Graphics Processing Units
(GPUs)

Daniel Sanchez
Computer Science & Artificial Intelligence Lab
M.I.T.

May 6, 2021 MIT 6.823 Spring 2021 L21-1

Why Study GPUs?

e Very successful commodity accelerator/co-processor

e GPUs combine two strategies to increase efficiency
— Massive parallelism
— Specialization

o Illustrates tension between performance and
programmability in accelerators

May 6, 2021 MIT 6.823 Spring 2021 L21-2

Graphics Processors Timeline

e Until mid-90s

— Most graphics processing in CPU
— VGA controllers used to accelerate some display functions

e Mid-90s to mid-2000s

— Fixed-function accelerators for 2D and 3D graphics

e triangle setup & rasterization, texture mapping & shading
- Programming:

e OpenGL and DirectX APIs

May 6, 2021 MIT 6.823 Spring 2021 L21-3

Contemporary GPUs

3D geometric
primitives
GPU
| Programmable unified processors
Vertex Geometry Plxel Compute
programs programs programs programs

/U Rasterlzatlon Hldden Surface}
removal

GPU memory DRAM)

Final image

Luebke and
Humphreys, 2007

e Modern GPUs

Some fixed-function hardware (texture, raster ops, ...)
— Plus programmable data-parallel multiprocessors
- Programming:
e OpenGL/DirectX
e Plus more general purpose languages (CUDA, OpenCL, ...)

May 6, 2021 MIT 6.823 Spring 2021 L21-4

GPUs in Modern Systems

e Discrete GPUs

— PCle-based accelerator
— Separate GPU memory

e Integrated GPUs
— CPU and GPU on same die

— Shared main memory and
last-level cache

digital logic

e Pros/cons?

DRAM interface
e ——

Apple A7, 28nm
TSMC, 102mm?
May 6, 2021 MIT 6.823 Spring 2021 L21-5

o 1

i

Intel Ivy Bridge, 22nm 160mm?

Single Instruction Multiple Thread

X ~ —

_— -
PC] 13 |—|IR o GPR =N
Al ~~| |-

Y
SIMT AN o [—
- Many threads, each with / Lane N M

3

private architectural
state, e.g., registers
— Group of threads that / o \
issue together called a r
warp X1
A |t
Y
VaN

- /
— All threads that issue GPR
together execute same ~—.
instruction 7

— Entire pipeline is an SM
or streaming

multiprocessor \ 'A V /

green-> Nvidia terminology

\ 4

1=

May 6, 2021 MIT 6.823 Spring 2021 L21-6

Multithreading +
Single Instruction Multiple Thread

$ =R GPR1 \
VN |

\

/
D < 1D >

o e '

May 6, 2021 MIT 6.823 Spring 2021 L21-7

\LIL/
ID |
< - 030 = \

P < 1D >

Streaming Multiprocessor Overview

e Each SM supports 10s of

Warp scheduler Scoreboard)
) Warp No. | Address | SIMD instructions | Operands? ()
| _— % i | A | o> bevidirs | Groned warps (e.g., 64 in Kepler
1 43 mul.f64 No H
3| 95 shl.s32 Ready with 32 th readS/Wa p
3 96 add.s32 No
8 11 Id.global.f64 Ready
8 12 ld.glotIJaI f64 Ready

= 1 e Fetch 1 instr/cycle

| Instruction reglster I
1 1 1 1] : ; ‘ ‘ l l

 E; JRNTTON YRR
S e+ Tssue 1 ready instr/cycle
| v o g [| g [y g g [g g | g [| — Simple scoreboarding: all
e i Lt K i et s i M warp elements must be ready

|
28 Q4 Load | Load | Load | Load | Load | Load | Load | Load | Load oad | Load
store | store | store | store | store s:o'o storg | store | store | store | store | store | store | store | store | store

