

Page 1 of 17

Computer System Architecture
6.823 Quiz #3

April 26th, 2019

Name: ___________________________

This is a closed book, closed notes exam.

80 Minutes
 15 Pages (+2 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Show your work to receive full credit.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz.
• Pages 16 and 17 are scratch pages. Use them if you need more space to

answer one of the questions, or for rough work.

 Part A ________ 38 Points
 Part B ________ 35 Points
 Part C ________ 27 Points

TOTAL ________ 100 Points

Page 2 of 17

Part A: Cache Coherence (38 points)

Ben Bitdiddle writes a parallel program where two processors P1 and P2 increment a
shared counter. The following is the memory access trace of the program, which shows
that P1 and P2 alternate reading and writing the same shared counter at address A:

 P1: LD A
 P1: ST A
 P2: LD A
 P2: ST A
 P1: LD A

P1: ST A
 ...

Question 1 (10 points)

Ben is building a bus-based multicore, and wants to evaluate the tradeoff between the MSI
and MOSI coherence protocols (refer to the Quiz 3 Handout for details on the MSI and
MOSI coherence protocols). Fill in the two tables below to show the states and bus
messages for both protocols (for MSI on the first table, then for MOSI on the second table,
in the next page). The top row shows the initial state of line A, which is Invalid in both P1
and P2’s private caches. On each row, write the state of line A on each cache after the
access is performed, and all the bus messages that the access causes.

MSI

P1 State P2 State Bus Messages

Initial State I I

P1:LD A S I BusRd

P1:ST A M I BusRdX

P2:LD A S S BusRd/BusWB

P2:ST A I M BusRdX

P1:LD A S S BusRd/BusWB

Page 3 of 17

MOSI

P1 State P2 State Bus Messages

Initial State I I

P1:LD A S I BusRd

P1:ST A M I BusRdX

P2:LD A O S BusRd/BusFwd

P2:ST A I M BusRdX/BusFwd

P1:LD A S O BusRd/BusFwd

Question 2 (4 points)

In steady state, how many writebacks to memory are performed per memory access (load
or store) with the MSI protocol for the above trace? What about with the MOSI protocol?

1/2 writeback per memory access for MSI
0 for MOSI

Page 4 of 17

Question 3 (5 points)

Ben decides that forwarding the data upon receiving a BusRd request in O state is wasteful.
Ben modifies the MOSI protocol so that, when a cache observes a BusRd request for a cache
line it has in O state, the cache stays silent instead of replying with BusFwd, and the
requester reads the data from memory. Is this a correct cache coherence protocol? If so,
briefly explain why. If not, give a sequence of memory accesses where the protocol fails
to maintain cache coherence.

No this is not a correct coherence protocol.
A simple example is the following:

P1: ST A
P2: LD A
P3: LD A

Now, P3 has the stale copy of the data that it grabbed from memory.

Page 5 of 17

Question 4 (7 points)

The threads in Ben’s program perform atomic Fetch-and-Add (XADD) operations to
increment the shared counter. The XADD instruction is given below:

XADD rVal, Imm(rBase):
 old ß Memory[(rBase) + Imm]
 Memory[(rBase) + Imm] ß old + (rVal)
 rVal ß old

XADD rVal, Imm(rBase) atomically increments the value at the effective memory
address by the value of register rVal, and writes the old value at the effective memory
address to rVal. XADD is atomic, meaning that no intervening memory operations can
occur between the read of Memory[(rBase) + Imm] and the subsequent write.

Ben wants to run his code on a MIPS processor that does not implement the XADD
instruction, but has load-reserve (LR) and store-conditional (SC) instructions, given below:

LR rs, Imm(rt):
 rs ß Memory[(rt) + Imm]
 Track address (rt) + Imm

SC rs, Imm(rt):
 If (rt) + Imm modified:
 rs ß 0 # Fail
 Else:
 Memory[(rt) + Imm] ß (rs) # Succeed
 rs ß 1

Implement XADD rVal, Imm(rBase) using LR and SC. If needed, you can use registers
r1 through r4 for temporary values.

