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Problem M7.1: Branch Prediction 
 
This problem will investigate the effects of adding global history bits to a standard branch 
prediction mechanism. In this problem assume that the MIPS ISA has no delay slots. 
 
Throughout this problem we will be working with the following program. 
 
loop: 

LW R4, 0(R3) 
ADDI R3, R3, 4 
SUBI R1, R1, 1 

b1: 
BEQZ R4, b2 
ADDI R2, R2, 1 

b2: 
BNEZ R1, loop 

 
Assume the initial value of R1 is n (n>0). 
Assume the initial value of R2 is 0 (R2 holds the result of the program). 
Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit integers). 
 
All branch prediction schemes in this problem will be based on those covered in the lecture. We 
will be using a 2-bit predictor state machine, as shown below. 
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Figure M7.1-A: BP bits state diagram 
 
In state 1X we will guess not taken. In state 0X we will guess taken. 
 
Assume that b1 and b2 do not conflict in the BHT. 
 
 
Problem M7.1.A Program 

What does the program compute? That is, what does R2 contain when we exit the loop? 
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Problem M7.1.B 2-bit branch prediction 

 
Now we will investigate how well our standard 2-bit branch predictor performs. Assume the 
inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc. That is the array 
elements exhibit an alternating pattern of 1's and 0's. Fill out Table M7.1-1 (note that the first 
few lines are filled out for you). What is the number of mispredicts? 
 
Table M7.1-1 contains an entry for every branch (either b1 or b2) that is executed. The Branch 
Predictor (BP) bits in the table are the bits from the BHT. For each branch, check the 
corresponding BP bits (indicated by the bold entries in the examples) to make a prediction, then 
update the BP bits in the following entry (indicated by the italic entries in the examples). 
 
 
Problem M7.1.C Branch prediction with one global history bit 

 
Now we add a global history bit to the branch predictor, as described in the lecture. Fill out Table 
M7.1-2, and again give the total number of mispredicts you get when running the program with 
the same inputs. 
 
 
Problem M7.1.D 

 
Now we add a second global history bit. 
mispredicts you get for the same input. 
 
 
Problem M7.1.E 

Branch prediction with two global history bits 
 
Fill out Table M7.1-3. Again, compute the number of 
 
 
 

Analysis 

Compare your results from problems M7.1.B, M7.1.C and M7.1.D. When do most of the 
mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What does this 
tell you about global history bits in general? For a large n, what prediction scheme will work best? 
Explain briefly. 
 
 
Problem M7.1.F Analysis II 
 

The input we worked with in this problem is quite regular. How would you expect things to 
change if the inputs were random (each array element were equally probable to be 0 or 1). Of the 
three branch predictors we looked at in this problem, which one will perform best for this type of 
input? Is your answer the same for large and small n? 
 
What does this tell you about additional history bits: when are they useful and when do they hurt 
you? 
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System 
State 

Branch Predictor Branch Behavior 

PC R3/R4 b1 bits b2 bits Predicted Actual 
b1 4/1 10 10 N N 
b2 4/1 10 10 N T 
b1 8/0 10 11 N T 
b2 8/0 11 11 N T 
b1 12/1 11 00   
b2 12/1     
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      

Table M7.1-1 
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System 
State 

Branch Predictor Behavior 

PC R3/R4 history 
bit 

b1 bits b2 bits  
Predicted 

 
Actual set 0 set 1 set 0 set 1 

b1 4/1 1 10 10 10 10 N N 
b2 4/1 0 10 10 10 10 N T 
b1 8/0 1 10 10 11 10   
b2 8/0        
b1 12/1        
b2 12/1        
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         

Table M7.1-2 
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System 
State 

Branch Predictor Behavior 

PC R3/R4 history b1 bits b2 bits  
Predicted 

 
Actual  bits set 00 set 01 set 10 set 11 set 00 set 01 set 10 set 11 

b1 4/1 11 10 10 10 10 10 10 10 10 N N 
b2 4/1 01 10 10 10 10 10 10 10 10 N T 
b1 8/0 10 10 10 10 10 10 11 10 10   
b2 8/0            
b1 12/1            
b2 12/1            
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             

Table M7.1-3 
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Problem M7.2: Branch Prediction 
 
Consider a CPU with a pipeline pictured on 
the right. The first stage of the pipeline 
fetches the instruction. The second stage of 
the pipeline recognizes branch instructions 
and performs branch prediction using a 
BHT. If the branch is predicted to be taken, 
it forwards the decoded target of the branch 
to the first stage, and kills the instruction in 
the first stage. The fifth stage of the 
pipeline reads the registers and resolves the 
correct target of the branch. If the branch target was mispredicted, the correct target is 
forwarded to the first stage, and all instructions in between are killed. The remaining stages finish 
the computation of the instruction. 
 
