
L12-1MIT 6.823 Spring 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Advanced Memory Operations

April 1, 2021

MIT 6.823 Spring 2021

Reminder: Direct-Mapped Cache

April 1, 2021

Tag Data BlockV

=

Block
Offset

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

L12-2

MIT 6.823 Spring 2021

Write Performance

April 1, 2021

Tag DataV

=

Block
OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

WE

How does write timing compare to read timing?

L12-3

MIT 6.823 Spring 2021

Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one cycle for
tag check plus one cycle for data write if hit

View: Treat as data dependence on micro-architectural value
‘hit/miss’

Solutions:

• Wait – delivering data as fast as possible:
– Fully associative (CAM Tag) caches: Word line only enabled if hit

• Speculate predicting hit with greedy data update:
– Design data RAM that can perform read and write in one cycle

– Restore old value after tag miss (abort)

• Speculate predicting miss with lazy data update:
– Hold write data for store in single buffer ahead of cache

– Write cache data during next idle data access cycle (commit)

April 1, 2021 L12-4

MIT 6.823 Spring 2021April 1, 2021

Pipelined/Delayed Write Timing

Time

Data

Tag LD0

LD0

ST1

ST1

ST2

LD3

LD3

Buffer ST1 ST2 ST2

ST4

ST2

ST4

LD5

LD5

ST4

LD0

ST1

ST2

LD3

ST4

LD5

Problem: Need to commit lazily saved write data

Solution: Write data during idle data cycle of next store’s tag check

L12-5

MIT 6.823 Spring 2021

Pipelining Cache Writes

April 1, 2021

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write DataDelayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L

S

1 0

Hit?

What if instruction needs data in delayed write buffer?

L12-6

MIT 6.823 Spring 2021

Write Policy Choices

• Cache hit:
– Write-through: write both cache & memory

• generally higher traffic but simplifies multi-processor design

– Write-back: write cache only
(memory is written only when the entry is evicted)

• a dirty bit per block can further reduce the traffic

• Cache miss:
– No-write-allocate: only write to main memory

– Write-allocate (aka fetch on write): fetch into cache

• Common combinations:
– write-through and no-write-allocate

– write-back with write-allocate

April 1, 2021 L12-7

MIT 6.823 Spring 2021

Reducing Read Miss Penalty

Problem: Write buffer may hold updated value of location
needed by a read miss – RAW data hazard

Stall: On a read miss, wait for the write buffer to go empty

Bypass: Check write buffer addresses against read miss
addresses, if no match, allow read miss to go ahead of writes,
else, return value in write buffer

April 1, 2021

Data
Cache

Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache

L12-8

MIT 6.823 Spring 2021

O-o-O With Physical Register File
(MIPS R10K, Alpha 21264, Pentium 4)

April 1, 2021

Rename
Table

r1 ti

r2 tj

FU FU
Store
Unit

< t, result >

FU
Load
Unit

FU

t1

t2

.
tn

Reg
File

Snapshots for
mispredict recovery

(ROB not shown)

We’ve handled the register dependencies, but
what about memory operations?

L12-9

MIT 6.823 Spring 2021

Speculative Loads / Stores

• Problem: Just like register updates, stores should
not permanently change the architectural memory
state until after the instruction is committed

• Choice: Data update policy: greedy or lazy?

Lazy: Add a speculative store buffer, a structure to lazily hold
speculative store data.

• Choice: Handling of store-to-load data hazards:
stall, bypass, speculate…?

Bypass: …

April 1, 2021 L12-10

MIT 6.823 Spring 2021

Store Buffer Responsibilities

• Lazy store of data: Buffer new data values for
stores

• Commit/abort: The data from the oldest
instructions must either be committed to memory
or forgotten

• Bypass: Data from older instructions must be
provided (or forwarded) to younger instructions
before the older instruction is committed

April 1, 2021

Commits are generally done in order – why?

L12-11

MIT 6.823 Spring 2021

Store Buffer – Lazy data management

• On store execute:
– mark valid and speculative; save tag, data, and instruction number

• On store commit:
– clear speculative bit and eventually move data to cache

• On store abort:
– clear valid bit

April 1, 2021

Data

Store Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

L12-12

MIT 6.823 Spring 2021

Store Buffer - Bypassing

• If data in both store buffer and cache, which should we use?

• If same address in store buffer twice, which should we use?

• Calculating entry needed in the store buffer can be considered a
dependence on the index needed to access the store buffer. So store
buffer bypassing can be managed speculatively by building a simple
predictor that guesses that the specific entry in the store buffer the
load needs. So what happens if we guessed the wrong entry?

April 1, 2021

Load Address
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

What fields must be examined for
bypassing?

L12-13

MIT 6.823 Spring 2021

Memory Dependencies

For registers, we used tags or physical register
numbers to determine dependencies. What about
memory operations?

st r1, (r2)

ld r3, (r4)

When is the load dependent on the store?

April 1, 2021

Does our ROB know this at issue time?

