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Computer System Architecture  
6.823 Quiz #4 

May 15th, 2019 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 17 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 18 and 19 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 
 

   Part A  ________     23 Points   
   Part B  ________     26 Points 
   Part C ________     25 Points 
   Part D  ________     26 Points 

 
TOTAL          ________  100 Points 
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Part A: VLIW (23 points) 
 
Consider the following C code sequence and its corresponding MIPS assembly code below. 
A, B, X, and Y are float (32-bit floating point) arrays of size N. 
 

for (i = 0; i < N; i++) { 
   A[i] = X[i] + Y[i]; 
   B[i] = X[i] * Y[i]; 
} 
 
 
// Initial values: 
// r1 := &X[0]; r2 := &Y[0]; r3 := &A[0]; r4 := &B[0] 
// r5 := &X[N] 
 

I1:  loop: ld f1, 0(r1) 
I2:  ld f2, 0(r2) 
I3:  fadd f3, f1, f2 
I4:  st f3, 0(r3) 
I5:  fmul f4, f1, f2 
I6:        st f4, 0(r4) 
I7:        addi r1, r1, 4 
I8:        addi r2, r2, 4 
I9:        addi r3, r3, 4 
I10:       addi r4, r4, 4 
I11:       bne r1, r5, loop 
 
 
Assume a VLIW processor with the following characteristics: 

• Five functional units: 2 Memory Units for loads and stores, one INT ALU for 
integer operations (including branches), and 2 FP ALUs for floating point 
operations. 

• All functional units are fully pipelined and latch their inputs. 
• The data cache has two read/write ports and is fully pipelined (i.e., it can accept 

two new requests every cycle).  
• All load instructions hit in the cache and take 3 cycles including writeback (i.e., if 

load instruction I starts execution at cycle K, then instructions that depend on the 
result of I can only start execution at or after cycle K+3).  

• All integer ALU operations take a single cycle. 
• All floating point multiplies take 2 cycles, and floating point adds take a single 

cycle 
• Assume perfect branch prediction. 
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Question 1 (8 points) 
 
Schedule one iteration of the loop on this processor on the following table, where each row 
corresponds to a VLIW instruction. For full credit, the loop should take the minimum 
number of VLIW instructions. You may use floating point registers f0 to f31 and integer 
registers r1 to r31 (r0 is hardwired to 0 as usual). 
 
Note: In case you need it, there is an extra table in the last page of the quiz. 
 
Memory Unit Memory Unit INT ALU FP ALU FP ALU 
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Question 2 (10 points) 
 
How many iterations of the loop do we have to unroll to cover all latencies among VLIW 
instructions (i.e., so that each VLIW instruction performs at least one operation)? Schedule 
the unrolled loop on the following table. Assume that the number of loop iterations N is a 
multiple of your chosen unrolling factor, so that you do not need prolog or epilog code. 
What is the resulting throughput in number of cycles per iteration of the original loop?  
 
Memory Unit Memory Unit INT ALU FP ALU FP ALU 

     

     

     

     

     

     

     
     

     

     

     

     
     
     
     
     
     
     
     

 
 
 
 

# of iterations unrolled: ________________ Iterations  
 

Throughput: ______________ Cycles / Iteration of original loop 
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Question 3 (5 points) 
 
Suppose we applied software pipelining to improve throughput even further. What is the 
maximum throughput that can be achieved for this loop? Note that you do not need to 
write the software-pipelined loop to answer this question. Briefly explain what sets this 
maximum throughput. 
 
 
Maximum Throughput: _____ Cycles / Iteration of original loop 
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Part B: Vector Processors (26 points) 
 
In this part, you will write code that targets the vector processor described in the quiz 
handout. 
 
Consider the following C code sequence and its corresponding MIPS assembly code. 
Initially, registers r1 and r2 hold the addresses of A[0] and B[0], r3 holds the value x, 
and r10 holds the address of A[N]. 
 
 for (i = 0; i < N; i++) { 

 if (A[i] > 0) { 
  A[i] = x*B[i] + A[i]; 
 } 
} 
 

I1:  loop: ld r4, 0(r1) 
I2:  bgez r4, skip 
I3:  ld r5, 0(r2) 
I4:  mul r5, r5, r3 
I5:  add r5, r5, r4 
I6:  st r5, 0(r1) 
I7: skip: addi r1, r1, 4 
I8:  addi r2, r2, 4 
I9:  bne r1, r10, loop 
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Question 1 (10 points) 
 
Write an equivalent vector code for the above loop. Assume that arrays A and B do not 
overlap, and that N is a multiple of the maximum vector length. For full credit, your code 
should use the minimum possible number of instructions. You may use vector registers v0 
to v31, and scalar registers r1 to r31 (r0 is hardwired to 0 as usual). 
 