EEEEEEE qunnluej f‘HHHf

e Instruction broadcast to all

I Address coalescing unit l Interconnection network]

: ' }
; | b lanes
0 Glo:
e et amory

e Multithreading is the main
latency-hiding mechanism

What average latency is needed to keep busy? 64

May 6, 2021 MIT 6.823 Spring 2021 L21-8

Context Size vs Number of Contexts

e SMs support a variable number of contexts based

on required registers (and shared memory)
- Few large contexts > Fewer register spills
- Many small contexts - More latency tolerance
— Choice left to the compiler

e Example: Kepler supports up to 64 warps
- Max: 64 warps @ <=32 registers/thread
— Min: 8 warps @ 256 registers/thread

May 6, 2021 MIT 6.823 Spring 2021 L21-9

Many Memory Types

Thread 0 — Per Thread Memory

Thread 1 —

Thread 2 —

Scratchpad Shared Memory

Global Memory

May 6, 2021 MIT 6.823 Spring 2021

L21-10

Private Per Thread Memory

Thread O > Thread 0 Memory
Thread 1 > Thread 1 Memory
Thread 2 > Thread 2 Memory

e Private memory
— No cross-thread sharing
- Small, fixed size memory
e Can be used for constants
— Multi-bank implementation (can be in global memory)

May 6, 2021 MIT 6.823 Spring 2021 L21-11

Shared Scratchpad Memory

Thread 0 A I»| shared Memory Bank /| A
C C

Thread 1 U Shared Memory Bank | Y
+ +

Thread 2 >b(— Shared Memory Bank |~ X
b

d a

r r

e Shared scratchpad memory (threads share data)
- Small, fixed size memory (16K-64K per SM = ‘core’)
- Banked for high bandwidth
— Fed with address coalescing unit (ACU) + crossbar
e ACU can buffer/coalesce requests

May 6, 2021 MIT 6.823 Spring 2021 L21-12

Memory Access Divergence

e All loads are gathers, all stores are scatters

e Address coalescing unit detects sequential and
strided patterns, coalesces memory requests, but
complex patterns can result in multiple lower
bandwidth requests (memory divergence)

o Writing efficient GPU code requires most accesses
to not conflict, even though programming model
allows arbitrary patterns!

May 6, 2021 MIT 6.823 Spring 2021 L21-13

Shared Global Memory

Thread O { A P Global Memory Bank | A >
C C

Thread 1 | U Global Memory Bank | U >
+ +

J X X .

Thread 2 (i = Global Memory Bank >
b
. d a
r r

e Shared global memory
— Large shared memory
— Will suffer also from memory divergence

May 6, 2021 MIT 6.823 Spring 2021 L21-14

Shared Global Memory

.]\ o] C L Global Memory Bank I’ C —>
Misses r r
J » © P Global Memory Bank I'F o —
S S
»| S P Global Memory Bank] S > —
o] A~ P| cacheTags/pata Pl C o N b b N
C r a a
e e
o Y P| cacheTags/pata P © < d r N
+ S
of X Pl cache Tags/Data > S o W N
b b o) 0
a a r > Buffered Data n r
r r k k
> Buffered Data »
="
/ > Buffered Data >
[Hits

e Memory hierarchy with caches
— Cache to save memory bandwidth
— Caches also enable compression/decompression of data

May 6, 2021 MIT 6.823 Spring 2021 L21-15

Serialized cache access

Data Store Data Store

X O 0O T W
O 0 hh O

X 0O O T W
O u hTh

X o a3+
X o a3 -

_|

o
]

o
]

Tag Store Tag Store

e Trade latency for power/flexibility
— Only access data bank that contains data
— Facilitate more sophisticated cache organizations
e e.g., greater associativity

