
Last updated:
2/23/2021

Problem M3.1: Cache Access-Time & Performance

Here is the completed Table M3.1-1 for M3.1.A and M3.1.B.

Component Delay equation (ps) DM (ps) SA (ps)
Decoder 200´(# of index bits) + 1000 Tag 3400 3000

Data 3400 3000
Memory array 200´log2 (# of rows) +

200´log2 (# of bits in a row) + 1000
Tag 4217 4250
Data 5000 5000

Comparator 200´(# of tag bits) + 1000 4000 4400
N-to-1 MUX 500´log2 N + 1000 2500 2500
Buffer driver 2000 2000
Data output driver 500´(associativity) + 1000 1500 3000
Valid output driver 1000 1000 1000

Table M3.1-1: Delay of each Cache Component

Problem M3.1.A Access time: DM

To use the delay equations, we need to know how many bits are in the tag and how many are in
the index. We are given that the cache is addressed by word, and that input addresses are 32-bit
byte addresses; the two low bits of the address are not used.

Since there are 8 (23) words in the cache line, 3 bits are needed to select the correct word from
the cache line.

In a 128 KB direct-mapped cache with 8 word (32 byte) cache lines, there are 4´210 = 212 cache
lines (128KB/32B). 12 bits are needed to address 212 cache lines, so the number of index bits is
12. The remaining 15 bits (32 – 2 – 3 – 12) are the tag bits.

We also need the number of rows and the number of bits in a row in the tag and data memories.
The number of rows is simply the number of cache lines (212), which is the same for both the tag
and the data memory. The number of bits in a row for the tag memory is the sum of the number
of tag bits (15) and the number of status bits (2), 17 bits total. The number of bits in a row for the
data memory is the number of bits in a cache line, which is 256 (32 bytes ´ 8 bits/byte).

With 8 words in the cache line, we need an 8-to-1 MUX. Since there is only one data output
driver, its associativity is 1.

Decoder (Tag) = 200 ´ (# of index bits) + 1000 = 200 ´ 12 + 1000 = 3400 ps
Decoder (Data) = 200 ´ (# of index bits) + 1000 = 200 ´ 12 + 1000 = 3400 ps

Memory array (Tag) = 200 ´ log2(# of rows) + 200 ´ log2(# bits in a row) + 1000

Last updated:
2/23/2021

 = 200 ´ log2(212) + 200 ´ log2(17) + 1000 » 4217 ps
Memory array (Data) = 200 ´ log2(# of rows) + 200 ´ log2(# bits in a row) + 1000
 = 200 ´ log2(212) + 200 ´ log2(256) + 1000 = 5000 ps

Comparator = 200 ´ (# of tag bits) + 1000 = 200 ´ 15 + 1000= 4000 ps

N-to-1 MUX = 500 ´ log2(N) + 1000 = 500 ´ log2(8) + 1000 = 2500 ps

Data output driver = 500 ´ (associativity) + 1000 = 500 ´ l + 1000 = 1500 ps

To determine the critical path for a cache read, we need to compute the time it takes to go
through each path in hardware, and find the maximum.

Time to tag output driver
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (valid output driver time)
» 3400 + 4217 + 4000 + 500 + 1000 = 13117 ps

Time to data output driver
= (data decode time) + (data memory access time) + (mux time) + (data output driver time)
= 3400 + 5000 + 2500 + 1500 = 12400 ps

The critical path is therefore the tag read going through the comparator. The access time is 13117
ps. At 150 MHz, it takes 0.013117 ´ 150, or 2 cycles, to do a cache access.

Problem M3.1.B Access time: SA

As in M3.1.A, the low two bits of the address are not used, and 3 bits are needed to select the
appropriate word from a cache line. However, now we have a 128 KB 4-way set associative
cache. Since each way is 32 KB and cache lines are 32 bytes, there are 210 lines in a way
(32KB/32B) that are addressed by 10 index bits. The number of tag bits is then (32 – 2 – 3 – 10),
or 17.

The number of rows in the tag and data memory is 210, or the number of sets. The number of bits
in a row for the tag memory is now quadruple the sum of the number of tag bits (17) and the
number of status bits (2), 76 bits total. The number of bits in a row for the data memory is four
times the number of bits in a cache line, which is 1024 (4 ´ 32 bytes ´ 8 bits/byte).

