
L03-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Popular DNN Models

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

February 12, 2024

L03-2

Sze and Emer

Goals of Today’s Lecture

• Last lecture covered the building blocks of CNNs; this lecture
describes how we put these blocks together to form a CNN.

• Overview of various well-known CNN models
– CNN ‘models’ are also referred to as ‘network architectures’; however, we prefer to

use the term ‘model’ in this class to avoid overloading the term ‘architecture’

• We group the CNN models into two categories
– High Accuracy CNN Models: Designed to maximize accuracy to compete in the

ImageNet Challenge
– Efficient CNN Models: Designed to reduce the number of weights and

operations (specifically MACs) while maintaining accuracy

February 12, 2024

L03-3

Sze and Emer

High Accuracy CNN Models

L03-4

Sze and Emer

Popular CNNs

• LeNet (1998)

• AlexNet (2012)
• OverFeat (2013)
• VGGNet (2014)
• GoogleNet (2014)

• ResNet (2015)

0
2
4
6
8

10
12
14
16
18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[Russakovsky, IJCV 2015]

AlexNet

OverFeat

GoogLeNet

ResNet

Cl
ar
ifa
i

VGGNet

ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

February 12, 2024

L03-5

Sze and Emer

MNIST

http://yann.lecun.com/exdb/mnist/

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

February 12, 2024

http://yann.lecun.com/exdb/mnist/

L03-6

Sze and Emer

LeNet-5

[Lecun, Proceedings of the IEEE, 1998]

CONV Layers: 2
Fully Connected Layers: 2
Weights: 60k
MACs: 341k
Sigmoid used for non-linearity

Digit Classification!
(MNIST Dataset)

2x2
average
pooling

sixteen
5x5 filters

2x2
average
pooling

six
5x5 filters

February 12, 2024

L03-7

Sze and Emer

LeNet-5

http://yann.lecun.com/exdb/lenet/

February 12, 2024

http://yann.lecun.com/exdb/lenet/

L03-8

Sze and Emer

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

For ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

accuracy of classification task reported
based on top-1 and top-5 error

February 12, 2024

http://www.image-net.org/challenges/LSVRC/
http://karpathy.github.io/

L03-9

Sze and Emer

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

input ofmap1 ofmap2 ofmap3 ofmap4 ofmap5 ofmap6

ofmap7

ofmap8

[Krizhevsky, NeurIPS 2012]

February 12, 2024

L03-10

Sze and Emer

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

L1
96 filters
(11x11x3)

L2
256 filters
(5x5x48)

L3
384 filters
(3x3x256)

L4
384 filters
(3x3x192)

L5
384 filters
(3x3x192)

L6
4096 filters

(13x13x256)

L7
4096

(4096x1) L8
1000

(4096x1)

[Krizhevsky, NeurIPS 2012]

February 12, 2024

L03-11

Sze and Emer

Large Sizes with Varying Shapes

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet Convolutional Layer Configurations

34k Params 307k Params 885k Params

Layer 1 Layer 2 Layer 3

105M MACs 224M MACs 150M MACs
[Krizhevsky, NeurIPS 2012]February 12, 2024

L03-12

Sze and Emer

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky, NeurIPS 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

L1 L2 L3 L4 L5 L6 L7

1000
scores224x224

Input
Image

C
on

v
(1

1x
11

)
N

on
-L

in
ea

rit
y

N
or

m
 (L

R
N

)
M

ax
 P

oo
l

C
on

v
(5

x5
)

N
on

-L
in

ea
rit

y
N

or
m

 (L
R

N
)

M
ax

 P
oo

lin
g

C
on

v
(3

x3
)

N
on

-L
in

ea
rit

y

C
on

v
(3

x3
)

N
on

-L
in

ea
rit

y

C
on

v
(3

x3
)

N
on

-L
in

ea
rit

y
M

ax
 P

oo
lin

g

Fu
lly

 C
on

ne
ct

N
on

-L
in

ea
rit

y

Fu
lly

 C
on

ne
ct

N
on

-L
in

ea
rit

y

Fu
lly

 C
on

ne
ct

34k 307k 885k 664k 442k 37.7M 16.8M 4.1M # of weightsFebruary 12, 2024

L03-13

Sze and Emer

VGG-16
CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G [Simonyan, ICLR 2015]

Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

Also, 19-layer version

More Layers à Deeper!