May 6, 2021 MIT 6.823 Spring 2021 L21-16

Handling Branch Divergence

e Similar to vector processors, but masks are
handled internally
— Per-warp stack stores PCs and masks of non-taken paths

e On a conditional branch
— Push the current mask onto the stack
— Push the mask and PC for the non-taken path
— Set the mask for the taken path

e At the end of the taken path

— Pop mask and PC for the non-taken path and execute

o At the end of the non-taken path

— Pop the original mask before the branch instruction
e If a mask is all zeros, skip the block

May 6, 2021 MIT 6.823 Spring 2021 L21-17

Example: Branch Divergence

Assume 4 threads/warp,

initial mask 1111

if (m[1i]

if (a[i
1

}
}

< b X

1

S

1]

e

} else {
y[i] =

}

May 6, 2021

=) {
] > b[1
= ali

N~ 1

1-

1) {
- b[1i];

© 6 0 00

0 Push mask 1111
Push mask 0011
Set mask 1100

g Push mask 1100
Push mask 0100
Set mask 1000

O Pop mask

@ Pop mask

O Pop mask

@ Pop mask

Optimization for branches that all go same way?

MIT 6.823 Spring 2021

0100

1100

0011

1111

L21-18

Branch divergence and locking

e Consider the following executing in multiple threads
in a warp:

if (condition[i]) {
while (locked(map@[i])){}
lock(locks[map@[i]]);

} else {
unlock(locks[mapl[i]]);

¥

where i is a thread id and mapo[], mapl[]
are permutations of thread ids.

What can go wrong here?
Warp-based implementation can cause deadlock

May 6, 2021 MIT 6.823 Spring 2021 L21-19

CUDA GPU Thread Model

Thread

per-Threa d Lo cal M emory

Thread Block

Grid 0

Seq uence

Grid 1

— — — Inter-Grid S ynchronization — — —

r
> > >

& & &

& & &
> > >

& & & °o o

>

A

Y

Globa | Me mory

May 6, 2021

Single-program multiple data (SPMD)
model

Each context is a thread
- Threads have registers
— Threads have local memory

Parallel threads packed in blocks
— Blocks have shared memory
— Threads synchronize with barrier
— Blocks run to completion (or abort)

Grids include independent blocks
— May execute concurrently
— Share global memory, but
- Have limited inter-block synchronization

MIT 6.823 Spring 2021 L21-20

Code Example: DAXPY

C Code CUDA Code
[/ Invoke DAXPY /l Invoke DAXPY with 256 threads per block
daxpy(n, 2.0, x, y): __host__
[DAXPY in C int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double *x, double *y) daxpy<<<nblocks, 256>>>(n, 2.0, X, y);
{ // DAXPY in CUDA
for (inti=0;1<n; ++1) __device__
y[i] = a*x[i] + y[il; void daxpy(int n. double a. double *x, double *y)
} {

int 1 = blockldx x*blockDim.x + threadldx .x;
if (1 < n) y[i] = a*x[i] + y[il;
}

e CUDA code launches 256 threads per block

e CUDA vs vector terminology:

— Thread = 1 iteration of scalar loop (1 element in vector loop)
— Block = Body of vectorized loop (VL=256 in this example)
— Grid = Vectorizable loop

May 6, 2021 MIT 6.823 Spring 2021 L21-21

GPU Kernel Execution

Mem I

Mem

A,

G

—

@ Transfer input data from
CPU to GPU memory

© Launch kernel (grid)

@ Wait for kernel to finish
(if synchronous)

O Transfer results to CPU
memory

« Data transfers can dominate execution time
« Integrated GPUs with unified address space
- no copies, but CPU & GPU contend for memory

