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Computer System Architecture  
6.823 Quiz #3 

April 26th, 2019 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 15 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 16 and 17 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 
 

     
   Part A  ________     38 Points 
   Part B ________     35 Points 
   Part C  ________     27 Points 

 
TOTAL          ________  100 Points 
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Part A: Cache Coherence (38 points) 
 
Ben Bitdiddle writes a parallel program where two processors P1 and P2 increment a 
shared counter. The following is the memory access trace of the program, which shows 
that P1 and P2 alternate reading and writing the same shared counter at address A: 
 
 P1: LD A 
 P1: ST A 
 P2: LD A 
 P2: ST A 
 P1: LD A 

P1: ST A 
 ... 
 
Question 1 (10 points) 
 
Ben is building a bus-based multicore, and wants to evaluate the tradeoff between the MSI 
and MOSI coherence protocols (refer to the Quiz 3 Handout for details on the MSI and 
MOSI coherence protocols). Fill in the two tables below to show the states and bus 
messages for both protocols (for MSI on the first table, then for MOSI on the second table, 
in the next page). The top row shows the initial state of line A, which is Invalid in both P1 
and P2’s private caches. On each row, write the state of line A on each cache after the 
access is performed, and all the bus messages that the access causes. 
 

 
MSI 

P1 State P2 State Bus Messages 

Initial State I I  

P1:LD A S I BusRd 

P1:ST A M I BusRdX 

P2:LD A S S BusRd/BusWB 

P2:ST A I M BusRdX 

P1:LD A S S BusRd/BusWB 
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MOSI 

P1 State P2 State Bus Messages 

Initial State I I  

P1:LD A S I BusRd 

P1:ST A M I BusRdX 

P2:LD A O S BusRd/BusFwd 

P2:ST A I M BusRdX/BusFwd 

P1:LD A S O BusRd/BusFwd 

 
 
 
Question 2 (4 points) 
 
In steady state, how many writebacks to memory are performed per memory access (load 
or store) with the MSI protocol for the above trace? What about with the MOSI protocol? 
 
1/2 writeback per memory access for MSI 
0 for MOSI 
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Question 3 (5 points) 
 
Ben decides that forwarding the data upon receiving a BusRd request in O state is wasteful. 
Ben modifies the MOSI protocol so that, when a cache observes a BusRd request for a cache 
line it has in O state, the cache stays silent instead of replying with BusFwd, and the 
requester reads the data from memory. Is this a correct cache coherence protocol? If so, 
briefly explain why. If not, give a sequence of memory accesses where the protocol fails 
to maintain cache coherence. 
 
No this is not a correct coherence protocol. 
A simple example is the following: 
 
P1: ST A 
P2: LD A 
P3: LD A 
 
Now, P3 has the stale copy of the data that it grabbed from memory. 
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Question 4 (7 points) 
 
The threads in Ben’s program perform atomic Fetch-and-Add (XADD) operations to 
increment the shared counter. The XADD instruction is given below: 
 

XADD rVal, Imm(rBase): 
 old ß Memory[(rBase) + Imm] 
 Memory[(rBase) + Imm] ß old + (rVal) 
 rVal ß old 

 
XADD rVal, Imm(rBase) atomically increments the value at the effective memory 
address by the value of register rVal, and writes the old value at the effective memory 
address to rVal. XADD is atomic, meaning that no intervening memory operations can 
occur between the read of Memory[(rBase) + Imm] and the subsequent write.  
 

Ben wants to run his code on a MIPS processor that does not implement the XADD 
instruction, but has load-reserve (LR) and store-conditional (SC) instructions,  given below: 
 

LR rs, Imm(rt): 
 rs ß Memory[(rt) + Imm] 
 Track address (rt) + Imm 
 

SC rs, Imm(rt): 
 If (rt) + Imm modified: 
  rs ß 0    # Fail 
 Else: 
  Memory[(rt) + Imm] ß (rs) # Succeed 
  rs ß 1 

 

Implement XADD rVal, Imm(rBase) using LR and SC. If needed, you can use registers 
r1 through r4 for temporary values.  
 
XADD rVal, Imm(rBase): 
 Loop:  LR r1, Imm(rBase) 
   ADD r2, r1, rVal 
   SC r2, Imm(rBase) 
   BEQZ r2, Loop 
   ADDI rVal, r1, 0 
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Question 5 (7 points) 
 
Ben now uses a MIPS processor that does not have LR/SC, but implements the atomic 
compare-and-swap (CAS) instruction instead, which is given below: 
 

CAS rOld, rNew, Imm(rBase): 
 old ß Memory[(rBase) + Imm] 
 If old == (rOld): 
  Memory[(rBase) + Imm] ß (rNew) 
 else: 
  rOld ß old 

 
CAS rOld, rNew, Imm(rBase) atomically loads the value at the effective memory 
address and compares it with the value stored in register rOld. If both values are equal, it 
updates the memory location with the value stored in register rNew. If both values are not 
equal, it updates the value in rOld with the value loaded from memory. CAS is atomic, 
meaning that no intervening memory operation can occur between the read of 
Memory[(rBase) + Imm] and the subsequent write. 
 
