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Computer System Architecture  
6.823 Quiz #1 

March 19th, 2021 
 

 
Name: _______SOLUTIONS_________        

 
90 Minutes 
 17 Pages 

 
Notes: 
• Not all questions are equally hard. Look over the whole quiz and budget your 

time carefully. 
• Please state any assumptions you make, and show your work. 
• Please write your answers by hand, on paper or a tablet. 
• Please email all 17 pages of questions with your answers, including this cover 

page. Alternatively, you may email scans (or photographs) of separate sheets of 
paper. Emails should be sent to 6823-staff@csail.mit.edu 

• Please ensure your name is written on every page you turn in. 
• Do not discuss a quiz's contents with students who have not yet taken the quiz. 
• Please sign the following statement before starting the quiz. If you are emailing 

separate sheets of paper, copy the statement onto the first page and sign it. 
 

I certify that I will start and finish the quiz on time, and that 
I will not give or receive unauthorized help on this quiz. 

 
Sign here: _______________________________ 

   
   Part A  ________     20 Points 
   Part B  ________     40 Points 
   Part C  ________     40 Points 

    
TOTAL          ________  100 Points 
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Part A: Caches (20 Points) 
 
Ben Bitdiddle wants to run the following code on his machine: 
 
uint32_t A[32], B[32]; 
uint32_t d; 
... 
 
for (uint32_t rounds = 0; rounds < 10; rounds++) { 
  for (uint32_t i = 0; i < 32; i++) { 
    B[i] = d*A[i]; 
  } 
} 
 
His machine has a direct-mapped data cache that has 16 lines with 16 bytes per line. Note that 
arrays A and B have 4-byte elements. Array A starts at address 0x0000 and B starts at address 
0x0100. The values of i, d, and sum are stored in registers. 
 
 
Question 1 (3 points) 
 
How many compulsory, capacity, and conflict misses will occur when running the above code? 
(Focus on data accesses only, not on instruction accesses.) 
 
Direct-mapped with 16 lines and 16B per line = 4 bit block offset, 4 bit index 
Entries A[i] and B[i] conflict at index = floor(i/4) 
Since our access pattern is A[i]->B[i]->A[i+1]->B[i+1]->... we always conflict. 
Compulsory misses = 8 (entries of A) + 8 (entries of B) = 16 
Capacity misses = 0 (we would not solve this problem by increasing capacity 
Conflict misses = Total misses - Compulsory misses = 640 - 16 = 624 
 
Question 2 (5 points) 
 
Ben changes the configuration of the cache to be 2-way set-associative with 8 sets and 16 bytes 
per line. The cache uses a Least Recently Used (LRU) replacement policy. With the new cache, 
how many total misses will occur when running the above code? 
 
Now, all previous conflict misses are hits due to sufficient associativity. Thus, total misses = 16 
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Question 3 (7 points) 
 
Alyssa P. Hacker comes by and changes the code such that elements of array C are added to the 
final result: 
 
uint32_t A[32], B[32], C[32]; 
uint32_t d; 
... 
 
for (uint32_t rounds = 0; rounds < 10; rounds++) { 
  for (uint32_t i = 0; i < 32; i++) { 
    B[i] = d*A[i] + C[i]; 
  } 
} 
 
Assume that array C starts at address 0x0200.  
 
 
(a) (3 points) With Ben's 2-way cache configuration from Question 2, how many total misses will 
occur when running this code?  
 
Now our access pattern is A[i]->C[i]->B[i]->A[i+1]->C[i+1]->B[i+1]->... 
Notice that due to LRU policy, we will kick out the line containing A[i+1] (brought in just before 
by access to A[i]) when we access B[i]. Same goes for entries of C and B. Thus, we get all misses 
again = 32*3*10 = 960. 
 
 
 
 
(b) (4 points) Can a different replacement policy further reduce the number of misses? If so, briefly 
describe such a policy (do not assume knowledge of the future, i.e., Belady’s MIN is not an option). 
If not, briefly state your reasoning.  
 
There are multiple solutions. One simple policy is Most Recently Used (MRU), which kicks out 
the most recently accessed line among the different ways. Thus, when B[i] is accessed we would 
evict C[i], turning a previous miss into a hit. 
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Question 4 (5 points) 
 
We notice that a program we want to run is mostly accessing consecutive memory locations in 
sequence. A way to reduce the effect of misses for such an access pattern is to prefetch the data 
before it is actually needed by the processor. For example, given an access stream of A, A+1, A+2, ... 
where A is the location in memory initially accessed by the program, we can prefetch the data at 
addresses A+3, A+4, ... ahead of the processor, so that they are already in the cache by the time the 
processor explicitly requires them. 
 
Assume that our processor is issuing a memory request every 4 cycles on average, and the average 
memory access latency is 100 cycles. Also assume that the prefetcher predicts future accesses 
perfectly. How many prefetch requests must be in flight on average to prefetch the data required 
by the processor on time? 
 