May 6, 2021

MIT 6.823 Spring 2021 L21-22

Hardware Scheduling

Stream Queues
Ordered queues of grids

CUDA-Created
Work

Y

H SMX

Grid Management Unit
Pending & suspended grids

1000's of pending grids

pausing dispatch
v

Work Distributor
Actively dispatching grids

32 Active Grids ‘

A .
Two-way link allows

-_____H\\

N

SMX SMX

May 6, 2021

SMX

e Grids can be launched by
CPU or GPU

— Work from multiple CPU
threads and processes

e HW unit schedules grids on
SMs

— Priority-based scheduling

e Multi-level scheduling
— Limited number of active grids
— More queued/paused

MIT 6.823 Spring 2021 L21-23

Synchronization

e Barrier synchronization within a thread block
(__syncthreads())

— Tracking simplified by grouping threads into warps
— Counter tracks number of warps that have arrived to barrier

e Atomic operations to global memory

— Read-modify-write operations (add, exchange, compare-and-
swap, ...)

— Performed at the memory controller or at the L2

e Limited inter-block synchronization!
— Can’t wait for other blocks to finish

May 6, 2021 MIT 6.823 Spring 2021 L21-24

GPU ISA and Compilation

e GPU microarchitecture and instruction set
change very frequently

e To achieve compatibility:
— Compiler produces intermediate pseudo-assembler
language (e.g., Nvidia PTX)
— GPU driver JITs kernel, tailoring it to specific
microarchitecture

e In practice, little performance portability
— Code is often tuned to specific GPU architecture

May 6, 2021 MIT 6.823 Spring 2021 L21-25

System-Level Issues

e Instruction semantics
— EXceptions

e Scheduling
— Each kernel is non-preemptive (but can be aborted)

— Resource management and scheduling left to GPU driver,
opaque to OS

e Memory management
— First GPUs had no virtual memory

— Recent support for basic virtual memory (protection
among grids, no paging)

— Host-to-device copies with separate memories (discrete
GPUs)

May 6, 2021 MIT 6.823 Spring 2021 L21-26

GPU: Multithreaded Multicore Chip

e Example: Nvidia Pascal GP100 (2016)

May 6, 2021

MIT 6.823 Spring 2021

60 streaming
multiprocessors (SMs)

4MB Shared L2 cache
8 memory controllers
e 720 GB/s (HBM2)

Fixed-function logic for
graphics (texture units,
raster ops, ...)

Scalability - change
number of cores and
memory channels

Scheduling mostly
controlled by hardware

L21-27

Pascal Streaming Multiprocessor (SM)

e Execution units
5 - 64 FUs (int and FP)
— e — 16 load-store FUs

- 16 special FUs (e.qg.,
sqgrt, sin, cos, ...)

Register File (32,768 x 32-bit)

Core Core - Core C
re Core - Cor
- = e Memory structures
Cor - Cor! . .
o [o - 64K 32-bit registers
= - 64KB shared
Bl memory
SN, ¢ Contexts
— 2048 threads
- 32 blocks

May 6, 2021 MIT 6.823 Spring 2021 L21-28

Vector vs GPU Terminology

May 6, 2021

More descrip- Closestold term Official CUDA/
Type tive name outside of GPUs NVIDIAGPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
@ Loop up of one or more Thread Blocks (bodies of
5 vectorized loop) that can execute in parallel.
g Body of Body of a Thread Block A vectorized loop executed on a multithreaded
= Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
2 Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
a Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
g SIMD Lane a Scalar Loop corresponding to one el ¢ d by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

g A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD

'_§ SIMD Instructions instructions that arc executed on a multithreaded
Instructions SIMD Processor. Results stored depending on a

H per-cl mask.

E SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD

Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

E Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of

-E Scheduler Engine vectorized loop) to multithreaded SIMD

B Processors.

2 SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

: CPU exceute; includes a scoreboard to track SIMD
E Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

M SIMD Processors in a GPU.

g Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
E Memory Local Storage (OS) Lane.

> Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD
§ Processor, unavailable to other SIMD Processors.
£ SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).

MIT 6.823 Spring 2021

[H&P5, Fig 4.25]

L21-29

Thank you!

Next Lecture:
Transactional Memory

May 6, 2021 MIT 6.823 Spring 2021 L21-30

