
 6.823
Computer System Architecture

 Lab 4
Assigned May 2, 2021 Due May 14, 2021

http://csg.csail.mit.edu/6.823/

Warning:

• This lab is open-ended, and uses multi-programmed benchmarks that may take longer
to complete. Do not wait until the last minute to attempt to complete the lab.

• The simulator we use for this lab (zsim) is only tested to run on Ubuntu 16.04
machines. Do not use the Ubuntu 14.04 machines for this lab (vlsifarm-01 and 03)

Summary

The cache hierarchy is a crucial subsystem of multicore processors. Architects

face many design decisions and tradeoffs when designing the cache hierarchy, and
different applications may prefer widely different hierarchies. In this lab, you will use and
modify a Pin-based simulator to explore some of these issues. Specifically, you will use a
simplified version of zsim (http://zsim.csail.mit.edu) to design a three-level cache
hierarchy for a four-core chip with simple in-order cores.

Setting up

 First, set up your environment for Pin and zsim. You'll need to do this each time
you log in to work on the lab.

 % add 6.823 && source /mit/6.823/Spring21/setup.sh

 To obtain the materials for lab 4, use the following commands, assuming that you
start in your individual repository (cd $USER) from the previous lab:

 % cp -r $LAB4FILES ./
 % git add lab4handout
 % git commit -m "Lab 4 Initial Check-in"

 In the lab4handount directory that was just created, you should find several
directories, including the simulator (zsim/), some sample configurations (config/) and
testing scripts (scripts/). To build the simulator, use the following command:

 % cd lab4handout/zsim
 % scons -j4

When developing your code, you may want to run zsim directly. zsim takes a single
argument: a configuration file that specifies the system and programs to run. For
example, you can run:

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

 % cd lab4handout/config
 % ../zsim/build/opt/zsim zsim.cfg

To make things easier, we have provided several scripts (scripts/) to generate
configuration files and evaluate the simulation results, so you do not have to understand
the format of config files. These scripts are described below.

Lab Task

In this lab, you will design the following three-level cache hierarchy, with L1 and
L2 caches private to each core, and a last-level cache shared among all four cores:

 The default code already implements inclusive caches that use the random
replacement policy. By default, the L1s are 32KBs and 4-way set-associative, the L2s are
1 MB and 8-way set-associative, and the LLC is 4 MB and 16-way set-associative. All
caches use 64-byte lines. Your task is to improve the performance of this hierarchy by
changing the configuration of the L2s and LLC (the configuration of the L1s is fixed). To
make things easier, we will test your improved cache hierarchy running different mixes of
single-threaded programs that do not share memory, so you do not need to implement a
cache coherence protocol.

Here are a few ideas that you can try to improve performance:

1) Reallocate cache capacity between L2s and LLCs. You can use larger or
smaller caches, with two constraints. First, combined, all L2s and the LLC
must not exceed 8MB of capacity (this is the amount of 64-byte lines they can
cache; tags and replacement policy information are not included in the

L1D

Shared last level cache (LLC)

Core 0

L2

L1I

Core 1

L2

L1I L1D

Core 2

L2

L1I L1D

Core 3

L2

L1I L1D

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

budget). For example, you can use 512 KB L2s with a 6 MB LLC, 256 KB
L2s with a 7 MB LLC, and so on. Second, larger caches take longer to access,
so you must use the latencies shown in Table 1 below. Don't worry about
setting the latencies manually, since they will be properly configured with the
harness scripts.

2) Implement a better L2 and LLC replacement policy. An obvious choice is to
use LRU instead of random replacement, but prior work has proposed many
policies that outperform LRU, and many recent processors do not use LRU. If
you change the replacement policy, you may not use more than 32 bits per
cache line to store replacement information (this is a lax limit; most
replacement policies work with far fewer bits per line).

3) Implement non-inclusive or exclusive caches to use limited cache space better.
You can refer to the first and second section in [1] and use them as a quick
review if you are not familiar with how non-inclusive or exclusive caches
work.

L2 size L2 access latency LLC size LLC latency
256 KB 7 cycles 7 MB 24 cycles
512 KB 11 cycles 6 MB 23 cycles
1024 KB 15 cycles 4 MB 21 cycles
2048 KB 18 cycles 2 MB 18 cycles

Table 1. Access latencies of different cache sizes.

These suggestions are enough to get you started, but we encourage you to
implement and evaluate alternative techniques that improve performance further. Other
optimizations are fair game, so long as they require reasonable overheads and have a
reasonable implementation. If in doubt, ask the TA!

