### 6.5930/1

Hardware Architectures for Deep Learning

# Overview of Deep Neural Network Components 

February 7, 2024

## Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

## Goals of Today's Lecture

- Overview of the terminology use for Neural Networks
- Research spans many fields
- Many terms for the same thing
- Same term for many different things
- Define the terminology that we plan to use in this course
- Key building blocks in a Deep Neural Network
- Chapter 1 \& 2 in book: https://doi.org/10.1007/978-3-031-01766-7
- For a more in-depth treatment, please see
- MIT's Machine Learning Courses $\left(6.3900_{[6.036]} / 6.7900_{[6.867]}\right)$
- MIT's Computer Vision Course $\left(6.8301_{[6.819]} / 6.8300_{[6.869]}\right)$
- Class notes from Stanford's CNN Course (cs231n)
- www.deeplearningbook.org
- https://d2l.ai/


## Neural Networks: Weighted Sum



Iliit

## DNN Terminology 101



## DNN Terminology 101



## DNN Terminology 101

Each synapse has a weight for neuron activation
weighted
sum
activation

non-linear function $f(\cdot)$

$$
y_{j}=f\left(\sum_{i=0}^{3} W_{i j} \times x_{i}\right)
$$

## DNN Terminology 101

Weight Sharing: multiple synapses use the same weight value


## DNN Terminology 101



## DNN Terminology 101



## DNN Terminology 101

A layer can refer to a set activations or a set of weights. In this class, we use layer to refer to a set of weights.


2-layer Neural Net
or
1-hidden-layer Neural Net


3-layer Neural Net
or
2-hidden-layer Neural Net

## DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons


Illit Layer

## DNN Terminology 101

Feed Forward


## So Many Neural Networks!

Backfed Input CellInput Cell
$\triangle$ Noisy Input CellHidden CellProbablistic Hidden Cell
$\triangle$ Spiking Hidden CellOutput CellMatch Input Output CellRecurrent Cell
O Memory CellDifferent Memory CellKernel
(O) Convolution or Pool

Neural Networks

## Deep Feed Forward (DFF)

O2016 fjodor van Veen - asimovinstitute.org


Feed Forward (FF)
Radial Basis Network (RBF)


Recurrent Neural Network (RNN)
Long / Short Term Memory (LSTM)
Gated Recurrent Unit (GRU)


Sparse AE (SAE)


Markov Chain (MC)

http://www.asimovinstitute.org/neural-network-zoo/

## Popular Types of DNNs

- Fully-Connected NN
- feed forward, a.k.a. multilayer perceptron (MLP)
- Convolutional NN (CNN)
- feed forward, sparselyconnected w/ weight sharing

Fully-Connected


## Popular Types of DNNs

- Recurrent NN (RNN)
- feedback
- Long Short-Term Memory (LSTM)
- feedback + storage
- Encoders
- output smaller than input
- Decoders
- output larger than input
- Transformers

- "attention" mechanism


## Applications of CNN



Speech Recognition


Game Play


Medical


## Convolutional Neural Networks



## Depth of Network

Low Level Features
High Level Features


Modified Image Source: [Lee, CACM 2011]

## Convolutional Neural Networks



## Convolutional Neural Networks



## Convolutional Neural Networks

Optional layers in between


## Convolutional Neural Networks



## Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)
filter* (weights)


* also referred to as kernel


## Convolution (CONV) Layer



Element-wise
Multiplication

## Convolution (CONV) Layer



## Convolution (CONV) Layer



## 2D Convolution Example

## Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :---: |
| Filter support: $3 \times 3$ |  |  |  |
| Filter | 1 | 1 | 1 |$\quad$| Also referred to as the receptive field |
| :---: |