Implement XADD rVal, Imm(rBase) using CAS. If needed, you can use registers r1 
through r4 for temporary values. 
 
XADD rVal, Imm(rBase): 
 Loop:  LD r1, Imm(rBase) 
   ADD r2, r1, rVal 
   ADDI r3, r1, 0 
   CAS r1, r2, Imm(rBase) 
   SUB r1, r1, r3 
   BNEZ r1, Loop 
   ADDI rVal, r3, 0 
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Question 6 (5 points) 
 
Ben writes a new program where two processors now update shared counters within an 
array of 256 elements. Each counter is a 32-bit integer (int32_t): 
 
 int32_t counters[256]; 
 
A trace of Ben's program shows that processors P1 and P2 increment nearby counters in 
the counters array. The following trace shows the update pattern of the two processors, 
where R1 holds the base address of the counters array. 

  
Ben's processor has 64-byte cache lines. Is there any unnecessary communication between 
caches in this scenario? If so, what is a potential software solution to mitigate the problem? 
 
The potential problem here is false sharing between the two processor’s accesses. Since 
most of the accesses from both processors go to the same cache line, the line will ping-
pong between the two.  
 
There are several potential solutions, notably: 

- Padding the counters such that each counter occupies an entire cache line 
- Having the compiler rearrange accesses 

 
  

 

Processor 1: 
 
XADD R2, 0(R1) 
XADD R3, 8(R1) 
XADD R4, 12(R1) 
... 

Processor 2: 
 
XADD R2, 4(R1) 
XADD R3, 20(R1) 
XADD R4, 16(R1) 
... 
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Part B: Memory Consistency (35 points) 
 
Consider two processors that each read one shared counter and update the other. 
Assume that memory locations A and B contain initial value 0. 
 

P1 P2 
 
P1.1:  LD Ra  ß (A) 
P1.2:  ST (B) ß 1 

 
P2.1:  LD Rb  ß (B) 
P2.2:  ST (A) ß 1 

 
 
Question 1 (10 points) 
 
Fill in the table below to indicate which set of final values (Ra, Rb) are possible under 
the following memory consistency models: 

• Sequential Consistency (SC) 
• Total Store Order (TSO): stores can be reordered after later loads 
• Relaxed Memory Order (RMO): loads and stores can be reordered after later 

loads and stores 
 
For each entry, write a check mark if the memory consistency model of the corresponding 
column can produce the final set of values on the leftmost column of the same row. 
 

(Ra, Rb) SC TSO RMO 

(0, 0) Ö Ö Ö 

(0, 1) Ö Ö Ö 

(1, 0) Ö Ö Ö 

(1, 1)   Ö 
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Question 2 (6 points) 
 
The RMO machine has the following fine-grained barrier instructions: 

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will 
be performed before any read that follows the barrier. 

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will 
be performed before any write that follows the barrier. 

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will 
be performed before any read that follows the barrier. 

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will 
be performed before any write that follows the barrier. 

 
Using the minimum number of memory barrier instructions, rewrite P1 and P2 from 
Question 1 such that the RMO machine produces the same outputs as the SC machine 
for the given code. 
 

P1 P2 
 
 
 
P1.1:  LD Ra  ß (A) 
 
MEMBARRW 
 
P1.2:  ST (B) ß 1 
 
 
 

 
 
 
P2.1:  LD Rb  ß (B) 
 
MEMBARRW 
 
P2.2:  ST (A) ß 1 
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Now consider two processors P1 and P2 running the following code. 
Assume that memory locations A,  B, and C contain initial value 0. Note that 
instruction P1.3 writes the result of Ra - Ra + 1 to temporary register t1, and similarly 
P2.2 writes the result of Rc - Rc + 1 to temporary register t2. 
 
P1 P2 
 

P1.1:  ST (B) ß 1 
P1.2:  LD Ra  ß (A) 
P1.3:  t1 ß Ra - Ra + 1 
P1.4:  ST (C) ß t1 

 

P2.1:  LD Rc  ß (C) 
P2.2:  t2 ß Rc - Rc + 1 
P2.3:  ST (A) ß t2 
P2.4:  LD Rb  ß (B)  
 

 
Question 3 (12 points) 
 
Fill in the table below to indicate which sets of final values (Ra, Rb, Rc) are possible 
under the three memory consistency models SC, TSO, and RMO (as in Question 1). For 
each entry, write a check mark if the memory consistency model of the corresponding 
column can produce the final set of values on the leftmost column of the same row. Note 
that in all three consistency models, data-dependent memory operations are performed in 
program order to preserve correctness. 
 

