

Page 1 of 17

Computer System Architecture
6.823 Quiz #3

April 30th, 2021

Name: ________SOLUTIONS__________

90 Minutes
 17 Pages

Notes:
• Not all questions are equally hard. Look over the whole quiz and budget your

time carefully.
• Please state any assumptions you make, and show your work.
• Please write your answers by hand, on paper or a tablet.
• Please email all 17 pages of questions with your answers, including this cover

page. Alternatively, you may email scans (or photographs) of separate sheets of
paper. Emails should be sent to 6823-staff@csail.mit.edu

• Please ensure your name is written on every page you turn in.
• Do not discuss a quiz's contents with students who have not yet taken the quiz.
• Please sign the following statement before starting the quiz. If you are emailing

separate sheets of paper, copy the statement onto the first page and sign it.

I certify that I will start and finish the quiz on time, and that
I will not give or receive unauthorized help on this quiz.

Sign here: _______________________________

 Part A ________ 30 Points
 Part B ________ 20 Points
 Part C ________ 20 Points

Part D ________ 30 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 17

Part A: Cache Coherence (30 points)

Ben Bitdiddle is given a multicore processor that enforces cache coherence using a directory-based
MESI protocol with silent evictions. The Quiz 3 handout details this coherence protocol.

Question 1 (5 points)

Consider the four-core system below. Each core has a private cache that can only hold a single
cache line, and the caches start out empty. Each core runs a thread that performs the following set
of reads and writes. The number in parenthesis indicates the global order of accesses (i.e., Core 1's
LD A happens before ST A, which happens before Core 2's LD B, etc).

(1) LD A
(2) ST A

(3) LD B

(6) ST B

(4) LD B

(5) LD B

(a) What is the final coherence state for each of the four caches?

Cache1: M
Cache2: M
Cache3: I
Caceh4: I

(b) How many of the following requests are sent with the MESI protocol?

• ShReq: 4
• ExReq: 1
• InvReq: 2
• DownReq: 1 (Downgrade Cache2's line when Cache3 sends ShReq)

Name ____________________________

Page 3 of 17

In the standard MESI protocol, the directory serves data for ShReq requests from main memory,
even when other caches have the line in Shared (S) or Exclusive (E) state. This is inefficient
because caches in this machine can serve a (clean) copy of the data much faster than main memory.

Ben modifies the MESI protocol to serve data from caches whenever possible, as is done in 3-hop
protocols. For simplicity, we focus on one particular case: modifying the protocol so that, when
there are one or more read-only (S) sharers, an ShReq is served by one of the sharers.

To do this, the standard modification to a 4-hop MESI protocol to make into a 3-hop protocol is
as follows: when the directory receives a ShReq and there are one or more sharers, it chooses one
sharer and sends it a FwdShReq message. Once the sharer receives the message, it responds
directly to the requesting cache with a ShResp message that has a clean copy of the data, and
sends a FwdShResp to the directory to notify that it has forwarded the data.

Unfortunately, this change alone doesn’t quite work, because our protocol allows silent evictions.
We must also take care of the case when the cache silently dropped the line. To do this, a cache
that receives a FwdShReq in I state responds to the directory with a new IAck message, notifying
the directory that it does not hold the line. Upon receiving an IAck, the directory removes the
cache from the sharer set, and sends a FwdShReq to another sharer. If all potential sharers reply
with IAcks, the directory serves the line from main memory, using an ShResp message.

Question 2 (8 points)

(a) Assume that there are N caches participating in the coherence protocol. In the worst case, how
many hops does it take for the data to arrive at the cache that sent the ShReq?

The worst case is when all (N-1) sharers have silently evicted. In this case:
1 (ShReq to directory) + 2*(N-1) (Send FwdShReq and receive NACK) + 1 (Directory directly
responds with data grabbed from memory)
= 2N

(b) Without adding more states or messages, can you propose a solution where we reduce the
number of hops required in the above worst-case scenario? What is the downside of your solution?