XADD rVal, Imm(rBase):
 Loop: LR r1, Imm(rBase)
 ADD r2, r1, rVal
 SC r2, Imm(rBase)
 BEQZ r2, Loop
 ADDI rVal, r1, 0

Page 6 of 17

Question 5 (7 points)

Ben now uses a MIPS processor that does not have LR/SC, but implements the atomic
compare-and-swap (CAS) instruction instead, which is given below:

CAS rOld, rNew, Imm(rBase):
 old ß Memory[(rBase) + Imm]
 If old == (rOld):
 Memory[(rBase) + Imm] ß (rNew)
 else:
 rOld ß old

CAS rOld, rNew, Imm(rBase) atomically loads the value at the effective memory
address and compares it with the value stored in register rOld. If both values are equal, it
updates the memory location with the value stored in register rNew. If both values are not
equal, it updates the value in rOld with the value loaded from memory. CAS is atomic,
meaning that no intervening memory operation can occur between the read of
Memory[(rBase) + Imm] and the subsequent write.

Implement XADD rVal, Imm(rBase) using CAS. If needed, you can use registers r1
through r4 for temporary values.

XADD rVal, Imm(rBase):
 Loop: LD r1, Imm(rBase)
 ADD r2, r1, rVal
 ADDI r3, r1, 0
 CAS r1, r2, Imm(rBase)
 SUB r1, r1, r3
 BNEZ r1, Loop
 ADDI rVal, r3, 0

Page 7 of 17

Question 6 (5 points)

Ben writes a new program where two processors now update shared counters within an
array of 256 elements. Each counter is a 32-bit integer (int32_t):

 int32_t counters[256];

A trace of Ben's program shows that processors P1 and P2 increment nearby counters in
the counters array. The following trace shows the update pattern of the two processors,
where R1 holds the base address of the counters array.

Ben's processor has 64-byte cache lines. Is there any unnecessary communication between
caches in this scenario? If so, what is a potential software solution to mitigate the problem?

The potential problem here is false sharing between the two processor’s accesses. Since
most of the accesses from both processors go to the same cache line, the line will ping-
pong between the two.

There are several potential solutions, notably:

- Padding the counters such that each counter occupies an entire cache line
- Having the compiler rearrange accesses

Processor 1:

XADD R2, 0(R1)
XADD R3, 8(R1)
XADD R4, 12(R1)
...

Processor 2:

XADD R2, 4(R1)
XADD R3, 20(R1)
XADD R4, 16(R1)
...

Page 8 of 17

Part B: Memory Consistency (35 points)

Consider two processors that each read one shared counter and update the other.
Assume that memory locations A and B contain initial value 0.

P1 P2

P1.1: LD Ra ß (A)
P1.2: ST (B) ß 1

P2.1: LD Rb ß (B)
P2.2: ST (A) ß 1

Question 1 (10 points)

Fill in the table below to indicate which set of final values (Ra, Rb) are possible under
the following memory consistency models:

• Sequential Consistency (SC)
• Total Store Order (TSO): stores can be reordered after later loads
• Relaxed Memory Order (RMO): loads and stores can be reordered after later

loads and stores

For each entry, write a check mark if the memory consistency model of the corresponding
column can produce the final set of values on the leftmost column of the same row.

(Ra, Rb) SC TSO RMO

(0, 0) Ö Ö Ö

(0, 1) Ö Ö Ö

(1, 0) Ö Ö Ö

(1, 1) Ö

Page 9 of 17

Question 2 (6 points)

The RMO machine has the following fine-grained barrier instructions:

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will
be performed before any read that follows the barrier.

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will
be performed before any write that follows the barrier.

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will
be performed before any read that follows the barrier.

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will
be performed before any write that follows the barrier.

Using the minimum number of memory barrier instructions, rewrite P1 and P2 from
Question 1 such that the RMO machine produces the same outputs as the SC machine
for the given code.

P1 P2

P1.1: LD Ra ß (A)

MEMBARRW

P1.2: ST (B) ß 1

P2.1: LD Rb ß (B)

MEMBARRW

P2.2: ST (A) ß 1

Page 10 of 17

Now consider two processors P1 and P2 running the following code.
Assume that memory locations A, B, and C contain initial value 0. Note that
instruction P1.3 writes the result of Ra - Ra + 1 to temporary register t1, and similarly
P2.2 writes the result of Rc - Rc + 1 to temporary register t2.

P1 P2

P1.1: ST (B) ß 1
P1.2: LD Ra ß (A)
P1.3: t1 ß Ra - Ra + 1
P1.4: ST (C) ß t1

P2.1: LD Rc ß (C)
P2.2: t2 ß Rc - Rc + 1
P2.3: ST (A) ß t2
P2.4: LD Rb ß (B)

Question 3 (12 points)

Fill in the table below to indicate which sets of final values (Ra, Rb, Rc) are possible
under the three memory consistency models SC, TSO, and RMO (as in Question 1). For
each entry, write a check mark if the memory consistency model of the corresponding
column can produce the final set of values on the leftmost column of the same row. Note
that in all three consistency models, data-dependent memory operations are performed in
program order to preserve correctness.

