
Last updated:
2/23/2021

 Page 1 of 11

Problem M1.1: Self-Modifying Code (Spring 2015 Quiz 1, Part A)

In this problem we will use and extend the EDSACjr instruction set from Handout 1, shown in
Table A-1.

Opcode Description
ADD n Accum ¬ Accum + M[n]
SUB n Accum ¬ Accum - M[n]
LD n Accum ¬ M[n]
ST n M[n] ¬ Accum
CLEAR Accum ¬ 0
OR n Accum ¬ Accum | M[n]
AND n Accum ¬ Accum & M[n]
SHIFTR n Accum ¬ Accum shiftr n
SHIFTL n Accum ¬ Accum shiftl n
BGE n If Accum ≥ 0 then PC ¬ n
BLT n If Accum < 0 then PC ¬ n
END Halt machine

Table A-1. EDSACjr Instruction Set

Write a program that loops over an n-item array and replaces each item with its absolute value,
as shown in the following pseudo-code:

Part of the program is already written for you, and to simplify your job you can assume the loop
will be executed only once. The memory map on the next page shows the memory contents
before the program starts. Array A is stored in memory in a contiguous manner, starting from
location A. Memory locations N, I, and ONE hold the values of n, i, and 1, respectively. If you
need to, you can use additional memory locations for your own variables. You should label each
variable and define its initial value.

Problem M1.1.A

for (i = 0; i < n; i++)
 A[i] = |A[i]|

Last updated:
2/23/2021

 Page 2 of 11

 Memory: Program:

 …
A A[0]

 A[1]
 …
 A[n-1]
 …

ONE 1
N n
I 0

loop: LD I

 SUB N
 BGE done

 LD I
 ADD ONE
 ST I
 BGE loop

done: END

Last updated:
2/23/2021

 Page 3 of 11

Tired of writing self-modifying code, Ben Bitdiddle decides to extend EDSACjr to support
indirect addressing. However, because registers are expensive, Ben does not want to add an
index register. Instead, he implements the indirect addressing instructions shown in Table A-2.
To execute an indirect addressing instruction, the new architecture first reads the target address
from memory and then loads/stores the data from/to memory.

Opcode Description
ADDind n Accum ¬ Accum + M[M[n]]
SUBind n Accum ¬ Accum – M[M[n]]
LDind n Accum ¬ M[M[n]]
STind n M[M[n]]¬ Accum

Table A-2. Additional Indirect Addressing Instructions

Using the instructions in Table A-1 and Table A-2, rewrite the program from Question 1 without
using self-modifying code. As before, you can use additional memory locations for your own
variables. You should label each variable and define its initial value.

Problem M1.1.B

Last updated:
2/23/2021

 Page 4 of 11

 Memory: Program:

loop: LD I

 SUB N
 BGE done

 LD I
 ADD ONE
 ST I
 BGE loop

done: END

 …
A A[0]

 A[1]
 …
 A[n-1]
 …

ONE 1
N n
I 0

Last updated:
2/23/2021

 Page 5 of 11

Problem M1.2: Self-modifying Code (Spring 2017 Quiz 1, Part A)

In this question, you will implement linked-list operations using self-modifying code on an
EDSACjr machine. The memory layout is shown in the figure on the right. You have access to
the named memory locations as indicated. Linked-list nodes consist of two words: the first is an
integer value, the second is an address pointing to the next node. _HEAD contains the address
of the first node of the list (or _INVALID if it is empty). The next field of the last node is
_INVALID. All valid addresses are positive. You may create new local and global labels as
explained in the EDSACjr handout.

Table A-1 shows the EDSACjr instruction set.

You may also use the following macros if required.

Macro Description
STOREADR n Replace the address field of

location n with the contents of the
accumulator

LOADADR n Load the address field of location
n into the accumulator

Opcode Description Bit Representation
ADD n Accum ¬ Accum + M[n] 00001 n
SUB n Accum ¬ Accum - M[n] 10000 n
STORE n M[n] ¬ Accum 00010 n
CLEAR Accum ¬ 0 00011 00000000000
OR n Accum ¬ Accum | M[n] 00000 n
AND n Accum ¬ Accum & M[n] 00100 n
SHIFTR n Accum ¬ Accum shiftr n 00101 n
SHIFTL n Accum ¬ Accum shiftl n 00110 n
BGE n If Accum ³ 0 then PC ¬ n 00111 n
BLT n If Accum < 0 then PC ¬ n 01000 n
END Halt machine 01010 00000000000

…..

Program	Code

Nodes	Space

…..