The processor uses a single global 
history bit to remember whether the last 
branch was taken or not. There is only one 
line in the BHT, so the address of the 
branch instruction is not used for selecting 
the proper table entry. Each entry in the 
table is labeled as TW for Take Wrong, 
TR for Take Right, NTW for do Not Take 
Wrong and NTR for do Not Take Right, 
as pictured below. The setup of the BHT 
predictor is illustrated on the right. 
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In this question we will study execution of the following loop. This processor has no branch 
delay slots. You should assume that branch at address 1 is never taken, and that the branch at 
address 5 is always taken. 
 

Instruction 
Label 

Address Instruction 

LOOP 1 BEQ R2, R5, NEXT 
 2 ADD R4, R4, 1 
 3 MULT R3, R3, R4 

NEXT 4 MULT R2, R2, 3847 
 5 BNEZ R4, LOOP 
 6 NOP 
 7 NOP 
 8 NOP 
 9 NOP 
 10 NOP 

 
You should also disregard any possible structural hazards. The processor always runs at full 
speed, and there are no pipeline bubbles (except for those created by the branches). 
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Problem M7.2.A 
 
Now we study how well the history bit works, when it is being updated by the fifth stage of the 
processor. The fifth stage also updates the BHT based on the result of a branch. The same BHT 
entry that was used to make the original prediction is updated. 
 
Please fill in the table below. 
 
You should fetch a new instruction every cycle. You should fill in the Branch Prediction and the 
Prediction Correct? columns for branch instructions only (note that the branch prediction 
actually happens one cycle after the instruction is fetched). You should fill in the Branch 
Predictor State columns whenever they are updated. Please circle the instructions which will 
be committed. 
 
The first three committing instructions fetched have been filled in for you. You should enter 
enough instructions to add 8 more committing instructions. You may not need all the rows in 
the table. 
 

Cycle Instruction 
Fetched 

Branch 
Prediction 

Prediction 
Correct? 

Branch Predictor State 

Branch 
History 

Last Branch 
Taken 

Predictor 

Last Branch 
Not Taken 
Predictor 

0 - -  T TW TW 
1 1 T N    
2 2      
3 4      
4 5 T Y    
5 6   NT NTR  
6 2      
7 3      
8       
9       
10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
21       
22       
23       
24       
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Problem M7.2.B 
 
Now we study how well the branch history bit works, when it is being updated speculatively 
by the second stage of the processor. If the branch is mispredicted, the fifth stage sets the branch 
history bit to the correct value. Finally, the fifth stage also updates the BHT based on the result 
of a branch. The same BHT entry that was used to make the original prediction is updated. 
 
Please fill in the table below. The notation in the table should be same as in M7.2.A. 
 
The first three committing instructions fetched have been filled in for you. You should enter 
enough instructions to add 8 more committing instructions. You may not need all the rows in 
the table.
 
 

Cycle Instruction 
Fetched 

Branch 
Prediction 

Prediction 
Correct? 

Branch Predictor State 

Branch 
History 

Last Branch 
Taken 

Predictor 

Last Branch 
Not Taken 
Predictor 

0 - -  T TW TW 
1 1 T N    
2 2   T   
3 4      
4 5 T Y    
5 6   NT NTR  
6 2      
7 3      
8       
9       
10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
21       
22       
23       
24       
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Problem M7.3: Branch Prediction 
 
Consider the fetch pipeline of UltraSparc-III processor. In this part, we evaluate the impact of 
branch prediction on the processor’s performance. There are no branch delay slots. 
 

 
 
 
Here is a table to clarify when the direction and the target of a branch/jump is known. 
 
 

 

Instruction Taken known? 
(At the end of) 

Target known? 
(At the end of) 

BEQZ/BNEZ R B 
J B (always taken) B 

JR B (always taken) R 
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Problem M7.3.A  
 
As a first step, we add a branch history table (BHT) in the fetch pipeline as shown on the next 
page. In the B stage (Branch Address Calc/Begin Decode), a conditional branch instruction 
(BEQZ/BNEZ) looks up the BHT, but an unconditional jump does not. If a branch is predicted to 
be taken, some of the instructions are flushed and the PC is redirected to the calculated branch 
target address. The instruction at PC+4 is fetched by default unless PC is redirected by an older 
instruction. 

 
 

 
 
 

For each of the following cases, write down the number of pipeline bubbles caused by a branch 
or jump. If there is no bubble, you can simply put 0. (Y = yes, N= no) 

 
 Predicted 

Taken? 
Actually 
Taken? 

