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Reminder: Direct-Mapped Cache
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Write Performance
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How does write timing compare to read timing?
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Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one cycle for 
tag check plus one cycle for data write if hit

View: Treat as data dependence on micro-architectural value 
‘hit/miss’

Solutions:

• Wait – delivering data as fast as possible:
– Fully associative (CAM Tag) caches: Word line only enabled if hit

• Speculate predicting hit with greedy data update:
– Design data RAM that can perform read and write in one cycle

– Restore old value after tag miss (abort)

• Speculate predicting miss with lazy data update:
– Hold write data for store in single buffer ahead of cache

– Write cache data during next idle data access cycle (commit)
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Pipelined/Delayed Write Timing

Time

Data

Tag LD0

LD0

ST1

ST1

ST2

LD3

LD3

Buffer ST1 ST2 ST2

ST4

ST2

ST4

LD5

LD5

ST4

LD0

ST1

ST2

LD3

ST4

LD5

Problem: Need to commit lazily saved write data

Solution: Write data during idle data cycle of next store’s tag check 
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Pipelining Cache Writes
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What if instruction needs data in delayed write buffer?
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Write Policy Choices 

• Cache hit:
– Write-through: write both cache & memory

• generally higher traffic but simplifies multi-processor design

– Write-back: write cache only 
(memory is written only when the entry is evicted)

• a dirty bit per block can further reduce the traffic

• Cache miss:
– No-write-allocate: only write to main memory

– Write-allocate (aka fetch on write): fetch into cache

• Common combinations:
– write-through and no-write-allocate

– write-back with write-allocate
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Reducing Read Miss Penalty

Problem: Write buffer may hold updated value of location 
needed by a read miss – RAW data hazard

Stall: On a read miss, wait for the write buffer to go empty

Bypass: Check write buffer addresses against read miss 
addresses, if no match, allow read miss to go ahead of writes, 
else, return value in write buffer

April 1, 2021
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O-o-O With Physical Register File
(MIPS R10K, Alpha 21264, Pentium 4)
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We’ve handled the register dependencies, but 
what about memory operations?
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Speculative Loads / Stores

• Problem: Just like register updates, stores should 
not permanently change the architectural memory 
state until after the instruction is committed

• Choice: Data update policy: greedy or lazy?

Lazy: Add a speculative store buffer, a structure to lazily hold 
speculative store data.

• Choice: Handling of store-to-load data hazards:
stall, bypass, speculate…?

Bypass: …
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Store Buffer Responsibilities

• Lazy store of data: Buffer new data values for 
stores

• Commit/abort: The data from the oldest 
instructions must either be committed to memory 
or forgotten

• Bypass: Data from older instructions must be 
provided (or forwarded) to younger instructions 
before the older instruction is committed
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Commits are generally done in order – why?
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Store Buffer – Lazy data management

• On store execute:
– mark valid and speculative; save tag, data, and instruction number

• On store commit: 
– clear speculative bit and eventually move data to cache

• On store abort:
– clear valid bit

April 1, 2021
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Store Buffer - Bypassing

• If data in both store buffer and cache, which should we use?

• If same address in store buffer twice, which should we use?

• Calculating entry needed in the store buffer can be considered a 
dependence on the index needed to access the store buffer. So store 
buffer bypassing can be managed speculatively by building a simple 
predictor that guesses that the specific entry in the store buffer the 
load needs. So what happens if we guessed the wrong entry?
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Memory Dependencies

For registers, we used tags or physical register 
numbers to determine dependencies. What about 
memory operations?

st r1, (r2)

ld r3, (r4)

When is the load dependent on the store?

April 1, 2021

Does our ROB know this at issue time?
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In-Order Memory Queue

Stall naively:

• Execute all loads and stores in program order

=> Load and store cannot start execution until all previous loads 
and stores have completed execution

• Can still execute loads and stores speculatively, and out-of-
order with respect to other instructions

April 1, 2021

st r1, (r2)
ld r3, (r4)
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Conservative O-o-O Load Execution

Stall intelligently:

• Split execution of store instruction into two phases: 
address calculation and data write

• Can execute load before store, if addresses known and r4 != r2

• Each load address compared with addresses of all previous 
uncommitted stores  (can use partial conservative check,
e.g., bottom 12 bits of address)

• Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)
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st r1, (r2)
ld r3, (r4)
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Address Speculation

1. Guess that r4 != r2, and execute load before store address known

2. If r4 != r2 commit…

3. But if r4==r2, squash load and all following instructions

– To support squash we need to hold all completed but 
uncommitted load/store addresses/data in program order
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st r1, (r2)
ld r3, (r4)

How do we resolve the speculation, i.e., detect when we need 
to squash?
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Speculative Load Buffer

• On load execute:
– mark entry valid, and instruction number and tag of data.

• On load commit: 
– clear valid bit

• On load abort:
– clear valid bit
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Speculative Load Buffer

• If data in load buffer with instruction younger than 
store:
– Speculative violation – abort!
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Does tag match have to be perfect?
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Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)

ld r3, (r4) 

1. Guess that r4 != r2 and execute load before store

2. If later find r4==r2, squash load and all following instructions, but 
mark load instruction as store-wait

• Subsequent executions of the same load instruction will wait for all 
previous stores to complete

• Periodically clear store-wait bits
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Notice the general problem of predictors that learn 
something but can’t unlearn it 
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Store Sets
(Alpha 21464)
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Memory Dependence Prediction 
using Store Sets

• A load must wait for any stores in its store set that 
have not yet executed

• The processor approximates each load’s store set
by initially allowing naïve speculation and recording 
memory-order violations
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The Store Set Map Table
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Store Set Sharing for Multiple Readers
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Store Set Map Table, cont.
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Prefetching

• Execution of a load ‘depends’ on the data it needs 
being in the cache…

• Speculate on future instruction and data accesses 
and fetch them into cache(s)
– Instruction accesses easier to predict than data accesses

• Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

• How does prefetching affect cache misses?

April 1, 2021

Compulsory Conflict Capacity
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Issues in Prefetching

• Usefulness – should produce hits

• Timeliness – not late and not too early

• Cache and bandwidth pollution
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Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two blocks on a miss; the requested block (i) and the next 

consecutive block (i+1)

– Requested block placed in cache, and next block in instruction 
stream buffer

– If miss in cache but hit in stream buffer, move stream buffer block 
into cache and prefetch next block (i+2)
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Hardware Data Prefetching

• Prefetch-on-miss:
–Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme 
–Initiate prefetch for block b + 1 when block b is accessed
–Why is this different from doubling block size?
–Can extend to N-block lookahead (called stream prefetching)

• Strided prefetch
–If observe sequence of accesses to block b, b+N, b+2N, 
then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent 
streams of strided prefetch per processor, prefetching 12 lines 
ahead of current access
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Thank you!

Next lecture:
Cache Coherence
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