|  | 0 | 1 | 2 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |
| Map | 1 | 2 | 2 | 1 | 0 | Map |
| $(5 x 5)$ | 0 | 1 | 0 | 3 | 1 |  |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 x 3)$ | 0 | 1 | 0 |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output |  |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |
| $(5 \times 5)$ | 0 | 1 | 0 | 3 | 1 |  |  |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 x 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 2 | 2 | 2 | 0 |  |  |
| Input | 0 | 1 | 0 | 1 | 3 |  |  |
| Feature | 0 | 7 <br> Map | 1 | 2 | 2 | 1 | 0 |
| Output |  |  | 8 |  |  |  |  |
| $(5 \times 5)$ | 0 | 1 | 0 | 3 | 1 |  |  |$\quad$| Feature |
| :---: |
| Map |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Filter } \\ & (3 \times 3) \end{aligned}$ | 1 | 1 | 1 |  |  |  |  |  |  |
|  | 0 | 1 | 0 |  |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 | 8 |
| Input | 1 | 2 | 2 | 2 | 0 | Output Feature | 5 |  |  |
| Feature | 0 | 1 | 0 | 1 | 3 |  |  |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |  |
| (5x5) | 0 | 1 | 0 | 3 | 1 |  |  |  |  |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 8 | 8 |  |  |  |  |  |  |
| Input | 1 | 2 | 2 | 2 | 0 | Output | 5 | 6 |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |
| $(5 \times 5)$ | 0 | 1 | 0 | 3 | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output | 5 | 6 | 7 |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |  |
| (5x5) | 0 | 1 | 0 | 3 | 1 |  |  |  |  |

## 2D Convolution Example

Convolution (Stride 1)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 |  |  |  |  |  |  |  |
| Input | 1 | 2 | 2 | 2 | 0 | Output | 5 | 6 |

Size of Size of Size of Output Feature Map $=($ Input Feature Map - Filter + Stride $) /$ Stride \# of multiplications?

## 2D Convolution Example

Convolution (Stride 2)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 x 3)$ | 0 | 1 | 0 |

## 2D Convolution Example

Convolution (Stride 2)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output |  |  |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |
| (5x5) | 0 | 1 | 0 | 3 | 1 |  |  |  |

## 2D Convolution Example

Convolution (Stride 2)

|  | 0 | 1 | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Filter } \\ & (3 \times 3) \end{aligned}$ | 1 | 1 | 1 |  |  |  |  |  |
|  | 0 | 1 | 0 |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 |
| Input | 1 | 2 | 2 | 2 | 0 | Output | 6 |  |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |
| (5x5) | 0 | 1 | 0 | 3 | 1 |  |  |  |

## 2D Convolution Example

Convolution (Stride 2)


## 2D Convolution Example

Convolution (Stride 2)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output | 6 | 7 |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |  |
| $(5 \times 5)$ | 0 | 1 | 0 | 3 | 1 | $(2 \times 2)$ |  |  |

[^0]
## 2D Convolution Example

Convolution (Stride 3)

|  | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| Filter | 1 | 1 | 1 |
| $(3 \times 3)$ | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 2 |  | 7 |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Input | 1 | 2 | 2 | 2 | 0 | Output |  |
| Feature | 0 | 1 | 0 | 1 | 3 | Feature |  |
| Map | 1 | 2 | 2 | 1 | 0 | Map |  |
| $(5 \times 5)$ | 0 | 1 | 0 | 3 | 1 | $(1 \times 1)$ |  |

> Size of Output Feature Map $=\underset{\text { Size of }}{(\text { Input Feature Map }- \text { Filter }+ \text { Stride }) / \text { Stride }} \underset{ }{\# \text { of multiplications? }}$

## Impact of Stride on Convolution

Stride $>1$ is equivalent to downsampling the output feature map when Stride =1

Stride 1

Output
Feature
Map
(3x3)

Stride 2
Stride 3

7

Output
Feature
Map
(1x1)

## Zero Padding

- The size of the output shrinks relative to the input
- Use zero padding to control the size of the output
- Can set padding based on filter size such that the output size is equal to original the input size

| 0 | 1 | 2 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 | 0 |
| 0 | 1 | 0 | 1 | 3 |
| 1 | 2 | 2 | 1 | 0 |
| 0 | 1 | 0 | 3 | 1 |


| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 2 | 0 |
| 0 | 1 | 2 | 2 | 2 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 3 | 0 |
| 0 | 1 | 2 | 2 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 3 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## 2D Convolution Example