1. The directory can send FwdShReq messages to all potential sharers, and have the requester deal
with potentially multiple ShResp messages. This results in more network traffic.

2. The directory can simply give up after receiving a certain number of IACKs. In this scenario
the directory may unnecessarily fetch data from memory which can potentially be forwarded.

Name ____________________________

Page 4 of 17

As we saw in the previous question, silent evictions make forwarding tricky when there are
multiple sharers. To solve this, Ben adds a Forward (F) state to his coherence protocol. The F state
allows the same access permissions as S, i.e., read-only. In addition, an F-sharer is responsible for
forwarding the data, so it cannot silently drop the line. When a line has multiple read-only copies,
one of them holds it in F and the others in S. This way, most caches can enjoy the traffic savings
of silent drops and, at the same time, the directory avoids asking multiple sharers for a forward.

This protocol is called MESIF, and is one of the protocols used in Intel processors.

In more detail, the MESIF protocol has the following properties:

• Silent evictions are disallowed from the F state (as they are from E or M states).
• At most one cache holds a line in the F state, with other read-only sharers holding it in S.
• The directory explicitly tracks the cache that holds the line in F, and sends FwdShReqs

only to that cache. If there is no F-state sharer, the directory serves data from main memory,
and the new sharer becomes an F-state sharer.

• Forwarding operations transfer the F state along with the data: when a cache forwards read-
only data from the F (or E) state, it transitions to the S state. Then, the cache receiving the
ShReq transitions to the F state (not S).

• Given the previous two properties, the sharer that holds the line in F is always the one that
requested the cache line most recently.

Note that while the E and F states have some similarities, a line in F state cannot silently transition
to the M state since there can be other sharers with a read-only copy of the data.

The state-transition diagram below shows the modifications to the protocol to implement MESIF.
For clarity, the diagram only shows newly added transitions.

Name ____________________________

Page 5 of 17

Question 3 (5 points)

Ben implements the MESIF protocol for his 4-core processor and runs the same set of memory
accesses as in Question 1, shown below:

(1) LD A
(2) ST A

(3) LD B

(6) ST B

(4) LD B

(5) LD B

How many ShResp messages are sent out with the MESIF protocol?

2, one from cache 3 and one from cache 4. Note that when caches 1 and 2 issue ShReq they get a
NoSharerShResp.

Name ____________________________

Page 6 of 17

Question 4 (6 points)

So far, we assumed each coherence transaction completes before the next transaction begins.
Alyssa P. Hacker thinks that Ben's MESIF protocol has additional races he should consider. A
possible race scenario is as follows. The directory receives a ShReq from Core 1, and sends a
FwdShReq to Core 0, which was holding the line in F state. Concurrently, Core 0 attempts to evict
the line by sending a WbReq to the directory. Note that the network guarantees that messages arrive
in the order they were sent between a source and destination pair.

To maintain coherence, what action should Cache 0 take in response to the FwdShReq while in
the FàI transient state? Choose one of the three following answers (explain your choice briefly
for partial credit):

A: Acknowledge the FwdShReq by sending a ShResp to Cache 1 and FwdShResp to the
directory, transitioning to the SàI transient state. When the directory receives Cache 0’s
WbReq, it will infer that the WbReq and FwdShResp raced, and send a WbResp to Cache 0
so that it can transition to the I state.

B: Do nothing, since once the directory receives the WbReq, it will know that Cache 0 has
evicted its own copy. The directory will then reply to Cache 0 with a WbResp (so it can
transition to the I state) and serve the line to Cache 1 from memory.

 C: Performing either of A or B will result in correct behavior.

