of PPNs to reduce
collision probability

• It can also contain DPNs for some non-
resident pages (not common)

• If a translation cannot be resolved in this
table then the software consults a data
structure that has an entry for every
existing page

March 2, 2021

hash
Offset

Base of Table

+
PA of PTE

Primary
Memory

VPN PID PPN

Page Table

VPN d Virtual Address

VPN PID DPN

VPN PID

PID

L05-31

MIT 6.823 Spring 2021

Virtual Memory Use Today - 1

• Desktop/server/cellphone processors have full
demand-paged virtual memory
– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

• Vector supercomputers and GPUs have translation
and protection but not demand paging
(Older Crays: base&bound, Japanese & Cray X1: pages)

– Don’t waste expensive processor time thrashing to disk (make
jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions

March 2, 2021 L05-32

MIT 6.823 Spring 2021

Virtual Memory Use Today - 2

• Most embedded processors and DSPs provide
physical addressing only
– Can’t afford area/speed/power budget for virtual memory support
– Often there is no secondary storage to swap to!

– Programs custom-written for particular memory configuration in
product

– Difficult to implement restartable instructions for exposed
architectures

March 2, 2021 L05-33

L05-67MIT 6.823 Spring 2021

Next lecture: Pipelining!

March 2, 2021

MIT 6.823 Spring 2021

Global System Address Space

• Level A maps users’ address spaces into the global space
providing privacy, protection, sharing etc.

• Level B provides demand paging for the large global system
address space

• Level A and Level B translations may be kept in separate
TLB’s

March 2, 2021

Global
System
Address
Space

Physical
Memory

User

User

map

map

mapLevel A

Level B

L05-35

MIT 6.823 Spring 2021

Hashed Page Table Walk:
PowerPC Two-level, Segmented Addressing

March 2, 2021

Seg ID Page Offset
0 35 51 63

Hashed Segment Table

80-bit System VA Global Seg ID Page Offset
0 51 67 79

Hashed Page Table

PPN Offset

0 27 39

hashP

PA of Page Table +

hashS

PA of Seg Table +

40-bit PA

64-bit user VA

per process

system-wide

PA

PA

[IBM numbers bits
with MSB=0]

L05-36

MIT 6.823 Spring 2021

Base of Table

Power PC: Hashed Page Table

• Each hash table slot has 8 PTEs
<VPN,PPN> that are searched sequentially

• If the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!

• Hashed Table is typically 2 to 3 times
larger than the number of physical pages

• The full backup Page Table is a software
data structure

March 2, 2021

hash
Offset

+
PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

L05-37