Convolution (Stride 1) + zero padding

|  | 0 | 1 |
| :--- | :--- | :--- | 0


|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 0 | 0 | 1 | 2 | 3 | 2 | 0 | Output | 2 | 5 | 8 | 9 |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Feature | 0 | 1 | 2 | 2 | 2 | 0 | 0 | Feature | 3 | $\mathbf{7}$ | $\mathbf{8}$ | 8 |

## Zero Padding in PyTorch

- padding (python:int or tuple, optional) added to input. Default: 0
- https://pytorch.org/docs/stable/nn.html\#padding-layers
- Ex: padding=1, pad 1 to the top, bottom, right, and left.
- Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left
- Default: No zero padding
- filter is RxS and input is HxW , and stride U
- output is $(\mathrm{H}-\mathrm{R}+\mathrm{U}) / \mathrm{U} \times(\mathrm{W}-\mathrm{S}+\mathrm{U}) / \mathrm{U}$
- Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for $\mathrm{U}=1$
- filter is $R x S$ and input is HxW , and stride $U$
- output is ceil(H/U) $x$ ceil(W/U)
- Padding is not always explicitly defined, but can be inferred from the size of the feature map
- Deep networks use padding to prevent feature maps from shrinking
- Different frameworks can use different types of padding


## Signal Processing Perspective

## Cross-Correlation rather than Convolution

Recall from $6.3000_{[6.003]}$ and $6.7010_{[6.344]}$, the filter needs to be flipped for a convolution.

$$
\begin{aligned}
y\left(n_{1}, n_{2}\right) & =x\left(n_{1}, n_{2}\right) * h\left(n_{1}, n_{2}\right) \\
& =\sum_{k_{1}} \sum_{k_{2}} x\left(k_{1}, k_{2}\right) \cdot h\left(n_{1}-k_{1}, n_{2}-k_{2}\right)
\end{aligned}
$$

For CNN, the filter is combined with an input window without reversing the filter. Strictly speaking, this is a cross-correlation.

## Size of Output after Filtering

Recall from $6.3000_{[6.003]}$ and $\mathbf{6 . 7 0 1 0}_{[6.344]}$, if filter size is M and input is N , output is $\mathrm{N}+\mathrm{M}-1$. No restriction on zero padding.
For CNN, the amount of zero padding can be varied to control the output size.
The output size is typically equal or smaller than the input size.

## Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.
Example: 3x3 filter

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 2 | 3 | 2 |  |
|  | 1 | 2 | 2 | 2 | 0 |  |
|  | 0 | 1 | 0 | 1 | 3 |  |
|  | 1 | 2 | 2 | 1 | 0 |  |
|  | 0 | 1 | 0 | 3 | 1 |  |
|  |  |  |  |  |  |  |

Input to Layer 1


Layer 2


Layer 3

Feature maps of deep layers typically give higher level features

## Convolution (CONV) Layer



Many Input Channels (C)
e.g., For Layer 1, C=3 for the red, green, and blue components of an image

## Convolution (CONV) Layer



## Convolution (CONV) Layer



## CNN Decoder Ring

- $\mathbf{N}$ - Number of input fmaps/output fmaps (batch size)
- C - Number of channels in input fmaps (activations) \& filters (weights)
- H - Height of input fmap (activations)
- W - Width of input fmap (activations)
- R - Height of filter (weights)
- S - Width of filter (weights)
- M - Number of channels in output fmaps (activations)
- P - Height of output fmap (activations)
- Q - Width of output fmap (activations)
- U - Stride of convolution


## Tensors

## Rank-0: Scalar



Rank-2: Matrix


## Rank-1: Vector




## Input Feature Map (fmap)

Input fmap (activations)