February 12, 2024

http://www.cs.toronto.edu/~frossard/post/vgg16/

L03-14

Sze and Emer

Stacked Filters
• Deeper network means more weights

• Use stack of smaller filters (3x3) to cover the same
receptive field with fewer filter weights

3 0 4 2 0 1 0

0 0 1 2 3 2 0

0 1 2 2 2 0 3

5 0 1 0 1 3 0

0 1 2 2 1 0 1

0 0 1 0 3 1 0

5 2 0 3 0 5 8

5x5 filterExample

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

February 12, 2024

L03-15

Sze and Emer

Stacked Filters
• Deeper network means more weights

• Use stack of smaller filters (3x3) to cover the same
receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

0 1 0
1 1 1
0 1 0

filter (3x3)

February 12, 2024

L03-16

Sze and Emer

Stacked Filters
• Deeper network means more weights

• Use stack of smaller filters (3x3) to cover the same
receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

0 1 0
1 1 1
0 1 0

filter (3x3)

February 12, 2024

L03-17

Sze and Emer

Stacked Filters
• Deeper network means more weights

• Use stack of smaller filters (3x3) to cover the same
receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

0 1 0
1 1 1
0 1 0

filter (3x3)

February 12, 2024

L03-18

Sze and Emer

Stacked Filters
• Deeper network means more weights

• Use stack of smaller filters (3x3) to cover the same
receptive field with fewer filter weights

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter1

Example

0 1 0
1 1 1
0 1 0

filter (3x3)

February 12, 2024

L03-19

Sze and Emer

VGGNet: Stacked Filters
• Deeper network means more weights
• Use stack of smaller filters (3x3) to cover the same receptive field

with fewer filter weights
• Non-linear activation inserted between each filter

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

3x3 filter2

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 5x5 filter (25 weights) à two 3x3 filters (18 weights)

3x3 filter1
February 12, 2024

L03-20

Sze and Emer

GoogLeNet/Inception (v1)
CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G [Szegedy, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

9 Inception Blocks*

3 CONV layers 1 FC layer
(reduced from 3)Auxiliary Classifiers

(helps with training,
not used during inference)

*referred to as inception
module in textbook

February 12, 2024

L03-21

Sze and Emer

GoogLeNet/Inception (v1)

parallel* filters of different size have the effect
of processing image at different scales

1x1 ‘bottleneck’ to
reduce number of
weights and
multiplications

Inception
Block

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

Also, v2, v3 and v4
ILSVRC14 Winner

[Szegedy, CVPR 2015]

*also referred to as “multi-branch” and
“split-transform-merge”February 12, 2024

L03-22

Sze and Emer

1x1 Bottleneck

Modified image from source:
Stanford cs231n

[Lin, Network in Network, ICLR 2014]

Use 1x1 filter to capture cross-channel correlation, but not spatial correlation.
Can be used to reduce the number of channels in next layer (compress).

(Filter dimensions for bottleneck: R=1, S=1, C > M)

1
56

56

filter1
(1x1x64)

February 12, 2024

L03-23

Sze and Emer

1x1 Bottleneck

Modified image from source:
Stanford cs231n

filter2
(1x1x64)

2
56

56

Use 1x1 filter to capture cross-channel correlation, but not spatial correlation.
Can be used to reduce the number of channels in next layer (compress).

(Filter dimensions for bottleneck: R=1, S=1, C > M)

[Lin, Network in Network, ICLR 2014]
February 12, 2024

L03-24

Sze and Emer

1x1 Bottleneck

Modified image from source:
Stanford cs231n

32
56

56

Use 1x1 filter to capture cross-channel correlation, but not spatial correlation.
Can be used to reduce the number of channels in next layer (compress).