Memory issue throughput = T = 1/4 
Memory latency = L = 100 
Number of requests needed in flight = N 
Relationship is given by Little's Law: N = T * L = 25 requests in flight 
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Part B: Caches and Virtual Memory (40 Points) 
 
Question 1 (10 points) 
 
Answer whether the following statements are True or False (2 points each). 
 
(a) Translation Lookaside Buffers (TLBs) usually have low associativity to enable efficient virtual 
to physical address translations. 
 
False. We want high associativity to minimize misses since page table walks are expensive. 
 
 
 
(b) In a multilevel cache hierarchy, using exclusive caches achieves a higher effective capacity 
than using inclusive caches of same size. 
 
True. Lines are never duplicated across multiple levels. 
 
 
 
(c) You can only swap out pages containing page table entries that reference physical pages 
residing in secondary storage. 
 
True. Swapping out pages containing PTEs that reference pages residing in primary memory may 
result in deadlock. 
 
 
(d) Doubling the number of cache lines of a direct-mapped cache (while leaving all other 
parameters unchanged) always decreases conflict misses. 
 
False. There are corner cases where this does not work, such as only the high order bits of the tag 
being different between conflicting lines.  
 
 
(e)  A larger cache, given fixed associativity and block size, will always reduce the average 
memory access time (AMAT). 
 
False. AMAT = hit latency + miss rate * miss penalty. While large cache may reduce miss rate, it 
may also increase hit latency. 
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Question 2 (8 points) 
 
Consider a machine with byte-addressable memory, 24-bit virtual addresses, and 24-bit physical 
addresses. We want to compare two different page table designs for this machine. 
 
The machine executes the following piece of code: 
 
int A[262144]; // A 1MB array 
int sum; 
 
while (1) { 
  for (int i = 0; i < 256; i++) { 
    sum += A[i*1024]; 
  } 
} 
 
Array A starts at virtual address 0x800000. Ignore accesses to the stack and code regions and only 
focus on accesses to the 1MB array. 
 
Alyssa P. Hacker first wants to use a linear (i.e., single-level) page table with 4KB pages. Each 
page table entry is 32 bits. Assume there is no TLB in this machine. 
 
(a) (2 points) Derive the number of bits needed for the physical page number and page offset.   
 
4KB pages = 2^12B -> 12 bits of page offset, 12 bits of physical page number. 
 
 
(b) (2 points) What is the maximum size of the page table?  
 
Maximum size is Entry size * #Page Table Entries = 4B * 2^12 = 16KB  
 
(c) (2 points) What is the size of the page table when executing the above code?  
 
This is the same as the maximum size since we must allocate the entire page table for each running 
process.  
 
If you assume that there is smart bounds checking going on (e.g., Kernel notices you only access 
1MB of heap and assigns a limited page table to your process), then: 
0x800000 starting address for array = 2^11 pages needed before the array 
1MB array = 256 pages needed 
So, we need 2^11+ 256 PTEs in total = (2^11 + 256)*4B = 9KB  
 
(d) (2 points) How many memory references to the page table are required to execute one iteration 
of the while loop? 
 
256, since this page table has a single level. 
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Question 3 (7 points) 
 
Alyssa now switches to a 3-level hierarchical page table. The virtual address is divided in the 
following way: 
 

 
 
Here, the L1, L2, and L3 indices evenly divide the bits that exclude the page offset (i.e., the three 
fields are the same size). Each entry of the L1, L2, and L3 page tables is 32 bits.  
 
(a) (2 points) What is the maximum size of the page table? 
 
Maximum size is 1 L1 table, 16 L2 tables, and 256 L3 tables. Each page table is 16 entries = 2^6 
Bytes. 
Thus, 2^6(1 + 16 + 256) = 17472 Bytes 
 
 
(b) (3 points) What is the size of the page table when executing the above code? 
 
12/3 = 4 bits of index per level. 
We access 1MB of array sequentially, visiting each page contained in the array. 
1MB = 2^20B => require 1 L1 entry, 16 L2 entries, and 16*16 L3 entries. 
This translates to 1 L1 table, 1 L2 table, and 16 L3 tables.  
Thus, 2^6(1 + 1 + 16) = 1152 Bytes 
 
 
(c) (2 points) How many memory references to the page table are required to execute one iteration 
of the while loop?  
 
256*3 references, 256 for each level. 
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Question 4 (5 points) 
 
Alyssa wants to add a TLB to speed up address translation. What is the minimum number of entries 
necessary to have no TLB misses in steady state for the above code?  
 
We access 256 distinct pages, so we need at least 256 TLB entries. 
 