Name ____________________________

Page 7 of 17

Question 5 (6 points)

Our MESIF protocol implementation transfers the F state with forwarding responses, so that the
most recent requester is always the F-state sharer. Ben thinks that this is not necessary: the cache
performing the forwarding can simply stay in F state, responding to all future FwdShReq messages.
What is a potential downside of this alternative implementation in terms of performance? Do not
worry about the complexity of implementing transient states for this question.

We want the cache holding the line in F state to not evict it as long as possible. Since most programs
exhibit some temporal locality in data access patterns, the most recent requester of the line is more
likely to keep it for longer than the cache holding the line in F state. Thus, if we do not transfer the
F state the line is more likely to be evicted sooner.

Another downside of keeping the cache in F fixed is that it may be bombarded with many network
messages.

Name ____________________________

Page 8 of 17

Part B: Memory Consistency (20 points)

Consider a shared-memory machine that executes the following two threads on two different cores.
Assume that memory locations a, b, and c contain initial value 0.

T1 T2

T1.1: Store (a) ß 1
T1.2: Store (c) ß 1
T1.3: Load r2 ß (b)

T2.1: Store (b) ß 1
T2.2: Load r3 ß (c)
T2.3: Load r1 ß (a)

Question 1 (5 points)

State all values of r1, r2, and r3 that can occur if the machine implements sequential consistency.
Note: You can but do not have to express the result as (r1, r2, r3) tuples.

We observe the following invariants:

• r1 and r2 cannot be both 0
• r2 and r3 cannot be both 0
• r1 and r3 cannot be both 0 and 1 respectively.

Thus,
(r1, r2, r3) = (0, 1, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)

Question 2 (5 points)

Now assume the machine implements the Total Store Order (TSO) consistency model. Recall that
TSO allows stores to be ordered after later loads. What execution outcomes can this code produce?

TSO removes the first two invariants from Question 1. Thus,
(r1, r2, r3) = (0, 0, 0), (1, 0, 0) in addition to answer from Question 1

Question 3 (5 points)

Now assume the machine implements a relaxed consistency model (RMO), which allows loads
and stores to be reordered after later loads and stores. What execution outcomes can this code
produce?

All outcomes are possible.

Name ____________________________

Page 9 of 17

Question 4 (5 points)

The relaxed consistency model (RMO) has the following fine-grained barrier instructions:

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will be
performed before any read that follows the barrier.

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will be
performed before any write that follows the barrier.

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will be
performed before any read that follows the barrier.

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will be
performed before any write that follows the barrier.

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the
SC machine for this code. Use the minimum number of memory barrier instructions. List the
locations of each barrier below (e.g., “Add MEMBARRR after T1.1”).

T1 T2

T1.1: Store (a) ß 1
T1.2: Store (c) ß 1
T1.3: Load r2 ß (b)

T2.1: Store (b) ß 1
T2.2: Load r3 ß (c)
T2.3: Load r1 ß (a)

We need as many barriers as necessary to enforce the three invariants in Question1.

• MEMBARWW between T1.1 and T1.2
• MEMBARWR between T1.2 and T1.3
• MEMBARWR between T2.1 and T1.2
• MEMBARRR between T2.2 and T1.3

Name ____________________________

Page 10 of 17

Part C: Synchronization (20 points)

Question 1 (10 points)

Ben wants to use atomic compare-and-swap (CAS) instructions. The code below describes the
behavior of CAS:

CAS rOld, rNew, Imm(rBase):
 old ß Memory[(rBase) + Imm]
 if old == (rOld):
 Memory[(rBase) + Imm] ß (rNew)
 else:
 rOld ß old

CAS rOld, rNew, Imm(rBase) atomically loads the value at the effective memory address
and compares it with the value stored in register rOld. If both values are equal, it updates the
memory location with the value stored in register rNew. Otherwise, it updates the value in rOld
with the value loaded from memory. CAS is atomic, meaning that no intervening memory operation
can occur between the read of Memory[(rBase) + Imm] and the subsequent write. (If you've
seen other variants of CAS, note that this is an implementation of strong CAS.)