(Filter dimensions for bottleneck: R=1, S=1, C > M)

[Lin, Network in Network, ICLR 2014]
February 12, 2024

L03-25

Sze and Emer

GoogLeNet:1x1 Bottleneck

1x1 ‘bottleneck’ to
reduce number of
weights and
multiplications

Inception
Block

[Szegedy, CVPR 2015]

Apply 1x1 bottleneck before ‘large’ convolution filters.
Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M à 358M

February 12, 2024

L03-26

Sze and Emer

Reduce Cost of FC Layers

First FC layer accounts for a
significant portion of weights

38M of 61M for AlexNet

105M 224M 150M 112M 75M 38M 17M 4M# of MACs

L1 L2 L3 L4 L5 L6 L7

1000

scores224x224

Input

Image
C

o
n

v
 (

1
1

x
1

1
)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

l

C
o

n
v

 (
5

x
5

)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

li
n

g

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

M
a

x
 P

o
o

li
n

g

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

34k 307k 885k 664k 442k 37.7M 16.8M 4.1M # of weights 38M

[Krizhevsky, NeurIPS 2012]

February 12, 2024

L03-27

Sze and Emer

Global Pooling

GoogLeNet uses global pooling to reduce number of FC layers from three to one
[Lin, ICLR 2014]

Use Global Pooling to reduce size of input to the first FC layer and the FC layer itself
FC Layer

H
…

input fmap

output fmap1

…

C

1

W
1

H …

…C

W

…
filter1

input fmapGP

1
1

C

1
1

C
filter1

output fmap1
1

1

Step 2: FC Layer

H

input fmap

output fmapGP

…

…

C

1

W
1

Pool
C

Step 1: Global Pooling

Size of FC layer:
HxWxCxM à 1x1xCxM

February 12, 2024

L03-28

Sze and Emer

ResNet

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Go Deeper!

ILSVRC15 Winner
(better than human level accuracy!)

February 12, 2024

http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

L03-29

Sze and Emer

ResNet: Training
Training and validation error increases with more layers;

this is due to vanishing gradient, no overfitting.
Introduce short cut block to address this!

Without shortcut With shortcut

Thin curves denote training error, and bold curves denote validation error.

[He, CVPR 2016]
February 12, 2024

L03-30

Sze and Emer

ResNet: Short Cut Block

Helps address the vanishing gradient challenge for
training very deep networks

1 CONV layer

1 FC layer

16 Short
Cut

Blocks

ResNet-34

3x3 CONV

ReLU

ReLU

3x3 CONV

+

x	

F(x)	

H(x)	=	F(x)	+	x	

Iden%ty	
x	

Learns
Residual

F(x)=H(x)-x

Skip Connection
(also referred to

as highway)

[He, CVPR 2016]
February 12, 2024

L03-31

Sze and Emer

ResNet: Bottleneck
Apply 1x1 bottleneck to reduce computation and size
Also makes network deeper (ResNet-34 à ResNet-50)

compress
C > M

expand
C < M

[He, CVPR 2016]
February 12, 2024

L03-32

Sze and Emer

ResNet-50
CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

Also, 34-, 152-, and 1202-layer versions
ILSVRC15 Winner

1 CONV layer

1 FC layer

16 Short
Cut

Blocks

ResNet-50

Short Cut Block

[He, CVPR 2016]February 12, 2024

L03-33

Sze and Emer

Summary of Popular CNNs
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of MACs 283k 666M 15.3G 1.43G 3.86G
of FC layers 2 3 3 1 1
of Weights 58k 58.6M 124M 1M 2M
of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

CONV Layers increasingly important!February 12, 2024

L03-34

Sze and Emer

Summary of Popular CNNs
• AlexNet

– First CNN Winner of ILSVRC
– Uses LRN (deprecated after this)

• VGG-16
– Goes Deeper (16+ layers)

– Uses only 3x3 filters (stack for larger filters)

• GoogLeNet (v1)
– Reduces weights with Inception and uses Global Pooling so that only one FC layer is needed

– Inception Block: 1x1 and parallel connections
– Batch Normalization

• ResNet
– Goes Deeper (24+ layers)
– Short cut Block: Skip connections

February 12, 2024

L03-35

Sze and Emer

DenseNet

[Huang, CVPR 2017]

Feature maps are concatenated rather than added.
Break into blocks to limit depth and thus size of combined feature map.