I[C][H][W]

## CONV Layer Tensor Computation

$$
\begin{aligned}
& \text { Output fmap (O) Biases (B) Input fmap (I) } \\
& \underline{\mathbf{o} \underline{\mathbf{o}[n][m][p][q]}=\underline{\mathbf{b}[m]}+\sum_{c=0}^{C-1} \sum_{r=0}^{R-1} \sum_{s=0}^{S-1} \underline{\mathbf{i}[n][c][U p+r][U q+s]} \times \mathbf{f} \underline{[m][c][r][s]}} \begin{array}{c}
0 \leq n<N, 0 \leq m<M, 0 \leq p<P, 0 \leq q<Q, \\
P=(H-R+U) / U, Q=(W-S+U) / U .
\end{array}
\end{aligned}
$$

| Shape Parameter | Description |
| :---: | :--- |
| $N$ | batch size of 3-D fmaps |
| $M$ | \# of 3-D filters / \# of ofmap channels |
| $C$ | \# of ifmap/filter channels |
| $H / W$ | ifmap plane height/width |
| $R / S$ | filter plane height/width (= $H$ or $W$ in FC) |
| $P / Q$ | ofmap plane height/width (= 1 in FC $)$ |

## Einstein Notation (Einsum)

Algebraic Notation

$$
\mathbf{o}[n][m][p][q]=\mathbf{b}[m]+\sum_{c=0}^{C-1} \sum_{r=0}^{R-1} \sum_{s=0}^{S-1} \mathbf{i}[n][c][U p+r][U q+s] \times \mathbf{f}[m][c][r][s] .
$$

Einsum Notation

$$
O_{n, m, p, q}=B_{m}+I_{n, c, U p+r, U q+s} \times F_{m, c, r, s}
$$

Einsum does not enforce any computational order
[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

## CONV Layer Implementation

## Naïve 7-layer for-loop implementation:



```
convolve a window and apply activation
```



## Traditional Activation Functions

Sigmoid


Hyperbolic Tangent


Note: Also referred to as the non-linearity

## Modern Activation Functions

 (ReLU)

$y=\max (0, x)$

Leaky ReLU


$$
y=\max (\alpha x, x)
$$

Exponential LU (ELU)

$y= \begin{cases}x, & x \geq 0 \\ \alpha\left(e^{x}-1\right), & x<0\end{cases}$

Swish

$y=x *$ sigmoid ( $\alpha x$ )

Variants: e.g., ReLU6 (clipped max value to 6 ) and $\mathbf{h}$-swish (replace sigmoid with piecewise linear function)

## Comparison of Activations

## Sigmoid/Hyperbolic Tangent

- Difficult to train due to vanishing gradient problem
- Small gradient at high and low activation values

$$
w_{i j}^{t+1}=w_{i j}^{t}-\alpha \frac{\partial L}{\partial w_{i j}}
$$

- Not easy to implement
- Typically use a look up table (LUT)


## ReLU

- Gradient does not vanish at high activation values $\rightarrow$ faster training
- Easy to implement
- Leads to sparsity in activations, which has additional implementation benefits


## Training Speed: tanh vs. ReLU

ReLU reaches a 25\% training error rate on CIFAR10 six times faster than tanh

[Krizhevsky, NeurIPS 2012]

## Fully-Connected (FC) Layer

Fully-Connected: all i/p neurons connected to all o/p neurons


Illif Layer

## FC Layer - from CONV Layer POV



## Pooling (POOL) Layer

- Reduce resolution of each channel independently
- Specifically, for shape parameters: $P \leq H, Q \leq W, M=C$
- Overlapping or non-overlapping $\rightarrow$ depending on stride