 
 
  addi r20, r0, 16 
  setvlr r20  // Set vector length register to 16 
  cvm         // Clear vector mask (enable all elements) 
  
 
 loop:  
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Question 2 (10 points) 
 
Consider the case when vector A has a repeating pattern of [1 0 0 1 0 1 1 0]: 
 
 A = [1 0 0 1 0 1 1 0 1 0 0 1 ... ]  
 

a) Our processor uses a simple way of handling vector masks. For each vector 
instruction, each lane computes the results for all the elements regardless of the 
vector mask, and only writes back the elements for which the corresponding mask 
is set. What is the average throughput of the loop in steady state in terms of 
number of cycles per iteration?  
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Suppose that our processor now has a density-time implementation. With this 
optimization, each lane only processes the elements with a non-zero mask. 
Because different lanes may have different numbers of active elements, the 
instruction completes execution when all lanes finish processing active elements. 
What is the average throughput of the loop in steady state in terms of number of 
cycles per iteration? 
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c) Consider when A has a repeating pattern of [1 0 0 0]: 
 
A = [1 0 0 0 1 0 0 0 ... ] 
 
Does this have higher throughput (i.e., lower cycles per iteration) with our 
density-time optimization compared to the previous pattern of array A? Explain 
why or why not. 

 
 
 
 
 
 
 
 
 
Question 3 (6 points) 
 
Suppose now that the vector processor supports chaining, does not have the density-time 
implementation from Question 2, and array A has the previous repeating pattern of [1 0 0 
1 0 1 1 0]: 
 
 A = [1 0 0 1 0 1 1 0 1 0 0 1 ... ] 
 
With chaining, a vector instruction that depends on a previous instruction can start 
execution if the first set of elements it processes is either already written to the vector 
register file or is available in the writeback stage (we add the requisite bypass paths). 
 
What is the throughput of the loop in steady state? Assume that the vector mask register is 
updated at the end of the cycle when an entire s--.vs instruction is finished (i.e., vector 
instructions cannot be chained after s--.vs instructions). 
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Part C: Reliability (25 points) 
 
Ben Bitdiddle wants to add a stream prefetcher between the L1 data cache and the L2 cache 
of his processor. This stream prefetcher predicts L1 cache misses and fetches the predicted 
cache lines speculatively. To avoid polluting the L1 cache, the stream prefetcher buffers 
prefetched lines into a stream buffer, a 4-entry tagged FIFO queue shown below. Each 
stream buffer entry contains the prefetched data, the corresponding tag, and a valid bit. 
 

 
 
When a cache miss occurs in the L1 data cache, the stream prefetcher requests the next 4 
consecutive cache lines from the L2, enters their tags in the buffer, and sets the valid bits 
to zero. Each valid bit is set once the corresponding entry is prefetched from the L2 cache. 
For instance, an L1 miss to a cache line with line address L will cause lines L+1, L+2, L+3, 
and L+4 to be prefetched. 
 
Subsequent accesses to the L1 data cache that miss compare their address against the head 
of the buffer to see if it contains a valid entry with a matching tag. If the access hits in the 
head entry of the buffer, the buffer serves the data to the L1 cache, and the prefetcher 
initiates a fetch for the line that follows the tail entry of the buffer. If the access misses in 
the head entry of the buffer, the request is forwarded to the L2, the stream buffer is flushed, 
and the next 4 consecutive lines are prefetched from the L2. 
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Question 1 (10 points) 
 
The L1 data cache consists of 16B cache lines and is initially empty. The following 
sequence of events occur in the system: 
 

Cycle Event 
0 Load to address 0x00 misses in L1 cache and the stream buffer 

50 Four following cache lines arrive at the stream buffer 
100 Load to address 0x10 misses in L1 cache, and hits in the head of the stream buffer 
110 Load to address 0x20 misses in L1 cache, and hits in the head of the stream buffer 
120 Load to address 0xC0 misses in L1 cache and the stream buffer 
170 Four following cache lines arrive at the stream buffer 
200 Load to address 0xD0 misses in L1 cache, and hits in the head of the stream buffer 

 
Indicate whether the different fields of the head entry of the buffer are ACE, unACE, or 
unknown for each of the following cycle intervals. Explain any assumptions you make. 
 