More Skip Connections!
Connections not only from previous layer, but
many past layers to strengthen feature map
propagation and feature reuse.Dense

Block

Transition layers
February 12, 2024

L03-36

Sze and Emer

DenseNet

Note: 1 MAC = 2 FLOPS

Higher accuracy than ResNet with fewer weights and multiplications

[Huang, CVPR 2017]

Top-1 error Top-1 error

February 12, 2024

L03-37

Sze and Emer

Wide ResNet
Increase width (# of filters) rather than depth of network
• 50-layer wide ResNet outperforms 152-layer original ResNet
• Increasing width instead of depth is also more parallel-friendly

Image Source: Stanford cs231n[Zagoruyko, BMVC 2016]
February 12, 2024

L03-38

Sze and Emer

Squeeze and Excitation

H

C

W

Input fmap

1
C

1
1) Global
Pooling

1
C

1

2) Multiple
FC Layers

Filters

H

C

W

Output fmap

∗
3) Depthwise
Convolution

Dynamic
Weights

Depth-wise convolution with dynamic weights, where the weights change based
on the input feature map.
• Squeeze: Summarize each channel of input features map with global pooling
• Excitation: Determine weights using FC layers to increase attention on

certain channels of the input features map

[Hu, CVPR 2018]
excitation

squeeze

Attention (input à dynamic weights)

Used by SENet
ILSVRC 2017 Winner

February 12, 2024

L03-39

Sze and Emer

Convolution versus Attention Mechanism
• Convolution

– Only models dependencies between spatial neighbors

– Use sparsely connected layer to spatial neighbors; no support for dependencies outside of
spatial dimensions of filter (R x S)

• Attention
– “Allows modeling of [global] dependencies without regard to their distance” [Vaswani,

NeurIPS 2017]

– However, fully connected layer too expensive; develop mechanism to bias “the allocation of
available computational resources towards the most informative components of a signal”
[Hu, CVPR 2018]

• Transformer is a type of DNN that is built entirely using Attention Mechanism
[Vaswani, NeurIPS 2017] (Next Lecture)

February 12, 2024

L03-40

Sze and Emer

Efficient CNN Models

L03-41

Sze and Emer

Accuracy vs. Weight & OPs

[Bianco, IEEE Access 2018] February 12, 2024

L03-42

Sze and Emer

Manual Network Design

• Reduce Spatial Size (R, S)
– stacked filters

• Reduce Channels (C)
– 1x1 convolution, grouped convolution

• Reduce Filters (M)
– feature map reuse across layers

Filters

R

S

…

…

…C

H

W

…

…

…C

…

E

F

…

…

…M

…

…

…M

…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N

P

Q

P

Q

February 12, 2024

L03-43

Sze and Emer

Reduce Spatial Size (R, S): Stacked Small Filters
5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially

GoogleNet/
Inception v3

VGG

separable
filters

Replace a large filter with a series of smaller filters (reduces degrees of freedom)

February 12, 2024

L03-44

Sze and Emer

Example: Inception V3
Go deeper (v1: 22 layers à v3: 40+ layers) by reducing the number

of weights per filter using filter decomposition
~3.5% higher accuracy than v1

[Szegedy, CVPR 2016]

5x5 filter à 3x3 filters 3x3 filter à 3x1 and 1x3 filters

Separable filters

February 12, 2024

L03-45

Sze and Emer

Reduce Channels (C): 1x1 Convolution

ResNetGoogLeNet

compress

expandcompress

C > M

C < M

• Use 1x1 (bottleneck) filter to capture cross-channel correlation, but not spatial correlation
• Reduce the number of channels in next layer (compress), where C > M

February 12, 2024

L03-46

Sze and Emer

Example: SqueezeNet

[Iandola, ICLR 2017]]

Fire Block

Reduce number of weights by reducing number of input
channels by “squeezing” with 1x1

50x fewer weights than AlexNet (no accuracy loss)
However, 1.2x more operations than AlexNet*

*for SqueezeNetv1.0
(reduce operations by 2x in

SqueezeNetv1.1)

February 12, 2024

L03-47

Sze and Emer

Reduce Channels (C): Grouped Convolutions
Grouped convolutions reduce the number of weights and multiplications at the
cost of not sharing information between groups
• Divide filters into groups (G) operating on subset of channels.
• Each group has M/G filters and processes C/G channels.