 
 
 
 
 
 
 
 
Question 5 (5 points) 
 
Alyssa also decides to implement a virtually-indexed, physically-tagged cache. Her cache is 4-way 
set-associative with 512 lines and 32 bytes per line. Can her cache have aliasing issues? Briefly 
explain. 
 
512 lines with 4-ways => 512/4 = 128 sets => 7 bits of index 
32 bytes per line => 5 bits of block offset 
Since index + block offset equals the page offset (12 bits), we do not have aliasing issues since the 
virtual index does not overlap with the physical tag. 
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Question 6 (5 points) 
 
Alyssa now wants to add support for large pages, i.e., pages that are larger than 4KB. 
 
(a) (2 points) Given her 3-level hierarchical page table, what are the possible large page sizes while 
using the same page table design? 
 
We can merge entries of lower level tables into one big table 
=> 64KB pages using L1 and L2 page tables, and 1MB pages using only L1 page table. 
 
 
 
 
 
 
(b) (3 points) Using large pages, what is the minimum number of TLB entries needed to eliminate 
all misses from the TLB? 
 
Using 1MB pages, we only need a single TLB entry to store the entire array in one big page. 
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Part C. Pipelining (40 Points) 
 
Ben Bitdiddle wants to run the following C code on his 5-stage pipelined MIPS processor: 
 
int A[100]; 
int B[100]; 
int difference = 0; 
int matches = 0; 
... 
 
for (int i = 100; i != 0; i--) { 
  int a = A[i]; 
  int b = B[i]; 
  if (a == b)  
    matches++; 
  else 
    difference += (a - b); 
} 
... 
 
The equivalent MIPS assembly code segment is shown below. We assume the following at the 
start of the code segment: 

• Registers r1, r2, r3, and r4 hold the values of a, b, matches, and difference, 
respectively. 

• Register r5 holds the value of loop iteration index. 
• Registers r6 and r7 hold the base address of arrays A and B, respectively. 
• Registers r8 is used for intermediate results. 

 
 
 

_loop: 
 
 
 
 
 
 
 

_else: 
_then: 

 
 
 

... 
ADDI r5, r0, 100    
LW   r1, 0(r6)     ; a = A[i] 
LW   r2, 0(r7)     ; b = B[i] 
ADDI r6, r6, 4 
ADDI r7, r7, 4 
SUB  r8, r1, r2 
BNEZ r8, _else     ; Jump to _else label if a != b  
ADDI r3, r3, 1     ; matches++; 
J    _then 
ADD  r4, r4, r8    ; difference += (a - b); 
ADDI r5, r5, -1    ; i--; 
BNEZ r5, _loop     ; Check loop bound 
... 
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Ben notices that his simple 5-stage pipelined processor suffers from frequent control hazards on 
branches. To eliminate branches, Ben decides to implement predicated execution in his MIPS 
processor. Refer to the accompanying handout for more details on predicated instructions. 
 
Question 1 (5 points) 
 
Rewrite the code denoted by the red box using predicated instructions instead of conditional 
branches and jumps. Your code should not have any branches or jumps remaining. 
 
 

 
(p0) 
(!p0) 
(!p0) 

SETPEQ p0, r1, r2 
ADDI r3, r3, 1 
SUB r8, r1, r2 
ADD r4, r4, r8 
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To implement predicated instructions, Ben adds a predicate register file to the Decode stage of 
his pipeline, as shown below (for simplicity, this pipeline diagram does not handle control 
instructions). New control signals and datapaths are highlighted in blue. 
 

 
 
Every predicated instruction and SETPEQ has its source/destination predicate register 
address encoded in the bottom two bits of its opcode. When a predicated instruction enters the 
decode stage, it uses prs to select the predicate register to read. The register file outputs pval, 
which is the corresponding predicate register value. Predicated instructions must be treated as 
no-ops if the predicate register value is 0. To do this, Ben implements a new kill condition 
predKill.   
 
The SETPEQ instruction sets the destination predicate register pwsW and the predicate value 
nextPval in the writeback stage. Thus, predicated instructions must stall in the decode stage if the 
pipeline has a SETPEQ instruction in flight that will write to the same predicate register. This 
requires Ben to implement a new stall signal stall', which adds an additional stall condition 
predStall on top of the original stall signal origStall. 
 
Finally, Ben implements a new control signal pweW that enables writes to the predicate register 
when SETPEQ reaches the writeback stage. 
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Question 2 (6 points) 
 
Derive the Boolean expression for new control signals predStall and predKill. You are also 
provided the following two control signals.  
 

PredIns = True if instruction in decode is predicated and reads the predicate   
      register normally (i.e., the instruction is executed normally if predicate   
      register is True / 1). 

 
 InvPredIns = True if instruction in decode is predicated on the inverse of    
           the predicate register. (i.e., the instruction is executed normally if    
           predicate register is False / 0). 
 