As in 1.A, we need an 8-to-1 MUX. However, since there are now four data output drivers, the
associativity is 4.

Decoder (Tag) = 200 ´ (# of index bits) + 1000 = 200 ´ 10 + 1000 = 3000 ps
Decoder (Data) = 200 ´ (# of index bits) + 1000 = 200 ´ 10 + 1000 = 3000 ps

Memory array (Tag) = 200 ´ log2(# of rows) + 200 ´ log2(# bits in a row) + 1000

Last updated:
2/23/2021

 = 200 ´ log2(210) + 200 ´ log2(76) + 1000 » 4250 ps
Memory array (Data) = 200 ´ log2(# of rows) + 200 ´ log2(# bits in a row) + 1000
 = 200 ´ log2(210) + 200 ´ log2(1024) + 1000 = 5000 ps

Comparator = 200 ´ (# of tag bits) + 1000 = 200 ´ 17 + 1000= 4400 ps

N-to-1 MUX = 500 ´ log2(N) + 1000 = 500 ´ log2(8) + 1000 = 2500 ps

Data output driver = 500 ´ (associativity) + 1000 = 500 ´ 4 + 1000= 3000 ps

Time to valid output driver
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (OR gate time) + (valid output driver time)
= 3000 + 4250 + 4400 + 500 + 1000 + 1000 = 14150 ps

There are two paths to the data output drivers, one from the tag side, and one from the data side.
Either may determine the critical path to the data output drivers.

Time to get through data output driver through tag side
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)
 + (buffer driver time) + (data output driver)
= 3000 + 4250 + 4400 + 500 + 2000 + 3000 = 17150 ps

Time to get through data output driver through data side
= (data decode time) + (data memory access time) + (mux time) + (data output driver)
= 3000 + 5000 + 2500 + 3000 = 13500 ps

From the above calculations, it’s clear that the critical path leading to the data output driver goes
through the tag side.

The critical path for a read therefore goes through the tag side comparators, then through the
buffer and data output drivers. The access time is 17150 ps. The main reason that the 4-way set
associative cache is slower than the direct-mapped cache is that the data output drivers need the
results of the tag comparison to determine which, if either, of the data output drivers should be
putting a value on the bus. At 150 MHz, it takes 0.0175 ´ 150, or 3 cycles, to do a cache access.

It is important to note that the structure of cache we’ve presented here does not describe all the
details necessary to operate the cache correctly. There are additional bits necessary in the cache
which keeps track of the order in which lines in a set have been accessed. We’ve omitted this
detail for sake of clarity.

Last updated:
2/23/2021

Problem M3.1.C Miss-rate analysis

D-map

Address

line in cache hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3 1A no
102 10 no
361 36 no
204 20 no
114 yes
1A4 yes
177 17 no
301 30 no
206 20 no
135 yes

 D-map
Total Misses 10
Total Accesses 13

4-way

Address

LRU
line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv inv inv inv 11 inv inv inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 Yes
135 Yes

Last updated:
2/23/2021

 4-way LRU
Total Misses 8
Total Accesses 13

4-way

Address

FIFO
line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv Inv inv inv 11 inv inv Inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 20 No
135 Yes

 4-way FIFO
Total Misses 9
Total Accesses 13

Problem M3.1.D Average latency

The miss rate for the direct-mapped cache is 10/13. The miss rate for the 4-way LRU set
associative cache is 8/13.

The average memory access latency is (hit time) + (miss rate) ´ (miss time).

For the direct-mapped cache, the average memory access latency would be (2 cycles) + (10/13) ´
(20 cycles) = 17.38 » 18 cycles.

For the LRU set associative cache, the average memory access latency would be (3 cycles) +
(8/13) ´ (20 cycles) = 15.31 » 16 cycles.

The set associative cache is better in terms of average memory access latency.

For the above example, LRU has a slightly smaller miss rate than FIFO. This is because the FIFO
policy replaced the {20} block instead of the {10} block during the 12th access, because the {20}

Last updated:
2/23/2021

block has been in the cache longer even though the {10} was least recently used, whereas the LRU
policy took advantage of temporal/spatial locality.