To avoid making this lab purely about exploring huge design spaces, we will limit
a couple of design parameters. First, you must use 64-byte cache lines. Second, you
cannot change the associativity of each cache (8-way L2s and a 16-way LLC).

Finally, many of the design decisions that you face have strong interactions. For
example, whether you use inclusive, non-inclusive or exclusive caches might make some
replacement policies or combinations of cache sizes more desirable than others.
Optimizations that you try in isolation may not work well together, and conversely,
optimizations that have little effect in isolation may interact positively when used
together and yields a greater improvement than in isolation. It will be more effective to
think about these interactions in advance and have an implementation plan than to try a
potpourri of techniques in isolation.

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

Evaluating Your Design

When running mixes of multiple workloads, no single metric can perfectly
characterize performance improvements. For example, consider a baseline two-core
system that runs a mix of two applications, A and B, one in each core. On this system,
both applications complete in one time unit, as shown in Figure 1 (left). A change to the
baseline system affects performance as shown in Figure 1 (right): Application A speeds
up and now takes 0.67 time units, while application B slows down, taking 1.1 time units.

Figure 1. Example of how changes in system configuration affect the performance

of different concurrent applications.

What is the overall effect on performance in this case? Application A speeds up

more than application B slows down, so one could say the new system is beneficial
overall. Ultimately, it depends on how the user values the performance changes of each
application. To ease the evaluation of systems running workload mixes, there are a few
standard ways to summarize performance [2].

In this lab, we will use weighted speedup, a commonly used metric to summarize

performance, to evaluate your design. Weighted speedup is simply the average speedup
of each application in the mix:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1
𝑛/

𝐴𝑝𝑝	𝑖	𝑒𝑥𝑒𝑐	𝑡𝑖𝑚𝑒	𝑖𝑛	𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑠𝑦𝑠𝑡𝑒𝑚
𝐴𝑝𝑝	𝑖	𝑒𝑥𝑒𝑐	𝑡𝑖𝑚𝑒	𝑖𝑛	𝑛𝑒𝑤	𝑠𝑦𝑠𝑡𝑒𝑚

!

"#$

	=
1
𝑛/

𝐼𝑃𝐶"!%&

𝐼𝑃𝐶"'()%*"!%

!

"#$

In the previous example, the weighted speedup is 1.2:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1.5 + 0.9

2 = 𝟏. 𝟐	

1
memory

1

 Execution time

Baseline System

App A

App B

0.67

1.1

New System

App A

App B

 Execution time

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

Since we have 3 different multi-programmed workloads in this lab, we will take
the geometric mean of the weighted speedup over the 3 workload mixes. To get full
credit, your design must have a 1.2 geometric mean weighted speedup over the
baseline design.

Design Hints

1) Definitely try resizing the L2s and LLC. This should be effective in improving

performance and takes little effort.

2) Improving the replacement policy is crucial as it can be hard to achieve the goal while

keeping the random replacement policy.

3) With proper L2 and LLC sizes, an advanced replacement policy (e.g., RRIP[3]-style)

can be sufficient to achieve the goal. Note this may require fine tuning some design
parameters.

4) With proper L2 and LLC sizes, a simpler replacement policy may not be sufficient,

but exploring non-inclusive or exclusive hierarchies could bridge the gap to achieve
the target 1.2x speedup.

Hitchhiker’s Guide to the Code

To complete this lab, you only need to modify the Cache class in

zsim/src/cache.{h,cpp}. Each cache object receives requests from its children, and either
satisfies them locally if they hit, or issues an access to its parent memory object (which
can be the next-level cache or main memory) if they miss. The Cache class has the
following main data members and functions:

tagArray: A 2D array storing cache tags.

parent: The parent cache/main memory this cache bank connects to.

access(): This function performs a cache access: it performs a tag lookup to see
whether the access is a hit or a miss, and on a miss, invokes the replacement
policy to select which line to evict and accesses the cache’s parent.
chooseEvictWay() and updatePolicy() implement the replacement policy. You
will need to change them if you decide to implement a better replacement policy.

The simulator uses a very simple timing model. The core takes a single cycle to

execute each instruction, and stalls on loads, stores, and instruction fetches that miss in
the L1s until the request is satisfied. The access() function returns the latency of each
request. The core does not have any latency-hiding mechanisms or tries to issue multiple

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

independent memory requests. This is not very realistic, but it makes results easy to
understand.

Notice that the access function will return the latency the cache bank sees to the
core. Therefore, altering the latency that cache banks return will pollute the simulation
result and disqualify your submission from the competition portion of the assignment.

