
Complex Pipelines and 
Branch Prediction

Ryan Lee
(slides adapted from prior 6.823 offerings)

3/26/21 6.823 Spring 2021 1



Since Last Time…

1. Complex Pipelines
• Superscalar execution
• Out-of-order (OoO) processing

• Scoreboarding
• OoO: Issue, completion, retiring
• Register renaming

2. Branch Prediction

3/26/21 6.823 Spring 2021 2



Dependence vs. hazard

• Dependence is a property of programs

• Whether a dependence results in a hazard is a 
property of pipeline organizations

3/26/21 36.823 Spring 2021



Data hazard types
• RAW
• WAR
• WAW

3/26/21 46.823 Spring 2021

I1: ADDI f0, f0, 0

I2: ADDI f3, f0, 3

I3: ADDI f4, f0, 4

I4: ADDI f0, f5, 1

I5: XOR f6, f6, f6

I6: ADDI f0, f7, 1

Reads/Writes to f0
R (I1)

W (I1)

R (I2)

R (I3)

W (I4)

W (I6)



Scoreboard
• A data structure that detects hazards dynamically

• Applicable to both in-order and out-of-order issue

• Why do we need this?
• Many execution units
• Variable execution latency
• Dynamic instruction scheduling

3/26/21 56.823 Spring 2021



• Can have many implementations!
• Example: In-order issue

• WAR cannot happen (if value is latched to functional unit at 
issue)

• Can be simplified as Busy[FU#] and WP[reg#] (if WAW 
resolved conservatively)

Scoreboard

3/26/21 66.823 Spring 2021

I1: ADDI f1, f0, 1

I2: ADDI f0, f2, 1
Due to in-order issue

Register read happens
before write

for an instruction



Scoreboard

• What strategy does it use to resolve RAW?
• Stall

• How about bypass?
• Less beneficial since the register write can happen right 

after execution finishes
• Can still be incorporated to allow register read and write 

to happen in the same cycle

3/26/21 76.823 Spring 2021



Static vs. dynamic scheduling

• Reorder instructions to avoid hazards

• Static scheduling: programmer/compiler

• Dynamic scheduling: architectures
• No need to re-compile!
• Can handle unknown dependences and execution 

latencies

3/26/21 86.823 Spring 2021



Out-of-order execution
• Register renaming: an approach to resolve WAR and 

WAW hazards (caused by name dependences)

• Design tradeoffs
• Data-in-ROB vs. unified-register-file
• Centralized vs. distributed
• ROB vs. issue queue + commit queue

3/26/21 96.823 Spring 2021



Branch Prediction

Control Flow Dependences. How to handle them?
• Stall: Delay until we know the next PC
• Speculate: Guess next value
• Do something else: Multi-threading

3/26/21 6.823 Spring 2021 10



Branch Predictors

• 1-bit predictor

• 2-bit predictor

11

00

01

10

taken

¬taken

¬taken

taken

taken
¬taken

¬taken

taken

3/26/21 6.823 Spring 2021

11



Branch Predictors

Two empirical observations
1. A branch’s outcome can be correlated with other 

branches’ outcomes
• Global branch correlation

2. A branch’s outcome can be correlated with past 
outcomes of the same branch
• Local branch correlation

3/26/21 6.823 Spring 2021 12



History-based Prediction

Taken

Index

Concat

History

+/-

Prediction

3/26/21 6.823 Spring 2021 13



Two-level Predictor

Index

Concat

History

+/-

Prediction

Taken

f

PC

3/26/21 6.823 Spring 2021 14



Tournament Predictors

LHist

GHist

Chooser

Prediction

3/26/21 6.823 Spring 2021 15



Lab 2 Due April 2

• Get going early

• Incrementally build more complex predictors
• 2-bit predictor
• Local history predictor
• Tournament predictor
• and so on

• Recommend researching more advanced predictors for full credit
• TAGE, Perceptron, etc...

• Note on bug: running pintool with ls will crash the pintool on 
Ubuntu 16.04 machines
• Works fine with running lab benchmarks

3/26/21 6.823 Spring 2021 16



Questions?

3/26/21 6.823 Spring 2021 17