P

Q

4

P

Q

4

P

Q

4

P

Q

4

1

Grouped Convolution

filters

input
fmaps output

fmaps

H

C

W

R

S

C/2

1 1

H

C

W

R

C/2

S
4

1

H

C

W

R

S

C/2

2 1

H

C

W

R

C/2

S
3

1

Group 1

Group 2

1

1

1P

Q

4

P

Q

4

P

Q

4

P

Q

4

1

Grouped Convolution

filters

input
fmaps output

fmaps

H

C

W

R

S

C/2

1 1

H

C

W

R

C/2

S
4

1

H

C

W

R

S

C/2

2 1

H

C

W

R

C/2

S
3

1

Group 1

Group 2

1

1

1

Group 2

Example for G=2: Each filter requires 2x fewer weights and MACs (C à C/2)

Group 1

In this example,
N=1 & M=4

February 12, 2024

L03-48

Sze and Emer

Reduce Channels (C): Grouped Convolutions
Two ways of mixing information from groups

Shuffle Operation
(Mix in multiple steps)

ShuffleNet

fmap 0

layer 1

fmap 1

layer 2

fmap 2

Pointwise (1x1) Convolution
(Mix in one step)

MobileNet

Also referred to as depth-wise separable:
Decouple the cross-channels correlations and

spatial correlations in the feature maps of the CNN

C

1
1

S

R

1

R

S
C

+

C

M

February 12, 2024

L03-49

Sze and Emer

Depth-wise Convolutions
The extreme case of Grouped Convolutions is Depth-wise Convolutions,

where the number of groups (G) equals number channels (C) (i.e., one input channel per group)

Group 1

Group C

HR

S

input fmap

output fmap1

…

…

……C…
filter1

P

W Q
input fmap

output fmapC
……

P

Q

H …

…

……C…

W

R

filterC

S

Typically, M=C
(but does not have to be)

February 12, 2024

L03-50

Sze and Emer

Example: MobileNets

[Howard, arXiv 2017]

Depth-wise filter decomposition

depthwise

pointwise (1x1)

C

C

C

R
S M

M

Reduction in MACs

 HWCRSM RSM
 HWC(RS+M) (RS+M)

=

R
S

February 12, 2024

L03-51

Sze and Emer

MobileNets: Comparison
Comparison with other CNN Models

[Image source: Github]

[Howard, arXiv 2017]February 12, 2024

L03-52

Sze and Emer

Example: Xception
• An Inception block based on depth-wise separable convolutions
• Claims to learn richer features with similar number of weights as Inception V3 (i.e., more

efficient use of weights)
– Similar performance on ImageNet; 4.3% better on larger dataset (JFT)
– However, 1.5x more operations required than Inception V3

[Chollet, CVPR 2017]

Spatial correlation

Cross-channel correlation

February 12, 2024

L03-53

Sze and Emer

Example: ResNeXt

ResNet ResNeXt

[Xie, CVPR 2017]

Used by ILSVRC 2017 Winner SENet
Inspired by Inception’s “split-transform-merge”

Increase number of convolution groups (G) (referred to as cardinality in the paper)
instead of depth and width of network

February 12, 2024

L03-54

Sze and Emer

Example: ResNeXt
Improved accuracy vs. ‘complexity’ tradeoff compared to

other ResNet based models

[Xie, CVPR 2017]February 12, 2024

L03-55

Sze and Emer

Shuffle Operation

H

input fmap

output fmap

…

…

……C…

P

W Q
input fmap

output fmap……

P

Q

H …

…

……C…

W

∗

∗

1
2

3
4

output fmap

P

Q

output fmap

P

Q

3
2

1
4

Shuffle

Group 1

Group 2

February 12, 2024

L03-56

Sze and Emer

Example: ShuffleNet
Shuffle order such that channels are not isolated across groups

(up to 4% increase in accuracy)

[Zhang, CVPR 2018]

No interaction between
channels from different groups

Shuffling allow interaction between
channels from different groups

February 12, 2024

L03-57

Sze and Emer

AlexNet: Grouped Convolutions

Split into 2
Groups

Split into 2
Groups

AlexNet uses grouped convolutions to train on two separate GPUs
(Drawback: correlation between channels of different groups is not used)

Mix
Information
(3x3 CONV)

Mix
Information

(FC)

February 12, 2024

L03-58

Sze and Emer

Reduce Filters (M): Feature Map Reuse

…

R

S
1

C
…

…

…

M Filters
…

R

S
K

C …

…

…

R

S
M

C …

…

…

…

Output fmap with M channels

L2 L3L1

Reuse (M-K) channels in feature maps from
previously processed layers

[Huang, CVPR 2017]

DenseNet reuses feature map from
multiple layers

M-K

M

F
……

……

P

K

Q

February 12, 2024

M-K

K M

L03-59

Sze and Emer

Neural Architecture Search (NAS)

3x3? 5x5?

