
 6.823 Spring 2021

1

Quiz 2 Handout

Figure 1 shows the pipeline of an out-of-order machine that uses reservation stations to perform
out-of-order execution and in-order commit. Flip flops and queues represent stage boundaries.

The processor consists of the following stages:

1. Fetch: The instruction at PC is fetched from the instruction cache.
• In parallel, the PC is also fed into a branch target buffer (BTB). On a hit in the BTB,

the next PC to be fetched is updated to the target PC indicated in the BTB.
2. Decode: The fetched instruction is decoded.

• If the decoded instruction was a conditional branch, its direction is predicted by a
branch predictor. The branch predictor is described in the next page.
Note: Direct jumps (J/JAL) are always taken, so no prediction is needed.

• For direct jumps and branches (BEQ/BNE/J/JAL), the target is calculated and
updates the next PC to be fetched unless the branch predictor predicts not-taken.

3. Pre-Allocation: Several structures are checked for space that will be needed by the
instruction:

• Load and store instructions check for an available slot in the memory reservation
station. All other instructions check for an available slot in the arithmetic
reservation station.

• For store instructions, an entry in the store buffer.
• For load instructions, an entry in the load buffer

4. Register Read & Allocate: If all the needed space is available, the instruction is inserted
into the appropriate reservation station. Loads and stores grab an entry in the load buffer
and store buffer, respectively. The physical index of the instruction’s reservation station
entry is the instruction's "tag" (e.g., the first entry in the memory reservation station has tag
M1). To obtain any required operands, the rename table and register file are read
simultaneously. If the rename table has a valid tag for an operand, then all reservation
station entries must be checked for that operand. Otherwise, the value in the register file
can be used. If the instruction writes a register, its tag is written to the destination register
entry in the rename table. The source fields of reservation stations store either the tag of
the instruction producing the data (i.e., the producer instruction’s reservation station
entry), or the actual data when it becomes available.

5. Issue: On each cycle, the oldest ready instruction in each reservation station is issued,
reading its operands either from the reservation station or the register file.

6. Execute: Functional units or the memory system may take one or more cycles to execute
the instruction.

7. Writeback: The output from the functional units, or memory access, if any, are written back
to the data field in the reservation station and the pd bit is set. Additionally, any dependent
instructions in the reservation stations will receive the value and has the corresponding
present bit set (p1 for the first operand, p2 for the second operand).

 6.823 Spring 2021

2

8. Commit: On each cycle, if the oldest instruction among all reservation stations has finished
execution, it is committed. If the instruction writes a register, the result is written to the
register file, and if the tag in the rename table for this register matches the tag of the result,
the rename table valid bit is cleared.

Figure 1: Simplified out-of-order pipeline schematic. Several important structures are not

shown, such as commit, bypassing, and some sources of next-PC value

gshare Branch Predictor:

The Branch Predictor used in this processor is called gshare, which uses exclusive OR (XOR) to
combine the global history and the PC. The gshare branch predictor takes the lower three bits from
the global history and the lower three bits from the PC (excluding the last 2 bits which are always
00 for aligned instructions), and calculates an index into an array of eight two-bit counters by
exclusive OR-ing them (Figure 2).

Figure 2: gshare branch predictor

In the global history, 1 represents Taken and 0 represents Not-Taken. The 2-bit counters in this
design follow the state-diagram shown in Figure 3. In state 1X, we will guess Taken; in state 0X,
we will guess Not-Taken.

Figure 3: State Diagram of 2-bit counters

8-bit	global	history

PC

XOR

2-bit	prediction	counters

00

3-bits
3-bits

 6.823 Spring 2021

3

Processor State

Figure 4: Processor State. There are 26 additional rename table entries and registers,

which are not shown.

A snapshot of the processor state is shown in Figure 4. It consists of the following components:
• Pre-Allocated Instruction: Pipeline register holding the next instruction to be allocated to

the reservation stations.
• Decoded Instruction: Pipeline register holding a decoded instruction.
• Fetched Instruction: Pipeline register holding a raw binary instruction.
• Next PC to be fetched: This is the PC register in Figure 1.
• Branch Target Buffer (BTB): Holds map of source PC to target PC. If a fetched

instruction PC hits in the BTB, the next PC to fetch is the corresponding target PC.
• Branch Predictor (BHT): 2-bit counters for branch prediction.
• Branch Global History: 8-bit global branch history.
• Register File: Holds the committed data values of architectural registers.
• Rename Table: A map from architectural register name to reservation station tag (if valid).
• Memory Reservation station: Contains the bookkeeping information of all load and store

instructions for managing the out-of-order execution and register renaming, and operand
data values when they become available.

• Arithmetic Reservation Station: Contains the bookkeeping information of all instructions
except load and store instructions. Information is used for managing the out-of-order
execution and register renaming, and operand data values when they become available.

 6.823 Spring 2021

4

• Store Buffer: The address and data from an executed SW instruction are temporarily kept
here, and then moved to the cache after the instruction commits or cleared if the instruction
is aborted.

• Load Buffer: The address from an executed LW instruction is temporarily kept here, and
cleared after the instruction commits or is aborted.

For SW instructions, assume the first operand (src1) provides the base register for the store
address, and the second operand (src2) provides the data source for the store.

We provide a list of actions below. Study them carefully and relate them to the concepts covered
in the lectures. You will be required to associate events in the processor to one of these actions,
and, if required, one of the choices for the blank.

Label List:

A. Satisfy a dependence on ______ by stalling
B. Satisfy a dependence on ______ by bypassing a speculative value
C. Satisfy a dependence on ______ by bypassing a committed value
D. Satisfy a dependence on ______ by speculation using a static prediction
E. Satisfy a dependence on ______ by speculation using a dynamic prediction
F. Write a speculative value using lazy data management
G. Write a speculative value using greedy data management
H. Speculatively update a prediction on ______ using lazy value management
I. Speculatively update a prediction on ______ using greedy value management
J. Non-speculatively update a prediction on ______
K. Check the correctness of a speculation on ______ and find a correct speculation
L. Check the correctness of a speculation on ______ and find an incorrect speculation
M. Abort speculative action and cleanup lazily managed values
N. Abort speculative action and cleanup greedily managed values
O. Commit correctly speculated instruction, where there was no value management
P. Commit correctly speculated instruction, and mark lazily updated values as non-speculative
Q. Commit correctly speculated instruction, and free log associated with greedily updated values
R. Illegal or broken action

Blank choices:

i. Register value
ii. PC value
iii. Branch direction
iv. Memory address
v. Memory value
vi. Latency of operation
vii. Functional unit