Cycle Interval Tag Valid bit Data 
0-50     

50-100    
100-110    
110-120    
120-170    
170-200    

 
 
 
 
 
Question 2 (5 points) 
 
For the given sequence of events in Question 1, what is the Architectural Vulnerability 
Factor (AVF) of the data field in the head entry? 
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Question 3 (5 points) 
 
We now have a different program that traverses a linked list. Each node object in the 
linked list is stored across 2 consecutive cache lines, and different nodes are stored in 
non-consecutive cache lines. Qualitatively describe how the AVF of the data field would 
differ between the head and tail entry for this program. 
 
 
 
 
 
 
 
 
 
 
 
Question 4 (5 points) 
 
Ben wants to add protection from random bit flips for the three fields in his stream buffer. 
For each field, indicate the most appropriate protection mechanism among the following: 

• No protection 
• Parity bit: Ability to detect single bit flips 
• ECC: Ability to correct single bit flips, and detect two bit flips. 

Justify your answer for each field with one or two sentences. 
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Part D: Transactional Memory (26 points) 
 
We are given a 2-core system that supports hardware transactional memory (HTM). For 
any HTM design, the memory system dynamically tracks the set of addresses read or 
written by each transaction (i.e., its read set and write set) as accesses are performed. 
 
Our HTM implements a lazy & optimistic HTM, which uses lazy version management 
and optimistic conflict detection. Conflicts are detected when a transaction attempts to 
commit. The finished transaction validates its write-set with coherence actions. If any of 
its writes appear in the read- or write-set of other transactions in the system, a conflict is 
declared. On a conflict, the committing transaction is given priority (i.e., committer wins). 
A transaction that aborts due to a conflict re-executes after waiting for 30 cycles. 
 
Each core in the system executes the transactional code shown below: 
 
  int txns; 
  ... 
  while (true) { 
    // Code wrapped by atomic is a single transaction 
    atomic { 
 txns++;  // update shared counter, takes about 10 cycles 
 work();  // takes about 1000 cycles 
    } 
  } 
 
Each thread runs the same transaction code in a loop. This transaction first increments the 
txns shared counter, then performs around 1000 cycles worth of work. The work() 
function causes negligible conflicts, so we will focus on the conflicts caused by reads and 
writes to the txns shared counter. For the following questions, assume that txns is stored 
in address T. 
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Question 1 (8 points) 
 
Suppose transaction X starts at cycle 0 in core 0, and transaction Y starts at cycle 30 in 
core 1, and they would produce the following schedule of memory operations: 
 

Cycle 0 10 20 30 40 … 1030 1040 1050 1060 1070 
Txn X Begin Rd T Wr T  work() accs  End    
Txn Y    Begin Rd T   Wr T  work() accs  End 

 
Assume that work() accesses (reads and writes), shown greyed out, never conflict. 
 
a) In the absence of conflict detection and version management (i.e., no HTM), if the 

memory operations interleaved in the given order, would the transactions be 
serializable? If so, circle what would be the apparent commit order of the transactions, 
or circle “Not serializable”. 
 

 
X before Y Y before X Not serializable 

 
 
 

b) Does our lazy & optimistic HTM cause any of these transactions to abort? If so, indicate 
at what cycle the abort happens. 

 
Transaction(s) aborted ….... X ….... Y ….... X and Y ….... none 

 
 

Cycle at which abort happens, if any _____________ 
 
 
c) Remember that both cores run transactions in a loop. In the best case, roughly what 

portion of the transactional work done in our 2-core system will be discarded due to 
aborts? (Hint: consider different skews between transactions X and Y.) Roughly, what 
speedup do you expect from this code compared to a single-thread implementation? 
Briefly explain your answers. 
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Question 2 (7 points) 
 
We rewrite our transactions so that they update the txns shared counter at the end of the 
transaction instead of at the beginning, as shown below: 
 
    atomic { 
 work();  // takes about 1000 cycles 
 txns++;  // update shared counter, takes about 10 cycles 
    } 
 
Suppose transaction X starts at cycle 0 in core 0, and transaction Y starts at cycle 30 in core 
1, and they would produce the following schedule of memory operations: 
 

Cycle 0 10 20 30 40 … 1030 1040 1050 1060 1070 
Txn X Begin  work() accs  Rd T   Wr T End    
Txn Y    Begin  work() accs  Rd T   Wr T End 

 
Assume that work() accesses (reads and writes), shown greyed out, never conflict. 
 
a) In the absence of conflict detection and version management (i.e., no HTM), if the 

memory operations interleaved in the given order, would the transactions be 
serializable? If so, circle what would be the apparent commit order of the transactions, 
or circle “Not serializable”. 
 