128 Filters?

Pool? CONV?

Rather than handcrafting the model, automatically search for it

February 12, 2024

L03-60

Sze and Emer

Neural Architecture Search (NAS)
• Three main components:

– Search Space (what is the set of all samples)
– Optimization Algorithm (where to sample)
– Performance Evaluation (how to evaluate samples)

Key Metrics: Achievable DNN accuracy and required search time

Search
Space

Performance
Evaluation Evaluation

Result

Optimization
Algorithm

Next Location
to Sample

Sampled
Network

Final Network

February 12, 2024

L03-61

Sze and Emer

Evaluate NAS Search Time

𝒕𝒊𝒎𝒆𝒏𝒂𝒔 = 𝒏𝒖𝒎𝒔𝒂𝒎𝒑𝒍𝒆𝒔	×	𝒕𝒊𝒎𝒆𝒔𝒂𝒎𝒑𝒍𝒆

𝒕𝒊𝒎𝒆𝒏𝒂𝒔 ∝ 𝒔𝒊𝒛𝒆𝒔𝒆𝒂𝒓𝒄𝒉_𝒔𝒑𝒂𝒄𝒆×
𝒏𝒖𝒎𝒂𝒍𝒈_𝒕𝒖𝒏𝒊𝒏𝒈

𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚𝒂𝒍𝒈
	 ×	(𝒕𝒊𝒎𝒆𝒆𝒗𝒂𝒍 + 𝒕𝒊𝒎𝒆𝒕𝒓𝒂𝒊𝒏)

(1) Shrink the search
space

(2) Improve the
optimization algorithm

(3) Simplify the
performance evaluation

Goal: Improve the efficiency of NAS in the three main components

Search
Space

Performance
Evaluation

Optimization
Algorithm

February 12, 2024

L03-62

Sze and Emer

(1) Shrink the Search Space

• Trade the breadth of models for
search speed

• May limit the performance that can be
achieved

• Use domain knowledge from manual
network design to help guide the
reduction of the search space

February 12, 2024

Model
Universe
Model
Universe

Search Space

Optimal

Optimal

Samples =

L03-63

Sze and Emer

(1) Shrink the Search Space

• Search space = layer operations + connections between layers

February 12, 2024

• Identity

• 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution
• 3x3 dilated convolution
• 1x1 convolution

• 3x3 convolution

• 3x3 separable convolution

• 5x5 separable convolution
• 3x3 average pooling
• 3x3 max pooling
• 5x5 max pooling

• 7x7 max pooling

Common layer operations

[Zoph, CVPR 2018]

L03-64

Sze and Emer

(1) Shrink the Search Space

• Search space = layer operations + connections between layers

February 12, 2024

Image Source: [Zoph, CVPR 2018]

Smaller Search Space

L03-65

Sze and Emer

(2) Improve Optimization Algorithm

February 12, 2024

Random Gradient DescentCoordinate Descent

Reinforcement Learning BayesianEvolutionary

L03-66

Sze and Emer

(3) Simplify the Performance Evaluation

• NAS needs only the rank of the performance values

• Method 1: approximate accuracy

February 12, 2024

Proxy Task Early Termination Accuracy Prediction

E.g., Smaller resolution,
simpler tasks

Stop training earlier

A
cc

u
ra

cy

Iteration

Stop

Extrapolate accuracy

A
cc

u
ra

cy

Iteration

Predict

L03-67

Sze and Emer

(3) Simplify the Performance Evaluation

• NAS needs only the rank of the performance values

• Method 2: approximate weights

February 12, 2024

Copy Weights Estimate Weights

Reuse weights from
other similar networks

Infer the weights from the
previous feature maps

Copy

Generate

What
weights?

