
Quiz 2 Review

Ryan Lee
(Adapted from prior course offerings)

4/7/21 6.823 Spring 2021 1



Quiz 2 logistics

• Time: 1pm EDT on Friday April 9
– Prepare to receive an emailed PDF about 10 

minutes before the quiz

• Zoom link: same as recitations

• Handout: Reservation stations & Store sets

4/7/21 26.823 Spring 2021



Hazards

• Structural hazards

• Data hazards

• Control hazards
– Not just branches and jumps!
– Typically resolved by speculation (eager vs. lazy)

4/7/21 36.823 Spring 2021



Complex pipelining

• Scoreboard
– A data structure that detects hazards dynamically
– Needed because
• Many execution units
• Variable execution latency
• Dynamic instruction scheduling

– Orthogonal to in-order vs. out-of-order issue

4/7/21 46.823 Spring 2021



Out-of-order issue
• Strategy: find something else to do

• Difference from in-order issue
– More hazards to consider (e.g., WAR and control)

• Techniques typically combined with OOO issue
– Register renaming

• Critical since it reduces/eliminates WAR and WAW hazards
– In-order commit

• Critical since it simplifies speculative execution
• Speculation requires per-instruction buffering/logging

– Partial flush is critical
– Circular buffer management is preferred

4/7/21 56.823 Spring 2021



OOO design tradeoffs
• Implementations
– Data-in-ROB
– Unified-register-file
– More!

• Tradeoffs
– Are there pointers or values in ROB? Are register reads 

delayed or immediate?
– Can speculative values share resources with non-

speculative values?
– Centralized ROB vs. reservation stations
– ROB vs. issue queue + commit queue

4/7/21 66.823 Spring 2021



Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

WBIssue Execution

Example:
4 floating point registers
8 cycles per floating point operation

Þ ½ issues per cycle!

2021-04-07 6.823 Spring 2019 L09-7



Branch prediction

• To reduce the control flow penalty

4/7/21 86.823 Spring 2021

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline 
(+ another 6 stages)

Branch 
Target 
Address 
Known

Branch 
Direction &
Jump 
Register 
Target 
Known



Branch prediction implementation

• Static vs. dynamic predictor

• Example: two-level branch predictor
– Access a local/global history in the first level
– Access a counter in the second level (with or without 

bits from PC)

• Branch target buffer
• Subroutine return stack
• …

4/7/21 96.823 Spring 2021



Speculative Value Management
• When do we do speculation?
- Branch prediction
- Assume no exceptions/interrupts
- Assume no memory dependency
- …

• How do we manage speculative values?
- Greedy (or eager) update

- Update value in place
- Maintain log of old values to use for recovery

- Lazy update
- Buffer the new value and leave old value in place
- Replace the old value on commit

2021-04-07 6.823 Spring 2019 10



Advanced memory operations
• Write policy

– Hits: write through vs. write back
– Misses: write allocate vs. write no allocate

• Speculative loads/stores
– Cause 1: control dependency

• Just like other instructions
• Solution: buffer the stores and commit them in order

– Cause 2: (memory-location-based) data dependency
• Simple solution: buffer stores; loads search addresses of all previous 

stores
• Problem: addresses of previous stores may be unknown
• Solution: speculate no data dependency

– Use a data structure to keep track of this speculation: speculative load buffer

4/7/21 116.823 Spring 2021



Store Buffer

» On store execute:
- mark valid and speculative; save tag, data and 

instruction number.

» On store commit: 
- clear speculative bit and eventually move data to 

cache

» On store abort:
- clear valid bit

Data

Store Address

Tags

Store Commit Path

L1 Data Cache

Load Data

Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

» One entry per store

» Written by stores

» Searched by loads
» Writes to data cache

» Enables data forwarding

» Handles OoO stores

» Handles speculative stores

6.823 Spring 2019 122021-04-07



Load Buffer
» On load execute:

- mark entry valid, and 
instruction number and tag 
of data.

» On load commit: 
- clear valid bit

» On load abort:
- clear valid bit

Load AddressSpeculative 
Load Buffer

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

» One entry per load

» Written by loads

» Searched by stores

» Enables aggressive load scheduling

» Detects ordering violations

2021-04-07 6.823 Spring 2019 13



Advanced memory operations

• Prefetching vs. on-demand data movement

4/7/21 146.823 Spring 2021



Store sets

• Store set: A set of stores that a load is found 
to have depended upon
– Naively execute loads and stores out of order. 
– After the load and store are found to conflict, we 

should predict that they will conflict next time.

• Enforce dependence between the store and 
the latest store in the store set
– Stores in store sets execute in order

4/7/21 156.823 Spring 2021



Wish you all the best!

4/7/21 6.823 Spring 2021 16