We have provided several scripts to help you evaluate your design (in scripts/):

runSimple.py creates the configuration file needed to simulate a single

application (bzip), as well as a bash script to invoke the simulation. The first argument
should be the L2 sizes in KB, and the second argument should be the size of LLC in MB.
This script can be used to quickly test your design. For example, to generate a
configuration with 512KB L2 and 6MB LLC, and run the application with the config:

% ./runSimple.py 512 6
% cd ../
% cd run-simple-[timestamp]
% bash run-simple-[L2 size]-[LLC size]-[timestamp].sh

runMixes.py generates the three 4-app configurations we will use for grading.

You should use this to evaluate the final implementation.

print-stats.py analyzes the stats files of a finished experiment and produces

human-readable text, including the IPC of each application and the misses per thousand
instructions of each cache level. Example usage:

% ./print-stats.py [result directory]

get-speedup.py compares two sets of results and shows the weighed speedup of

each experiment. The first argument should be the directory of the baseline
implementation. The second argument should be the directory of your implementation
(usually the directory runMixes.py generates). To use it:

% ./get-speedup.py /mit/6.823/Spring21/Lab4BaselineResult/ [result dir]

Although your solution will not be graded on its performance in terms of wall

clock time, you should note that your Teaching Assistants are impatient people. The TA
solution runs the sample testbench in about 30 minutes on the class machines (with
nominal load). For grading purposes, we will allow your pin tool to run for an order of
magnitude more time than ours requires (around 5 hours). After 5 hours, we will kill your
submission and assign a grade based on progress to that point. Do not write horrendously
inefficient code.

When you have completed the lab to your satisfaction, specify the sizes of your

memory hierarchy in memory_hierarchy.txt and submit your changes to the git
repository. The deadline for submission is 23:59:59 EDT 14 May 2021. We'll grade

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

whatever code you have checked in by the deadline. No Late Submissions will be
accepted.

Lab Questions

Your response to the lab questions should be typed in lab4questions.pdf (or
lab4questions.doc) in the lab4handout directory. Some questions require coding, and as
such should not be put off until the last minute.

1. Inclusion, non-inclusion, and exclusion. Explain how they influence the cache
coherence protocol design. You can assume a MSI protocol to start with for all of
them and explain the difference.

2. Design writeup. Explain what optimizations you’ve done and tried for this lab.
Did you observe any interesting interaction between the different techniques you
tried? If you’ve implemented a special replacement algorithm, explain the
operation of your implementation as well.

When you have answered these questions to your satisfaction, put them in a file

called lab4questions.pdf (or lab4questions.docx) in your lab4handout directory, then run
the following to add, commit, and push them.

% git add lab4questions.pdf
% git commit -m "Lab 4 Questions Check-In"
% git push origin master

As with the lab code, we'll grade whatever you have checked in by the deadline.

Lab Grading

20%: Submission compiles

50%: Competitive grade based on the weighted speedup of your implementation over the

baseline code with 1024K L2 and 4MB LLC. (The result directory:
/mit/6.823/Spring21/Lab4BaselineResult/) We will use the same benchmarks
generated by runMixes.py.

You will get full grade if your implementation achieves a weighted speedup more
than 20%. If you have a weighted speedup less than 20%, your grade will be
interpolated. (i.e. 50 x [your weighted speedup] / 20%)

30%: Quality of lab question responses.

Assigned May 2, 2021 6.823 Lab 4 Due May 14, 2021

Advice on Mine Sweeping

There may be bugs in either our code or infrastructure. If you notice any `interesting' or
`unexpected' behavior it could be a problem in the code or infrastructure that we
provided. Report these bugs immediately to the TAs, on Piazza or in an email with
header 6.823 Bug Report. This will help to ensure prompt fixing of any issues that may
arise.

Guides for the perplexed

http://www.pintool.org/ - Pin home page

[1] Sim, Jaewoong, et al. "FLEXclusion: balancing cache capacity and on-chip
bandwidth via flexible exclusion." Computer Architecture (ISCA), 2012 39th Annual
International Symposium on. IEEE, 2012.

[2] Eyerman, Stijn, and Lieven Eeckhout. "System-level performance metrics for
multiprogram workloads." IEEE Micro 28.3 (2008): 42-53.

[3] Aamer Jaleel, et al. "High performance cache replacement using re-reference interval
prediction (RRIP)." Computer Architecture (ISCA), 2010 37th Annual International
Symposium on. IEEE, 2010.