(Ra, Rb, Rc) SC TSO RMO

(0, 0, 0) Ö Ö

(0, 0, 1) Ö

(0, 1, 0) Ö Ö Ö

(0, 1, 1) Ö Ö Ö

(1, 0, 0) Ö Ö Ö

(1, 0, 1)

(1, 1, 0) Ö Ö Ö

(1, 1, 1)

Page 11 of 17

Question 4 (7 points)

Using the minimum number of memory barrier instructions (provided in Question 2),
rewrite P1 and P2 from Question 3 such that the RMO machine produces the same
outputs as the SC machine for the given code.

P1 P2

P1.1: ST (B) ß 1

MEMBARWR

P1.2: LD Ra ß (A)

P1.3: t1 ß Ra - Ra + 1

P1.4: ST (C) ß t1

P2.1: LD Rc ß (C)

P2.2: t2 ß Rc - Rc + 1

P2.3: ST (A) ß t2

MEMBARWR

P2.4: LD Rb ß (B)

Page 12 of 17

Part C: Networks (27 points)

Consider the 3-D mesh topology:

The above diagram shows a 3-D mesh with N=8 nodes. For a system of N nodes, the 3-D
mesh topology consists of 𝑘 = 𝑁$/& nodes in each dimension.

Question 1 (4 points)

Calculate the average distance for the 3-D mesh with N=8 shown above, in number of
hops. Assume uniform random traffic, where each node sends 1/Nth of the traffic to each
destination, including itself.

All nodes are symmetric, so only need to calculate average distance from one node.
Avg. distance = (0 + 1 + 1 + 1 + 2 + 2 + 2 + 3) / 8 = 12/8 = 1.5 hops

3-D Mesh Topology

Legend

Core

Router

Link

Page 13 of 17

Question 2 (8 points)

(a) Derive the diameter and bisection bandwidth of an N-node 3-D mesh. Assume that N is
the cubic power of an even number, i.e., 𝑘 = 𝑁$/& is an even integer. You can write your
results in terms of N and/or k. For partial credit, give the asymptotic growth instead.

Bisection BW is simply a cut across the cube, which is k2.
Diameter is hops to get from one corner to another, which is 3(k-1).

(b) Derive the asymptotic growth of the number of links and average distance with respect
to N for uniform random traffic. For example, if the average distance grows linearly with
N, state your solution as O(N). Assume that N is the cubic power of an even number, i.e.,
𝑘 = 𝑁$/& is an even integer. You can write your results in terms of N and/or k.

Number of links grows linearly with N, since number of links per node stays constant.
Average distance will asymptotically grow linearly with k, same as with diameter.

 3-D Mesh

Diameter 3(k-1)

Bisection
bandwidth k2

 3-D Mesh
Number
of Links O (__N__)
Average
Distance O (__k__)

Page 14 of 17

For Questions 3 and 4, consider the following network (channels are labeled by their source
and destination; for example, the channel from A to B is labeled AB).

Question 3 (5 points)

Assume that 180-degree turns are prohibited in this network. Show how a deadlock can
occur in this network with no other turns prohibited.

A simple CDG to show the deadlock:

AE->ED->DA->AE

A

D

B

C

E

AB

BA

DC

CD

DA AD CB BC

AE

EA

EC

CE

DE

ED

EB

BE

Page 15 of 17

Question 4 (10 points)

We try to eliminate deadlocks by disallowing the following turns:

• Among nodes A, B, C, and D: We allow X-Y routing only (i.e., we disallow north-
to-east, north-to-west, south-to-east, and south-to-west turns)

• For all routes that go through node E: We disallow all 90-degree turns from node
E. For example, if a packet is routed from D to E, then it can only be routed from
E to B (routing from E to C or A are forbidden).

Does this result in a deadlock-free network? If so, draw an acyclic Channel Dependency
Graph (CDG) to prove that there is no deadlock. If not, demonstrate the deadlock by
showing a cycle from the CDG (in this case you do not need to draw the full CDG).

No – Notably, the turns from routes leaving E and entering the ABCD ring will cause a
deadlock.

In CDG:

AE->EC->CD->DA->AE

Page 16 of 17

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not
grade these unless you tell us explicitly in the earlier pages.

Page 17 of 17