## POOL Layer Implementation

## Naïve 6-layer for-loop max-pooling implementation:

```
for n in [0..N):
    for m in [0..M):
        for q in [0..Q):
        for p in [0..P):」
            max = - Inf
            for r in [0..R):
            for s in [0..S): - max in a
            if I[n][m][Up+r][Uq+s] > max:
                                    max = I[n][m][Up+r][Uq+s];
            O[n][m][p][q] = max
        {\mp@code{lam}}\begin{array}{l}{\mathrm{ find the}}\\{\mathrm{ max in a}}\\{\mathrm{ window }}
```


## Pooling Einsums

Average Pooling

$$
O_{n, m, p, q}=\frac{I_{n, m, U p+r, U q+s}}{U^{2}}
$$

Maximum Pooling

$$
O_{n, m, p, q}=\operatorname{Max}\left(I_{n, m, U p+r, U q+s}\right)
$$

## Upsampling Layer

- Increase resolution of each channel independently
- Specifically, for shape parameters: $P \geq H, Q \geq W, M=C$


Interpolation
(e.g., nearest neighbors)

## Upsampling Einsums

Zero insertion

$$
O_{m, n, U \times h, U \times w}=I_{m, n, h, w}
$$

Interpolation

$$
O_{m, n, h+r, w+s}=I_{m, n, h, w}
$$

where $r$ \& $s$ vary over a range of $[0, \mathrm{U})$

## Normalization (NORM) Layer

- Batch Normalization (BN)
- Normalize activations towards mean=0 and std. dev.=1 based on the statistics of the training dataset
- put in between CONV/FC and Activation function


Believed to be key to getting high accuracy and faster training on very deep neural networks.

## Impact of Batch Normalization



## Less Noisy Activations


time
time

## BN Layer Implementation

The normalized value is further scaled and shifted, the parameters of which are learned from training


For inference, computation can be folded into the weights of the CONV or FC

# Normalization-Free Nets: No Need for Batch Norm! 

High-Performance Large-Scale Image Recognition Without Normalization

Andrew Brock ${ }^{1}$ Soham De ${ }^{1}$ Samuel L. Smith ${ }^{1}$ Karen Simonyan ${ }^{1}$

## Abstract

Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to $8.7 \times$ faster to train, and our largest models attain a new state-of-the-art top- 1 accuracy of $86.5 \%$. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of $89.2 \%$. $^{2}$


Figure 1. ImageNet Validation Accuracy vs Training Latency. All numbers are single-model, single crop. Our NFNet-F1 model Al iners achieves comparable accuracy to an EffNet-B7 while being 8.7× faster to train. Our NFNet-F5 model has similar training latency to EffNet-B7, but achieves a state-of-the-art $86.0 \%$ top- 1 accuracy on ImageNet. We further improve on this using Sharpness Awa Minimization (Foret et al., 2021) to achieve $86.5 \%$ top-1 accuracy

However, batch normalization has three significant practical disadvantages. First, it is a surprisingly expensive computational primitive, which incurs memory overhead (Rota Bulo

## Relevant Components for Class

- Typical operations that we will use:
- Convolution (CONV)
- Fully-Connected (FC)
- Max Pooling
- ReLU



## Training versus Inference



Inference
(use weights)


## Training DNN



## Summary

- Terminology for Deep Neural Networks (DNN)
- synapse $\rightarrow$ weights, neuron output $\rightarrow$ activations
- filter = set of weights; feature map = set of activations
- Different layers in a DNN
- Convolution (CONV), Pooling (POOL), Activation (RELU), Normalization (NORM), Fully Connected (FC)
- Configuration Options: filter shapes (R,S,C,M), zero padding, avg/max pooling, activation function, etc.
- Training with forward and backward propagation


## References

- Textbook: Chapter 1 \& 2
- https://doi.org/10.1007/978-3-031-01766-7
- Stanford cs231n
- http://cs231n.github.io/convolutional-networks/
- http://www.deeplearningbook.org/
- Chapter 9 http://www.deeplearningbook.org/contents/convnets.html
- Other Works Cited in Lecture
- loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ICML 2015.


[^0]:    Size of Size of Size of Output Feature Map = (Input Feature Map - Filter + Stride) / Stride \# of multiplications?