 
Pipeline bubbles 

 
 
 

BEQZ/ 
BNEZ 

Y Y  

Y N  

N Y  

N N  

 

J Always taken 
(No lookup) 

 

Y 
 

 

JR Always taken 
(No lookup) 

 

Y 
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Problem M7.3.B  
 
To improve the branch performance further, we decide to add a branch target buffer (BTB) as 
well. Here is a description for the operation of the BTB. 

 
1. The BTB holds entry_PC, target_PC pairs for jumps and branches predicted to be taken. 

Assume that the target_PC predicted by the BTB is always correct for this question. (Yet 
the direction still might be wrong.) 

2. The BTB is looked up every cycle. If there is a match with the current PC, PC is 
redirected to the target_PC predicted by the BTB (unless PC is redirected by an older 
instruction); if not, it is set to PC+4. 

 
 
 

 
 

Fill out the following table of the number of pipeline bubbles (only for conditional branches). 
 
 
 
 
 
 
 
 
 
Conditional 

Branches 

 

BTB Hit? 
(BHT) 

Predicted 
Taken? 

 
Actually 
Taken? 

 

Pipeline bubbles 

Y Y Y  

Y Y N  

Y N Y Cannot occur 
Y N N Cannot occur 
N Y Y  

N Y N  

N N Y  

N N N  
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Problem M7.3.C 

 
We will be working on the following program: 
 

ADDRESS 
0x1000 
0x1004 
0x1008 
0x100C 
0x1010 
0x1014 
0x1018 
0x101C 
0x1020 
0x1024 
0x1028 

INSTRUCTION 
BR1: BEQZ R5, NEXT 

ADDI R4, R4, #4 
MULT R3, R5, R3 
ST R3, 0(R4) 
SUBI R5, R5, #1 

NEXT: ADDI R1, R1, #1 
SLTI R2, R1, 100 

BR2: BNEZ R2, BR1 
NOP 
NOP 
NOP 

 
; always 
 
 
 
 
 
 

; repeat 

 
taken 
 
 
 
 
 
 

100 times 

 
Given a snapshot of the BTB and the BHT states on entry to the loop, fill in the timing diagram 
for one iteration (plus two instructions) on the next page. (Don’t worry about the stages beyond 
the E stage.) We assume the following for this question. 

1. The initial values of R5 and R1 are zero, so BR1 is always taken. 
2. We disregard any possible structural hazards. There are no pipeline bubbles (except for 

those created by branches.) 
3. We fetch only one instruction per cycle. 
4. We use a two-bit predictor whose state diagram is shown below. In state 1X we will guess 

not taken; in state 0X we will guess taken. BR1 and BR2 do not conflict in the BHT. 
 

11 
taken 

 

taken 

 
taken 

00 

 taken 

taken 
10 taken 

taken 
 

taken 
01 

 
5. We use a two-entry fully-associative BTB with the LRU replacement policy. 

 
Initial Snapshot 

 
 
 

(Valid)          Predicted 
V Entry PC Target PC 

1 0x101C 0x1000 

   

BTB 

 
 
 
BR1 
 
 
BR2 

 

... 

1 1 

... 

0 0 

... 
 

BHT 
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Problem M7.3.D 

 
What will be the BTB and BHT states right after the 6 instructions in Question 9 have updated 
the branch predictors’ states? Fill in (1) the BTB and (2) the entries corresponding to BR1 and 
BR2 in the BHT. 
 
 
 
 

 
 
 
 
(Valid) 

V Entry 

 
 
 

Predicted 
BR1 

PC Target PC 

BR2 

 
 

... 
  

 

... 
  

... 

 

BTB BHT 
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Problem M7.4: Complex Pipelining (Spring 2014 Quiz 2, Part B) 
 

 
 
You are designing a processor with the complex pipeline illustrated above. For this 
problem assume there are no unconditional jumps or jump register—only conditional 
branches. 

 

Suppose the following: 

• Each stage takes a single cycle. 
• Branch addresses are known after stage Branch Address Calc/Begin Decode.  
• Branch conditions (taken/not taken) are known after Register File Read. 
• Initially, the processor always speculates that the next instruction is at PC+4, 

without any specialized branch prediction hardware. 
• Branches always go through the pipeline without any stalls or queuing delays. 
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Problem M7.4.A  
 
How much work is lost (in cycles) on a branch misprediction in this pipeline? 
 
 
 
 
 
 

Problem M7.4.B  
 
If one quarter of instructions are branches, and half of these are taken, then how much 
should we expect branches to increase the processor’s CPI (cycles per instruction)? 
 
 
 
 
 
 
 

Problem M7.4.C  
 
You are unsatisfied with this performance and want to reduce the work lost on branches. 
Given your hardware budget, you can add only one of the following: 
 

• A branch predictor to your pipeline that resolves after Instruction Fetch Stage 1. 
• Or a branch target buffer (BTB) that resolves after Instruction Fetch Stage 2. 