1_ONE
_TMP

0_ZERO

_HEAD

-1_INVALID

Last updated:
2/23/2021

 Page 6 of 11

Write a macro for LISTPUSH, which pushes the node pointed to by the accumulator to the head
of the list. LISTPUSH takes one argument, the memory address of the new node, which is
available in the accumulator. As shown in the figure below, LISTPUSH stores the current
_HEAD pointer in the new node’s next field, and updates the _HEAD pointer to point to the new
node. Implement the macro using the EDSACjr instruction set and macros provided above. Do
not refer to “value” or “next”; they are for illustration only. You need not worry about
memory allocation; the new node’s address is provided in the accumulator.

.macro LISTPUSH
 STORE _TMP ;; store accumulator (address of the new node)

.end

Problem M1.2.A

Last updated:
2/23/2021

 Page 7 of 11

Write a macro for LISTPOP, which removes the node at the head of the list and stores its
address in the accumulator, or stores _INVALID (-1) in the accumulator if the list is empty.
Implement the macro using the EDSACjr instruction set and macros provided above.

.macro LISTPOP

CLEAR ;; accumulator is not an input

.end

Problem M1.2.B

Last updated:
2/23/2021

 Page 8 of 11

Assume there exists a macro called FREE that takes an address as input in the accumulator and
deallocates it (just like free(void* ptr) in C). Write a macro for LISTCLEAR, which uses
the FREE macro and your LISTPOP macro to remove and deallocate all nodes in the list.
Assume all valid node addresses are positive, or else a pointer is _INVALID (-1). Implement the
macro using the EDSACjr instruction set and macros provided above.

.macro LISTCLEAR

.end

Problem M1.2.C

Last updated:
2/23/2021

 Page 9 of 11

Problem M1.3: Self Modifying Code on the EDSACjr

This problem gives us a flavor of EDSAC-style programming and its limitations. Please read
Handout #1 (EDSACjr) and Lecture 1 before answering the following questions (You may find
local labels in Handout #1 useful for writing self-modifying code.)

Problem M1.3.A Writing Macros For Indirection

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both
you and us, if you put everything in a single program. As a starting point, therefore, you are
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1)
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may
increase the total number of instructions that need to be executed because certain instruction
level optimizations cannot be fully exploited. However, the code size on paper can be reduced
dramatically when macros are appropriately used. This makes programming and debugging
much easier.

Please use following global variables in your macros.

_orig_accum: CLEAR ; temp. storage for accum
_store_op: STORE 0 ; STORE template
_bge_op: BGE 0 ; BGE template
_blt_op: BLT 0 ; BLT template
_add_op: ADD 0 ; ADD template

These global variables are located somewhere in main memory and can be accessed using their
labels. The _orig_accum location will be used to temporarily store the accumulator’s value.
The other locations will be used as “templates” for generating instructions.

Opcode Description
ADDind n Accum ¬ Accum + M[M[n]]
STOREind n M[M[n]] ¬ Accum
BGEind n If Accum ³ 0 then PC ¬ M[n]
BLTind n If Accum < 0 then PC ¬ M[n]

Table M1.1-1: Indirection Instructions

Last updated:
2/23/2021

 Page 10 of 11

Problem M1.3.B Subroutine Calling Conventions

A possible subroutine calling convention for the EDSACjr is to place the arguments right after
the subroutine call and pass the return address in the accumulator. The subroutine can then get its
arguments by offset to the return address.

Describe how you would implement this calling convention for the special case of one argument
and one return value using the EDSACjr instruction set. What do you need to do to the
subroutine for your convention to work? What do you have to do around the calling point? How
is your result returned? You may assume that your subroutines are in set places in memory and
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in
Table M1.1-1.

To illustrate your implementation of this convention, write a program for the EDSACjr to
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a
subroutine. (The C code is given below.) In few sentences, explain how could your convention
be generalized for subroutines with an arbitrary number of arguments and return values?

The following program defines the iterative subroutine fib in C.

int fib(int n) {
 int i, x, y, z;
 x=0, y=1;
 if(n<2)
 return n;
 else{
 for(i=0; i<n-1; i++){
 z=x+y;
 x=y;
 y=z;
 }
 return z;
 }
}

Last updated:
2/23/2021

 Page 11 of 11

Problem M1.3.C Subroutine Calling Other Subroutines

The following program defines a recursive version of the subroutine fib in C.

int fib_recursive (int n){
 if(n<2)
 return n;
 else{
 return(fib(n-1) + fib(n-2));
 }
}

In a few sentences, explain what happens if the subroutine calling convention you implemented
in Problem M1.3.B is used for fib_recursive.