Previous

New

Feature
Map

Filter

Previous New

L03-68

Sze and Emer

(3) Simplify the Performance Evaluation

• NAS needs only the rank of the performance values

• Method 3: approximate metrics (e.g., latency, energy)

February 12, 2024

Look-Up TableProxy Metric

Use an easy-to-compute
metric to approximate target

Use table lookup

Latency # MACs

L03-69

Sze and Emer

Design Considerations for NAS

• The components may not be chosen individually
– Some optimization algorithms limit the search space
– Type of performance metric may limit the selection of the optimization

algorithms

• Commonly overlooked properties
– The complexity of implementation
– The ease of tuning hyperparameters of the optimization
– The probability of convergence to a good architecture

February 12, 2024

L03-70

Sze and Emer

Example: NASNet

• Search Space: Build model from popular layers

• Identity
• 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution
• 3x3 dilated convolution
• 1x1 convolution
• 3x3 convolution
• 3x3 separable convolution
• 5x5 separable convolution

• 3x3 average pooling
• 3x3 max pooling
• 5x5 max pooling
• 7x7 max pooling

[Zoph, CVPR 2018]
February 12, 2024

L03-71

Sze and Emer

NASNet: Learned Convolutional Cells

[Zoph, CVPR 2018]
February 12, 2024

L03-72

Sze and Emer

NASNet: Comparison with Existing Networks
Learned models have improved accuracy vs. ‘complexity’ tradeoff

compared to handcrafted models

[Zoph, CVPR 2018]
February 12, 2024

L03-73

Sze and Emer

EfficientNet

[Tan, ICML 2019]

Uniformly scaling all dimensions including depth, width, and resolution
since there is an interplay between the different dimensions.
Use NAS to search for baseline model and then scale up.

February 12, 2024

L03-74

Sze and Emer

Summary

• Approaches used to improve accuracy by popular CNN models in the ImageNet
Challenge
– Go deeper (i.e., more layers)
– Stack smaller filters and apply 1x1 bottlenecks to reduce number of weights such that the

deeper models can fit into a GPU (faster training)

– Use multiple connections across layers (e.g., parallel and short cut)

• Efficient models aim to reduce number of weights and number of operations
– Most use some form of filter decomposition (spatial, depth and channel)

– Note: Number of weights and operations does not directly map to storage, speed and
power/energy. Depends on hardware!

• Filter shapes vary across layers and models
– Need flexible hardware!

February 12, 2024

L03-75

Sze and Emer

Warning!

• These works often use number of weights and operations to
measure “complexity”

• Number of weights provides an indication of storage cost for
inference

• However later in the course, we will see that
– Number of operations doesn’t directly translate to latency/throughput
– Number of weights and operations doesn’t directly translate to power/energy

consumption

• Understanding the underlying hardware is important for evaluating
the impact of these “efficient” CNN models

February 12, 2024

L03-76

Sze and Emer

References

• Book: Chapter 2 & 9
– https://doi.org/10.1007/978-3-031-01766-7

• Other Works Cited in Lecture (increase accuracy)
– LeNet: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proc. IEEE 1998.
– AlexNet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NeurIPS.

2012.

– VGGNet: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR 2015.
– Network in Network: Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014
– GoogleNet: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern

recognition. CVPR 2015.
– ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern

recognition. CVPR 2016.
– DenseNet: Huang, Gao, et al. "Densely connected convolutional networks." CVPR 2017
– Wide ResNet: Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." BMVC 2017.
– ResNext: Xie, Saining, et al. "Aggregated residual transformations for deep neural networks.” CVPR 2017
– SENets: Hu, Jie et al., “Squeeze-and-Excitation Networks,” CVPR 2018
– NFNet: Brock, Andrew, et al., “High-Performance Large-Scale Image Recognition Without Normalization,” arXiv 2021

February 12, 2024

https://doi.org/10.1007/978-3-031-01766-7

L03-77

Sze and Emer

References

• Other Works Cited in Lecture (increase efficiency)
– InceptionV3: Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." CVPR 2016.
– SqueezeNet: Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model

size." ICLR 2017.
– Xception: Chollet, François. "Xception: Deep Learning with Depthwise Separable Convolutions." CVPR 2017
– MobileNet: Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications."

arXiv preprint arXiv:1704.04861 (2017).
– MobileNetv2: Sandler, Mark et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” CVPR 2018
– MobileNetv3: Howard, Andrew et al., “Searching for MobileNetV3,” ICCV 2019
– ShuffleNet: Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices."

CVPR 2018
– Learning Network Architecture: Zoph, Barret, et al. "Learning Transferable Architectures for Scalable Image Recognition."

CVPR 2018

• Other Works Cited in Lecture (Increase accuracy and efficiency)
– EfficientNet: Tan, Mingxing, et al. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019

February 12, 2024

