Quiz 2 Review

Ryan Lee
(Adapted from prior course offerings)

4/7/21 6.823 Spring 2021

Quiz 2 logistics

 Time: 1pm EDT on Friday April 9

— Prepare to receive an emailed PDF about 10
minutes before the quiz

e Z7oom link: same as recitations

e Handout: Reservation stations & Store sets

Hazards

e Structural hazards

 Data hazards

e Control hazards

— Not just branches and jumps!
— Typically resolved by speculation (eager vs. lazy)

Complex pipelining

* Scoreboard
— A data structure that detects hazards dynamically

— Needed because
* Many execution units
* Variable execution latency
* Dynamic instruction scheduling

— Orthogonal to in-order vs. out-of-order issue

Out-of-order issue

e Strategy: find something else to do

e Difference from in-order issue
— More hazards to consider (e.g., WAR and control)

* Techniques typically combined with OOO issue

— Register renaming
 Critical since it reduces/eliminates WAR and WAW hazards

— In-order commit
 Critical since it simplifies speculative execution

» Speculation requires per-instruction buffering/logging
— Partial flush is critical
— Circular buffer management is preferred

OOO design tradeoffs

* Implementations
— Data-in-ROB
— Unified-register-file
— More!

 Tradeoffs

— Are there pointers or values in ROB? Are register reads
delayed or immediate?

— Can speculative values share resources with non-
speculative values?

— Centralized ROB vs. reservation stations
— ROB vs. issue queue + commit queue

Little’s Law

Throughput (T) = Number in Fl/ght (N) / Latency (L)

Issue | Execution L WB

Example:
4 floating point registers
8 cycles per floating point operation

= 15 jssues per cycle!

2021-04-07 6.823 Spring 2019 LO9-7

Branch prediction

* To reduce the control flow penalty

Al PC Generation/Mux
P | Instruction Fetch Stage 1
Branch F | Instruction Fetch Stage 2
Target B | Branch Address Calc/Begin Decode
Address
I | Complete Decode
Known . : :
5 , J | Steer Instructions to Functional units
ranc : ,
Direction & R| Register File Read
Jump E | Integer Execute
Register : Remainder of execute pipeline
Target " (+ another 6 stages)

Known

4/7/21 6.823 Spring 2021

Branch prediction implementation

Static vs. dynamic predictor

Example: two-level branch predictor
— Access a local/global history in the first level

— Access a counter in the second level (with or without
bits from PC)

Branch target buffer
Subroutine return stack

Speculative Value Management

* When do we do speculation?
- Branch prediction
- Assume no exceptions/interrupts
- Assume no memory dependency

e How do we manage speculative values?

- Greedy (or eager) update
- Update value in place
- Maintain log of old values to use for recovery
- Lazy update
- Buffer the new value and leave old value in place
- Replace the old value on commit

Advanced memory operations

* Write policy
— Hits: write through vs. write back
— Misses: write allocate vs. write no allocate

* Speculative loads/stores

— Cause 1: control dependency
e Just like other instructions
e Solution: buffer the stores and commit them in order

— Cause 2: (memory-location-based) data dependency

* Simple solution: buffer stores; loads search addresses of all previous
stores

* Problem: addresses of previous stores may be unknown

* Solution: speculate no data dependency
— Use a data structure to keep track of this speculation: speculative load buffer

» Enables data forwarding

StO e B Uffe I> Handles 00O stores

» Handles speculative stores

Store Address
I L1 Data Cache
M S| Inum Tag Data
M S| Inum Tag Data
M S[Inum Tag Data Tags Data
M S| Inum Tag Data
M S| Inum Tag Data
M S| Inum Tag Data
Store Commit Path | Load Data
» On store execute:
- mark valid and speculative; save tag, data and » One entry per store
instruction number. » Written by stores
» On store commit: » Searched by loads
- clear speculative bit and eventually move data to _
cache » Writes to data cache
» On store abort:
2021-04-07 6.823 Spring 2019 12

- clear valid bit

Load Buffer

» On load execute:

A4

Speculative
_ - Load Address
mark en.try valid, and Load Buffer
instruction number and tag
of data.
» On load commit:
A M Inum Tag
- clear valid bit v inum Tag
» On load abort: M Inum Tag
A M Inum Tag
- clear valid bit Vi Inum Tag
» One entry per load » Enables aggressive load scheduling
» Written by loads » Detects ordering violations

» Searched by stores

2021-04-07 6.823 Spring 2019 13

Advanced memory operations

* Prefetching vs. on-demand data movement

Store sets

e Store set: A set of stores that a load is found
to have depended upon

— Naively execute loads and stores out of order.

— After the load and store are found to conflict, we
should predict that they will conflict next time.

* Enforce dependence between the store and
the latest store in the store set

— Stores in store sets execute in order

Wish you all the best!