Ben wants to run his code on a MIPS processor that does not implement the CAS instruction, but
has load-reserve (LR) and store-conditional (SC) instructions, given below:

LR rs, Imm(rt):
 rs ß Memory[(rt) + Imm]
 Track address (rt) + Imm

SC rs, Imm(rt):
 If (rt) + Imm modified:
 rs ß 0 # Fail
 Else:
 Memory[(rt) + Imm] ß (rs) # Succeed
 rs ß 1

Ben implements CAS with LR and SC as follows (Instructions are labeled I1 through I6 for your
convenience)

I1:
I2:
I3:
I4:
I5:
I6:

CAS rOld, rNew, Imm(rBase):
 LR r1, Imm(rBase) # r1 ß Memory[Imm + (rBase)]
 BNE r1, rOld, _fail # if (r1) != (rOld), goto _fail
 ADDI r2, rNew, 0
 SC r2, Imm(rBase) # Memory[(rt) + Imm] ß (r2)
 BNEZ r2, _success # if (r2) == 1, goto _success
_fail: ADDI rOld, r1, 0
_success:

Name ____________________________

Page 11 of 17

Alyssa points out that Ben's implementation has a bug. Describe how Ben's implementation can
violate the semantics of CAS, and fix Ben's implementation such that it correctly implements CAS.
You only need to write down the changes to the code you would make (e.g., replace I3 with ADDI,
r2, rNew, 0).

When the SC fails, Ben's code does not correctly update rOld with the value from memory (it
updates it with the stale value that was loaded from the LR). To fix this, Ben's code must jump
back to the start of CAS and retry upon failing the SC:

CAS rOld, rNew, Imm(rBase):
_retry: LR r1, Imm(rBase) # r1 ß Memory[Imm + (rBase)]
 BNE r1, rOld, _fail # if (r1) != (rOld), goto _fail
 ADDI r2, rNew, 0
 SC r2, Imm(rBase) # Memory[(rt) + Imm] ß (r2)
 BNEZ r2, _success # if (r2) == 1, goto _success
 J _retry # Retry if SC failed
_fail: ADDI rOld, r1, 0
_success:

Note that simply loading the value again after I5 is incorrect since there can be two writes to the
memory location, the second restoring it back to the original value, which makes CAS fail even
when rOld == old.

Name ____________________________

Page 12 of 17

Question 2 (10 points)

Ben now wants to implement double compare-and-swap (DCAS), an atomic primitive that writes
new values to two distinct (and not necessarily contiguous) memory locations if their old values
match expected values:

DCAS rOld1, rOld2, rNew1, rNew2, Imm1(rBase1), Imm2(rBase2):
 old1 ß Memory[(rBase1) + Imm1]
 old2 ß Memory[(rBase2) + Imm2]
 If old1 == (rOld1) and old2 == (rOld2):
 Memory[(rBase1) + Imm1] ß (rNew1)
 Memory[(rBase2) + Imm2] ß (rNew2)
 else:
 rOld1 ß old1
 rOld2 ß old2

Do you think DCAS can be implemented with LR and SC? If so, write down your implementation
below. If not, briefly explain why it is impossible.

No, DCAS cannot be implemented with LR and SC. Notice that because the SC only updates one
memory location, we cannot atomically update both memory locations without an intervening
memory operation in-between.

Name ____________________________

Page 13 of 17

Part D: Networks (30 points)

Question 1 (10 points)

Consider the following Ring-with-Express-Routes Topology. On top of the usual ring topology,
we add express routes that connect each node to the node farthest from it on the ring. Assume that
the network has N nodes, where N is a multiple of 4.

Answer the questions below for the allowed values of N, i.e., multiples of 4, and not only for the
case shown in the figure.

(a) How many total links does this network have?

3N/2

(b) What is the diameter of the network?

N/4

Hyun Ryong

Hyun Ryong

Name ____________________________

Page 14 of 17

(c) What is the bisection bandwidth of the network?