LRU doesn’t always have lower miss rate than FIFO. Consider the following counter example: A
sequence accesses 3 separate memory locations A,B and C in the order of A, B, A, C, B, B, B, ….
When this sequence is executed on a processor employing a fully-associative cache with 2 cache
lines and LRU replacement policy, the execution ends up with 4 misses. On the other hand, the
same sequence will only produces 3 misses if the cache uses FIFO replacement policy. (We assume
the cache is empty at the beginning of the execution).

Last updated:
2/23/2021

 7

Problem M3.2: Victim Cache Evaluation

Problem M3.2.A Baseline Cache Design

Component Delay equation (ps) FA (ps)
Comparator 200´(# of tag bits) + 1000 6800
N-to-1 MUX 500´log2 N + 1000 1500
Buffer driver 2000 2000
AND gate 1000 1000
OR gate 500 500
Data output driver 500´(associativity) + 1000 3000
Valid output
driver

1000 1000

Table M3.2-1

The Input Address has 32 bits. The bottom two bits are discarded (cache is word-addressable)
and bit 2 is used to select a word in the cache line. Thus the Tag has 29 bits. The Tag+Status
line in the cache is 31 bits.

The MUXes are 2-to-1, thus N is 2. The associativity of the Data Output Driver is 4 – there are
four drivers driving each line on the common Data Bus.

Delay to the Valid Bit is equal to the delay through the Comparator, AND gate, OR gate, and
Valid Output Driver. Thus it is 6800 + 1000 + 500 + 1000 = 9300 ps.

Delay to the Data Bus is delay through MAX ((Comparator, AND gate, Buffer Driver),
(MUX)), Data Output Drivers. Thus it is MAX (6800 + 1000 + 2000, 1500) + 3000 = MAX
(9800, 1500) + 3000 = 9800 + 3000 = 12800 ps.

Critical Path Cache Delay: 12800 ps

Last updated:
2/23/2021

 8

Problem M3.2.B Victim Cache Behavior

Input

Address

Main Cache Victim Cache
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?
inv inv inv inv inv inv inv inv - inv inv -

00 0 N N
80 8 N 0 N
04 0 N 8 Y
A0 A N N
10 1 N N
C0 C N N
18 Y N
20 2 N A N
8C 8 N 0 Y
28 Y N
AC A N 2 Y
38 3 N N
C4 Y N
3C Y N
48 4 N C N
0C 0 N 8 N
24 2 N A N

Table M3.2-2

Last updated:
2/23/2021

 9

Problem M3.2.C Average Memory Access Time

15% of accesses will take 50 cycles less to complete, so the average memory access
improvement is 0.15 * 50 = 7.5 cycles.

Last updated:
2/23/2021

 10

Problem M3.3: Loop Ordering

Problem M3.3.A

Each element of the matrix can only be mapped to a particular cache location because the cache
here is a Direct-mapped data cache. Matrix A has 64 columns and 128 rows. Since each row of
matrix has 64 32-bit integers and each cache line can hold 8 words, each row of the matrix fits
exactly into eight (64÷8) cache lines as the following:

0 A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7]
1 A[0][8] A[0][9] A[0][10] A[0][11] A[0][12] A[0][13] A[0][14] A[0][15]
2 A[0][16] A[0][17] A[0][18] A[0][19] A[0][20] A[0][21] A[0][22] A[0][23]
3 A[0][24] A[0][25] A[0][26] A[0][27] A[0][28] A[0][29] A[0][30] A[0][31]
4 A[0][32] A[0][33] A[0][34] A[0][35] A[0][36] A[0][37] A[0][38] A[0][39]
5 A[0][40] A[0][41] A[0][42] A[0][43] A[0][44] A[0][45] A[0][46] A[0][47]
6 A[0][48] A[0][49] A[0][50] A[0][51] A[0][52] A[0][53] A[0][54] A[0][55]
7 A[0][56] A[0][57] A[0][58] A[0][59] A[0][60] A[0][61] A[0][62] A[0][63]
8 A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] A[1][6] A[1][7]
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Loop A accesses memory sequentially (each iteration of Loop A sums a row in matrix A), an
access to a word that maps to the first word in a cache line will miss but the next seven accesses
will hit. Therefore, Loop A will only have compulsory misses (128´64÷8 or 1024 misses).