(Ra, Rb, Rc) SC TSO RMO 

(0, 0, 0)  Ö Ö 

(0, 0, 1)   Ö 

(0, 1, 0) Ö Ö Ö 

(0, 1, 1) Ö Ö Ö 

(1, 0, 0) Ö Ö Ö 

(1, 0, 1)    

(1, 1, 0) Ö Ö Ö 

(1, 1, 1)    
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Question 4 (7 points) 
 
Using the minimum number of memory barrier instructions (provided in Question 2), 
rewrite P1 and P2 from Question 3 such that the RMO machine produces the same 
outputs as the SC machine for the given code. 
 
P1 P2 
 
 
 
P1.1:  ST (B) ß 1 
 
MEMBARWR 
 
P1.2:  LD Ra  ß (A) 
 
 
 
P1.3:  t1 ß Ra - Ra + 1 
 
 
 
P1.4:  ST (C) ß t1 
 

 
 
 
P2.1:  LD Rc  ß (C) 
 
 
 
P2.2:  t2 ß Rc - Rc + 1 
 
 
 
P2.3:  ST (A) ß t2 
 
MEMBARWR 
 
P2.4:  LD Rb  ß (B)  
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Part C: Networks (27 points) 
 
Consider the 3-D mesh topology: 
 

               
 
The above diagram shows a 3-D mesh with N=8 nodes. For a system of N nodes, the 3-D 
mesh topology consists of 𝑘 = 𝑁$/& nodes in each dimension. 

 
 

Question 1 (4 points) 
 
Calculate the average distance for the 3-D mesh with N=8 shown above, in number of 
hops. Assume uniform random traffic, where each node sends 1/Nth of the traffic to each 
destination, including itself.  
 
 
All nodes are symmetric, so only need to calculate average distance from one node. 
Avg. distance = (0 + 1 + 1 + 1 + 2 + 2 + 2 + 3) / 8 = 12/8 = 1.5 hops 
  

3-D Mesh Topology

Legend

Core

Router

Link
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Question 2 (8 points) 
 
(a) Derive the diameter and bisection bandwidth of an N-node 3-D mesh. Assume that N is 
the cubic power of an even number, i.e., 𝑘 = 𝑁$/& is an even integer. You can write your 
results in terms of N and/or k. For partial credit, give the asymptotic growth instead.  
 
Bisection BW is simply a cut across the cube, which is k2. 
Diameter is hops to get from one corner to another, which is 3(k-1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Derive the asymptotic growth of the number of links and average distance with respect 
to N for uniform random traffic. For example, if the average distance grows linearly with 
N, state your solution as O(N). Assume that N is the cubic power of an even number, i.e., 
𝑘 = 𝑁$/& is an even integer. You can write your results in terms of N and/or k. 
 
Number of links grows linearly with N, since number of links per node stays constant. 
Average distance will asymptotically grow linearly with k, same as with diameter. 
 
   

 3-D Mesh 

Diameter 3(k-1) 

Bisection 
bandwidth k2 

 3-D Mesh 
Number 
of Links O (__N__) 
Average 
Distance O (__k__) 
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For Questions 3 and 4, consider the following network (channels are labeled by their source 
and destination; for example, the channel from A to B is labeled AB). 
 

 
Question 3 (5 points) 
 
Assume that 180-degree turns are prohibited in this network. Show how a deadlock can 
occur in this network with no other turns prohibited. 
 
A simple CDG to show the deadlock: 
 
AE->ED->DA->AE 
 
  

A

D

B

C

E

AB

BA

DC

CD

DA AD CB BC

AE

EA

EC

CE

DE

ED

EB

BE
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Question 4 (10 points) 
 
We try to eliminate deadlocks by disallowing the following turns: 

• Among nodes A, B, C, and D: We allow X-Y routing only (i.e., we disallow north-
to-east, north-to-west, south-to-east, and south-to-west turns) 

• For all routes that go through node E: We disallow all 90-degree turns from node 
E. For example, if a packet is routed from D to E, then it can only be routed from 
E to B (routing from E to C or A are forbidden). 

 
Does this result in a deadlock-free network? If so, draw an acyclic Channel Dependency 
Graph (CDG) to prove that there is no deadlock. If not, demonstrate the deadlock by 
showing a cycle from the CDG (in this case you do not need to draw the full CDG). 
 
No – Notably, the turns from routes leaving E and entering the ABCD ring will cause a 
deadlock. 
 
In CDG: 
 
AE->EC->CD->DA->AE 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade these unless you tell us explicitly in the earlier pages. 
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