4. You can get this bisection bandwidth if you draw your bisection cut in a way that contains 2 sets
of N/4 nodes that each have an express link to the a node in the other set. See the cut drawn for the
above figure.

We gave most of the points if you answered N/2 + 2

(d) Express the average distance of the network in terms of Big-O notation with respect to N. For
example, if you think that the average distance scales quadratically with respect to N, you can
write O(N2). Assume uniform random traffic.

O(N)

Name ____________________________

Page 15 of 17

For the following questions, we will explore the design tradeoffs between two different network
topologies: a 2-dimensional mesh and a 2-dimensional concentrated mesh (cmesh). The following
figure shows the 16-core mesh and cmesh topologies:

Instead of assigning a single core per router, the cmesh topology allows four cores to share one
router. Thus, there is a factor of 4 reduction in the number of routers needed.

Assume the following characteristics about the mesh and cmesh networks when under zero load:

• All links in the diagram represent 2 channels in opposite directions. Each channel has a
throughput of 1 flit/cycle.

• Traversing the core-to-router or router-to-core channel takes 1 cycle.
• Traversing one router-to-router channel takes 1 cycle in the mesh topology, and 2 cycles

in the cmesh topology.
• Traversing one router requires 2 cycles in the mesh topology, and 3 cycles in the cmesh

topology.
• Packets are routed via XY-order routing.
• Both networks use virtual cut-through flow control. Recall that virtual cut-through

allocates buffers and channels in packet granularities, but allows flits from a single packet
to proceed immediately to the next channel without waiting for the rest of the packet's flits.
This contrasts with store-and-forward, where the entire packet has to arrive at each
intermediate router before proceeding.

Name ____________________________

Page 16 of 17

Question 2 (6 points)

What is the minimum latency of sending a 4-flit packet from Core A to Core B for (a) the mesh
topology, and (b) the cmesh topology? Assume that there is zero load, meaning that there are no
other messages in the network. Note that you must include the cycles for all of the flits in a packet
to arrive, not just the head flit.

(a)
1*2 cycles for core-router and router-core
1*3 cycles for 3 router-to-router channels
2*4 cycles for traversing 4 routers
3 cycles for rest of the flits to arrive.
sum = 16 cycles

(b)
1*2 cycles for core-router and router-core
2*1 cycles for 3 router-to-router channels
3*2 cycles for traversing 4 routers
3 cycles for rest of the flits to arrive.
sum = 13 cycles

Question 3 (7 points)

Now consider the scenario where Cores A and C both periodically send 4-flit packets to Cores B
and D respectively. This can cause contention on the router-to-router channel for the cmesh
network. By how much do you expect the latency of sending a packet from Core A to B to increase
in the worst-case scenario compared to Question 2? Assume that routers arbitrate between packets
from different input ports in a round-robin fashion.

The worst case is when both packets arrive at the router connected to A and C, and the packet
from Core C gets priority. In this case, the Packet from A needs to wait 4 cycles for the core
from A to C exit the router

If you assume that flits from A can start being sent only after the tail flit of the packet from C
reaches the next router, the overall latency increase is 4 + 1 = 5 cycles.

If you additionally assume that there is contention due to limited buffer space in the next router,
the overall latency increase is 4 + 1 + 3 = 8 cycles.

We accepted all 3 answers.

Name ____________________________

Page 17 of 17

Question 4 (7 points)

We observe increased latency for the cmesh topology in Question 3 due to both packets sharing a
router-to-router link. How would you modify the hardware characteristics of the cmesh design
without changing the topology such that we eliminate the latency increase?

Simply increasing channel bandwidth isn't enough, since it won't solve the problem in Question 3.

1. Add additional physical channels between routers.

2. Increase the bandwidth to 2 flits/cycle, divide the channel into two virtual channels, and use
virtual flow control.