 
If each make the same predictions, which do you prefer? In one or two sentences, why? 
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Problem M7.4.D  

 
You decide to add the BTB (not the branch predictor). Your BTB is a fully tagged 
structure, so if it predicts an address other than PC+4 then it always predicts the branch 
address of a conditional branch (but not the condition!) correctly. For partial credit, 
show your work.  
 
If the BTB correctly predicts a next PC other than PC+4, what is the effect on the 
pipeline? 
 
 
 
 
 
If the BTB predicts the next PC incorrectly, what is the effect on the pipeline? 
 
 
 
 
 
 
 
Assume the BTB predicts PC+4 90% of the time. When the BTB predicts PC+4 it is 
accurate 90% of the time. Otherwise it is accurate 80% of the time. How much should we 
expect branches to increase the CPI of the BTB design? (Don’t bother trying to compute 
exact decimal values.) 
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Problem M7.5: Branch Prediction (Spring 2015 Quiz 2, Part A) 
 
Ben Bitdiddle is designing a processor with the complex pipeline illustrated below: 

 
 
The processor has the following characteristics:  
 

• Issues at most one instruction per cycle. 
• Branch addresses are known at the end of the B stage (Branch Address Calc/Begin Decode). 
• Branch conditions (taken/not taken) are known at the end of the R stage (Register File Read). 
• Branches always go through the pipeline without any stalls or queuing delays. 

 
Ben’s target program is shown below:  
 
 
 
 
 
 
 
 
 
 
Suppose the following: 
 
 
 
The MODi (modulo-immediate) instruction is defined as follows:  
MODi Rd Rs imm: Rd <- Rs Mod imm 
 
 
  

for(int i = 0; i <= 1000000; i++) 
{  
    if(i % 2 == 0) //Branch B1 
    { //Not taken 
       (Do something A) 
    } 
    if(i % 4 == 0) //Branch B2 
    { //Not taken 
       (Do something B) 
    } 
} //Branch LP 
 

ANDi R1 0 
LOOP:MODi R2 R1 2 
 BNE  R2 M4 // B1 
 (Do something A) 
 … … 
M4: MODi R3 R1 4 
 BNE  R3 END // B2 
 (Do something B) 
 … …  
END: SUBi R4 R1 1000000 
 BNE  R4 LOOP // LP 
 … … 
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Problem M7.5.A  
 
In steady state, what is the probability for each branch in the code to be taken/not taken on average?  
Fill in the table below. 
 

Branch Probability to be 
taken 

Probability to be 
not taken 

B1   

B2   

LP   
 

Problem M7.5.B  
 
In steady state, how many cycles per iteration are lost on average if the processor always speculates that 
every branch is not taken (i.e., next PC is PC+4)? 
 
 
 
 

Problem M7.5.C  
 
Ben designs a static branch predictor to improve performance. This predictor always predicts not 
taken for forward jumps and taken for backward jumps. The prediction is available at the end of the 
B stage. In steady state, how many cycles per iteration are lost on average? 
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Problem M7.5.D  
 
To improve performance further, Ben designs a dynamic branch predictor with local branch history 
registers and 1-bit counters. 
  
Each local branch history registers store the last several outcomes of a single branch (branches B1, B2 
and LP in our case).  By convention, the most recent branch outcome is the least significant bit, and so 
on. The predictor uses the local history of the branch to index a table of 1-bit counters. It predicts not 
taken if the corresponding 1-bit counter is 0, and taken if it is 1. Assume local branch history registers 
are always correct.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How many bits per branch history register do we need to perform perfect prediction in steady state? 
 
 
 
 
  

Local branch 
history registers 

B1 …101 
B2 …001 
LP …000 

 

1-bit counters 

Addr Prediction 
…000 0 
…001 1 
…010 0 
…011 0 
…100 1 
…101 1 
…110 0 
…111 0 

  … 

  … 
    … 

    … 

 

Indexing 
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Problem M7.5.E  
 
The local-history predictor itself is a speculative structure. That is, for subsequent predictions to be 
accurate, the predictor has to be updated speculatively.  
 
Explain what guess the local history update function should use. 

 
 
 
 
 
 
 
 
 

Problem M7.5.F  
 
Ben wants to design the data management policy (i.e., how to manage the speculative data in different 
structures of the predictor) for the local-history branch predictor to work well. Use a couple of 
sentences to answer the following questions. 

 

1) What data management policies should be applied to each structure?  
 

 

 

 

 

 

2) For your selected data management policies, is there any challenge for the recovery mechanism 
when there is misspeculation? If so, what are the challenges?  

 

 

 

 