The consecutive accesses in Loop B will use every eighth cache line (each iteration of Loop B
sums a column in matrix A). Fitting one column of matrix A, we would need 128´8 or 1024
cache lines. However, our 4KB data cache with 32B cache line only has 128 cache lines. When
Loop B accesses a column, all the data that the previous iteration might have brought in would
have already been evicted. Thus, every access will cause a cache miss (64´128 or 8192 misses).

The number of cache misses for Loop A:_ _1024 _

The number of cache misses for Loop B: 8192________________

Last updated:
2/23/2021

 11

Problem M3.3.B

Since Loop A accesses memory sequentially, we can overwrite the cache lines that were previous
brought in. Loop A will only require 1 cache line to run without any cache misses other than
compulsory misses.

For Loop B to run without any cache misses other than compulsory misses, the data cache needs
to have the capacity to hold one column of matrix A. Since the consecutive accesses in Loop B
will use every eighth cache line and we have 128 elements in a matrix A column, Loop B
requires 128´8 or 1024 cache lines.

Data-cache size required for Loop A: ______________1_ __________ cache
line(s)

Data-cache size required for Loop B: ____________1024____________ cache
line(s)

Problem M3.3.C

Loop A still only has compulsory misses (128´64÷8 or 1024 misses).

Because of the fully-associative data cache, Loop B now can fully utilize the cache and the
consecutive accesses in Loop B will no longer use every eighth cache line. Fitting one column of
matrix A, we now would only need 128 cache lines. Since 4KB data cache with 8-word cache
lines has 128 cache lines, Loop B only has compulsory misses (128´(64÷8) or 1024 misses).

The number of cache misses for Loop A:____________1024_____________

The number of cache misses for Loop B:____________ 1024_____________

Last updated:
2/23/2021

 12

Problem M3.4: Cache Parameters

Problem M3.4.A

TRUE. Since cache size is unchanged, the line size doubles, the number of tag entries is halved.

Problem M3.4.B

FALSE. The total number of lines across all sets is still the same, therefore the number of tags in
the cache remain the same.

Problem M3.4.C

TRUE. Doubling the capacity increases the number of lines from N to 2N. Address i and address
i+N now map to different entries in the cache and hence, conflicts are reduced.

Problem M3.4.D

FALSE. The number of lines doubles but the line size remains the same. So the compulsory
“cold-start” misses stays the same.

Problem M3.4.E

TRUE. Doubling the line size causes more data to be pulled into the cache on a miss. This
exploits spatial locality as subsequent loads to different words in the same cache line will hit in
the cache reducing compulsory misses.

Last updated:
2/23/2021

 13

Problem M3.5: Microtags

Problem M3.5.A

A direct-mapped cache can forward data to the CPU before checking the tags for a hit or a miss.
A set-associative cache has to first compare cache tags to select the correct way from which to
forward data to the CPU.

Problem M3.5.B

tag Index offset

of bits in the tag: ____21________

of bits in the index: _____6________

of bits in the offset: _____5________

32-byte line requires 5 bits to select the correct byte.
An 8KB, 4-way cache has 2KB in each way, and each way holds 2KB/32B=64 lines, so we need
6 index bits.
The remaining 32-6-5=21 bits are the tag.

Problem M3.5.C

If the loTags are not unique, then multiple ways can attempt to drive data on the tristate bus out
to the CPU causing bus contention.

(It is possible to have a scheme that speculatively picks one of the ways when there is as match
in loTags, but this would require additional cross-way logic that would slow the design down,
and would also incur extra misses when the speculation was wrong.)

Problem M3.5.D

The loTag has to be unique across ways, and so in a 4-way cache with 2-bit tags the tags would
never be able to hold addresses that were different from a direct-mapped cache of the same
capacity. The conflict misses would therefore be identical.

Last updated:
2/23/2021

 14

Problem M3.5.E

When a new line is brought into the cache, any existing line in the set with the same loTag must
be chosen as the victim. If there is no line with the same loTag, any conventional replacement
policy can be used.

Problem M3.5.F

No. The full tag check is required to determine whether the write is a hit to the cached line.

Problem M3.5.G

A 16KB page implies 14 untranslated address bits. An 8KB, 4-way cache requires 11 index+offset
bits, leaving 3 untranslated bits for loTag.