L12-14

MIT 6.823 Spring 2021

In-Order Memory Queue

Stall naively:

• Execute all loads and stores in program order

=> Load and store cannot start execution until all previous loads
and stores have completed execution

• Can still execute loads and stores speculatively, and out-of-
order with respect to other instructions

April 1, 2021

st r1, (r2)
ld r3, (r4)

L12-15

MIT 6.823 Spring 2021

Conservative O-o-O Load Execution

Stall intelligently:

• Split execution of store instruction into two phases:
address calculation and data write

• Can execute load before store, if addresses known and r4 != r2

• Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check,
e.g., bottom 12 bits of address)

• Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

April 1, 2021

st r1, (r2)
ld r3, (r4)

L12-16

MIT 6.823 Spring 2021

Address Speculation

1. Guess that r4 != r2, and execute load before store address known

2. If r4 != r2 commit…

3. But if r4==r2, squash load and all following instructions

– To support squash we need to hold all completed but
uncommitted load/store addresses/data in program order

April 1, 2021

st r1, (r2)
ld r3, (r4)

How do we resolve the speculation, i.e., detect when we need
to squash?

L12-17

MIT 6.823 Spring 2021

Speculative Load Buffer

• On load execute:
– mark entry valid, and instruction number and tag of data.

• On load commit:
– clear valid bit

• On load abort:
– clear valid bit

April 1, 2021

Load Address
Speculative
Load Buffer

Speculation check:
Detect if a load has
executed before an
earlier store to the
same address – missed
RAW hazard

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

L12-18

MIT 6.823 Spring 2021

Speculative Load Buffer

• If data in load buffer with instruction younger than
store:
– Speculative violation – abort!

April 1, 2021

Store AddressSpeculative
Load Buffer

=> Large penalty for inaccurate address speculation

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

Does tag match have to be perfect?

L12-19

MIT 6.823 Spring 2021

Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)

ld r3, (r4)

1. Guess that r4 != r2 and execute load before store

2. If later find r4==r2, squash load and all following instructions, but
mark load instruction as store-wait

• Subsequent executions of the same load instruction will wait for all
previous stores to complete

• Periodically clear store-wait bits

April 1, 2021

Notice the general problem of predictors that learn
something but can’t unlearn it

L12-20

MIT 6.823 Spring 2021

Store Sets
(Alpha 21464)

April 1, 2021

PC 8

{Empty}

PC 0
PC 12

PC 8

Multiple Readers

Multiple Writers
- multiple code paths
- multiple components

of a single location

Store0

PC

Store4

Store8

Store12

Load28

Load32

Load36

Load40

Program
Order

L12-21

MIT 6.823 Spring 2021

Memory Dependence Prediction
using Store Sets

• A load must wait for any stores in its store set that
have not yet executed

• The processor approximates each load’s store set
by initially allowing naïve speculation and recording
memory-order violations

April 1, 2021 L12-22

MIT 6.823 Spring 2021

The Store Set Map Table

April 1, 2021

Index

Index
V

V

Program
Order

Store
Set A

Writer

Reader

Store

Load

Index

IndexStore

Load

IndexLoad

..

..

..

..

.

..

- Store/Load Pair causing Memory Order Violation

Store Set Map Table

L12-23

MIT 6.823 Spring 2021

Store Set Sharing for Multiple Readers

April 1, 2021

Index

Index
V

V

Program
Order

Store
Set A

Store

Load

Index

IndexStore

Load

IndexLoad

..

..

..

..

.

..

- Store/Load Pair causing Memory Order Violation

V

Store Set Map Table

L12-24

MIT 6.823 Spring 2021

Store Set Map Table, cont.

April 1, 2021

Index

Index
V

V

Program
Order

Store
Set A

Store

Load

Index

IndexStore

Load

IndexLoad

..

..

..

..

.

..

- Store/Load Pair causing Memory Order Violation

V

V

V

Store
Set B

Store Set Map Table

L12-25

MIT 6.823 Spring 2021

Prefetching

• Execution of a load ‘depends’ on the data it needs
being in the cache…

• Speculate on future instruction and data accesses
and fetch them into cache(s)
– Instruction accesses easier to predict than data accesses

• Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

• How does prefetching affect cache misses?

April 1, 2021

Compulsory Conflict Capacity

L12-26

MIT 6.823 Spring 2021

Issues in Prefetching

• Usefulness – should produce hits

• Timeliness – not late and not too early

• Cache and bandwidth pollution

April 1, 2021

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

L12-27

MIT 6.823 Spring 2021

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two blocks on a miss; the requested block (i) and the next

consecutive block (i+1)

– Requested block placed in cache, and next block in instruction
stream buffer

– If miss in cache but hit in stream buffer, move stream buffer block
into cache and prefetch next block (i+2)

April 1, 2021

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction block

Req
block

Req
block

L12-28

MIT 6.823 Spring 2021

Hardware Data Prefetching

• Prefetch-on-miss:
–Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme
–Initiate prefetch for block b + 1 when block b is accessed
–Why is this different from doubling block size?
–Can extend to N-block lookahead (called stream prefetching)

• Strided prefetch
–If observe sequence of accesses to block b, b+N, b+2N,
then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

April 1, 2021 L12-29

L12-30MIT 6.823 Spring 2021

Thank you!

Next lecture:
Cache Coherence

April 1, 2021