 
X before Y Y before X Not serializable 

 
 
 

b) Does our lazy & optimistic HTM cause any of these transactions to abort? If so, indicate 
at what cycle the abort happens. 

 
Transaction(s) aborted ….... X ….... Y ….... X and Y ….... none 

 
 

Cycle at which abort happens, if any _____________ 
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We modify our lazy & optimistic HTM to perform early commits. In this new HTM, 
instead of waiting for a transaction to finish before trying to commit, we allow a single 
transaction in the system to start committing before it finishes execution. 
 
In this HTM, a core can commit a transaction only if it has a commit token. There is only 
one commit token in the system, which cores send to each other over time. As soon as a 
core receives the commit token, it starts committing its currently running transaction: all 
its writes are immediately made visible to other transactions, and later reads or writes 
by the committing transaction abort any other transaction they conflict with (i.e., a non-
committing transaction will abort if it sees a read form the committing transaction to a line 
in its write set, or a write to a line in its read or write sets). Once the committing transaction 
finishes, the core sends the commit token to another core. 
 
When a core does not have the commit token, it runs a transaction like the lazy & optimistic 
HTM: the core tracks the transaction’s read and write sets and buffers its writes until it 
receives the commit token. If the core receives the commit token while the transaction is 
running, it starts the commit process immediately; if the transaction finishes before its core 
has received the commit token, the core stalls until it receives the commit token, and 
commits the transaction at that point. 
 
Early commits preserve transactional semantics even though non-committing transactions 
see the writes of the committing transaction before it finishes. This is because the accesses 
of the committing transaction appear ordered before those of non-committing transactions.   
 
Question 3 (6 points) 
 
Consider the original code, with txns++ at the beginning of the transaction, and the 
transaction schedule from Question 1, but using the early-commit HTM. Like before, 
transaction X starts at cycle 0 in core 0, and transaction Y starts at cycle 30 in core 1, and 
they would produce the following schedule of memory operations: 
 

Cycle 0 10 20 30 40 … 1030 1040 1050 1060 1070 
Txn X Begin Rd T Wr T  work() accs  End    
Txn Y    Begin Rd T   Wr T  work() accs  End 

 
Assume that work() accesses (reads and writes), shown greyed out, never conflict. Also 
assume that core 0 initially has the commit token. 

 
a) Does our early-commit HTM cause any of these transactions to abort? If so, indicate at 

what cycle the abort happens. 
 

Transaction(s) aborted ….... X ….... Y ….... X and Y ….... none 
 
 

Cycle at which abort happens, if any _____________ 
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b) Remember that both cores run transactions in a loop. In the best case, roughly what 
portion of the transactional work done in our 2-core system will be discarded due to 
aborts? Roughly, what speedup do you expect from this code compared to a single-
thread implementation? Briefly explain your answers. 

 
 
 
 
 
 
 
 
Question 4 (5 points) 
 
Now assume the work() routine takes around 100 cycles for transactions running in core 
0, and 1000 cycles for transactions running in core 1. Consider the three implementations 
we have explored so far: 

1. Lazy & optimistic HTM running transactions with txns++ at transaction begin. 
2. Lazy & optimistic HTM running transactions with txns++ near transaction end. 
3. Early-commit HTM running transactions with txns++ at transaction begin. 

 
Which of these three implementations will achieve the highest throughput in terms of 
transactions per second? Which will achieve the lowest throughput? Briefly explain why. 
 
Note: Remember that, in our 2-core early-commit HTM, a core always sends the commit 
token to the other core after it commits one transaction. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade these unless you tell us explicitly in the earlier pages. 
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Extra VLIW Instruction Table 
 
Use this as scratch space or if you need a new one to answer a question from Part A. 
 
 
Memory Unit Memory Unit INT ALU FP ALU FP ALU 

     

     

     

     

     

     

     
     

     

     

     

     
     
     
     
     
     
     
     

 