 
 
 
 
 
 
 
 
predStall = (PredIns || InvPredIns) &&  
  (  (pweE && (pwsE == prs) || 
     (pweM && (pwsM == prs) || 
     (pweW && (pwsW == prs) ) 
 
 
 
 
 
 
 
 
 
 
predKill = (PredIns && !pval) || (InvPredIns && pval) 
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Question 3 (4 points) 
 
Ben now adds full bypassing for register values. Ben runs the original code with branches and 
jumps on his new processor. How many cycles does it take to execute the code in the red box? 
Assume branches are resolved in the Execute stage and jumps are resolved in the Decode stage, 
and there are no branch delay slots. You only need to consider one iteration of the loop. 
 
Recall the original code: 

 
 
 
 

_else: 
_then: 

SUB  r8, r1, r2 
BNEZ r8, _else     ; Jump to _else label if a != b  
ADDI r3, r3, 1     ; matches++; 
J    _then 
ADD  r4, r4, r8    ; difference += (a - b); 
 
 

Let's consider both cases of BNEZ being taken and not taken. 
 
1. BNEZ taken:  
2 cycles for SUB and BNEZ 
2 cycles of bubbles to resolve the branch at Execute stage  
1 cycle for the ADD 
total of 5 cycles 
 
2. BNEZ not taken:  
4 cycles for SUB, BNEZ, ADDI, J 
1 cycle of bubble to resolve the jump at Decode stage 
total of 5 cycles 
 
Question 4 (4 points) 
 
Now Ben runs the predicated code on his new processor with full bypassing for register values. 
How many cycles does it take to execute the code in the red box? You only need to consider one 
iteration of the loop. 
 
4 cycles + 3 cycles of stalling to resolve data hazard between SETPEQ and following ADDI = 7 
cycles  
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Question 5 (4 points) 
 
Ben adds full bypassing for predicate register values as well. How many cycles does it take to 
execute the code in the red box? You only need to consider one iteration of the loop. 
 
We've removed all stall cycles, so it's 4 cycles 
 
 
 
 
 
 
 
 
 
 
 
Question 6 (4 points) 
 
Ben wants to write to the predicate register file in the Execute stage instead of waiting until 
Writeback. This would allow removing most of the bypass paths for predicate registers. Can this 
result in incorrect behavior? Justify your reasoning. 
 
If we write the predicate register file in the E stage, we can have a case where an invalid instruction 
writes to the predicate register file. Consider the case when an instruction preceding SETPEQ (i.e., 
an instruction that is in the later pipeline stage) triggers an exception in the M stage when SETPEQ 
modifies the predicate register file in the E stage. This would cause the result of SETPEQ to be 
reflected in the predicate register file when it shouldn't. 
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Question 7 (4 points) 
 
Alyssa notes that predicated instructions need not read the predicate register in the decode stage. 
As long as the instruction is not changing any architectural state, the predicated instruction can 
flow normally through the pipeline until it is necessary to read the predicate register. Given this 
information, where is the latest stage Ben can put the predicate register file? Take exceptions into 
account. 
 
We need to read the predicate register file before the Memory stage so that a predicated store that 
should be a no-op does not reflect its change in the architectural state. Thus, we can delay 
reading until the Execute stage. 
 
If you assume that you can perform a predicate register read and write to memory in the same 
cycle, we can put the predicate register file in the Memory stage. 
 
 
 
 
 
Question 8 (4 points) 
 
In Question 2, we defined the new stall signal as stall’ = origStall + predStall. If you want to 
minimize the number of stalls, is this the best we can do, or could you change the stall signal to 
avoid some stalls? Briefly explain why or why not. (You do not need to write the precise stall 
signal.) 
 
Based on your answer to the question above, if we wanted to maximize performance and, for equal 
performance, minimize complexity, which would you choose: (1) keeping the predicate register 
file in Decode, with bypasses; or (2) placing the predicate register file at a later stage as in Question 
7, to reduce/avoid bypasses? 
 
Say the predicated instruction in the Decode stage should be killed due to the predicate being 
False, but is stalling due to a data dependence on a prior instruction (e.g., a lw). Then, we can kill 
the instruction early instead of stalling until the data hazard is resolved. 
 
With this optimization, we will need the predicate register in the Decode stage (1) to kill the 
predicated instruction as early as possible. 
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Question 9 (5 points) 
 
Ben recompiles Linux to target his new ISA and runs it on his new MIPS processor. To his dismay, 
it crashes immediately. He notices that the OS kernel does not save/restore predicate registers on 
context switches. Help Ben fix the kernel by writing code that saves the predicate registers upon a 
context switch. You only need to write code to store one predicate register, say p1, into one 
general-purpose register, say r1. 
 
            XOR  r1, r1, r1  ; Not needed if r1 is already set to 0 
 (p1) ADDI r1, r0, 1 
 
 