Problem M3.5.H

If the loTags include translated virtual address bits, then each cache line must store the physical
page number (PPN) as the hiTag. An access will hit if loTag matches, and the PPN in hiTag
matches. The replacement policy has to maintain two invariants: 1) no two lines in a set have the
same loTag bits and 2) no two lines have the same PPN. If two lines had the same PPN, there
might be a virtual address alias. Because a new line might have the same loTag as an existing
line, and also the same PPN as a different line, two lines might have to be evicted to bring in one
new line.
A slight improvement is to only evict a line with the same PPN if the untranslated part of loTag
is identical. If the untranslated bits are different, the two lines cannot be aliases.

Last updated:
2/23/2021

 15

Problem M3.6: Caches (Spring 2014 Quiz 1, Part C)

Problem M3.6.A

T T T T T T T T I I I O O O O O

Divide the bits of the address according to how they are used to access the cache (tag, index,
offset). Drawn above (letters). Block size is 32 bytes, so there are five offset bits. We have 8
lines in a direct mapped organization (as indicated by diagram), so we need three index bits. The
remaining 8 bits constitute the tag.

What exactly is contained in the cache tags? (Include all bits necessary for correct operation of
the cache as discussed in lecture.) The tag bits of address and valid and dirty bits (dirty not
required since lecture didn’t cover cache writes). Replacement policy bits are not present because
the cache is direct mapped.

How many bits in total are needed to implement the level 1 data cache? The cache consists of tag
and data arrays, or 8 lines x (256 bytes/block + 10 bits/tag) = 2128 bits.

Address (16 bits)

Last updated:
2/23/2021

 16

Problem M3.6.B

Suppose the processor accesses the following data addresses starting with an empty cache:

0x0028: 0000 0000 0010 1000 Miss
0x102A: 0001 0000 0010 1010 Miss
0x9435: 1001 0100 0011 0101 Miss
0xEFF4: 1110 1111 1111 0100 Miss
0xBEEF: 1011 1110 1110 1111 Miss
0x4359: 0100 0011 0101 1001 Miss
0x01DE: 0000 0001 1101 1110 Miss
0x8075: 1000 0000 0111 0101 Miss
0x9427: 1001 0100 0010 0111 Hit

What would the level 1 data cache tags look like after this sequence? How many hits would there
be in the level 1 data cache? (Don’t worry about filling in the Data column – we didn’t give you
the data!)

We did not knock off points for not showing status bits, although an exact solution would show
which lines were dirty and valid. (Dirty is ambiguous since the problem doesn’t specify whether
accesses are reads or writes.)

-

0x00, 0x10, 0x94

0x43

0x80

-

-

0x01

0xEF, 0xBE

Tags

Last updated:
2/23/2021

 17

Problem M3.6.C

Suppose that the level 1 data cache has a hit rate of 40% on your application, an access time of a
single cycle, and a miss penalty to memory of forty cycles. What is the average memory access
time?

AMAT = hit time + miss rate * miss penalty
 = 1 + (1 - 0.4) * 40
 = 25 cycles

Or, equivalently:

AMAT = hit rate * hit time + miss rate * miss time
 = 0.4 * 1 + 0.6 * (1 + 40)
 = 25 cycles

You aren’t happy with your memory performance, so you decide to add a level two cache.
Suppose the level two cache has a hit rate of 50%. What access time must the level two cache
have for this to be a good design (ie, reduce AMAT)?

The L2 lies between the L1 and memory, and is only accessed if the L1 misses. To get to
memory, you therefore need to miss in the L1 then miss in the L2 then go to memory (all
sequentially).

There are two ways to solve this problem. The first is to realize that if the L2 improves the
system’s average memory access time, then it must improve the AMAT of accesses into it
(ignoring whatever happens at the L1). In other words, each level of the cache hierarchy can be
modeled independently of levels below it. This simplifies the problem to solving for the L2
access time such that:

L2 AMAT < Memory time
L2 access time + L2 miss rate * Memory time < Memory time
L2 access time + 0.5 * 40 < 40
L2 access time < 20

If instead you model the full cache hierarchy, the L2 only sees lines that the miss in the L1. Thus
with an L2, the L1’s miss penalty is the average memory access time of the L2. So the equation
is:

L1 access time + L1 miss rate * L2 AMAT < L1 access time + L1 miss rate * Memory time
L2 AMAT < (L1 miss rate * Memory time + L1 access time – L1 access time) / L1 miss rate
L2 AMAT < Memory time

Now we are back to the formula we derived first by solving the L2 independently.

