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Goals of Today’s Lecture

• Popular DNN Models (cont’d)
– Transformers

• Evaluate and compared DNN Models and Hardware
– Key Metrics and Design Objectives
– Datasets and benchmarks

• Training
• Recommended Reading: Chapter 2 & 3

– https://doi.org/10.1007/978-3-031-01766-7

February 14, 2024

https://doi.org/10.1007/978-3-031-01766-7
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Popular DNN Models

February 14, 2024
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Important Computational Properties

• Latency and energy affected by a variety of properties including
– Number of operations that need to done sequentially

• How many operations can be done in parallel?

– Amount of data storage (memory capacity)
• How much data is needed to perform compute?

– Number of memory accesses (memory bandwidth)
• How often does data change? How often can data be reused for multiple operations? 

• More details on latency and energy in “Key Metrics and Design 
Objectives” section of today’s lecture

February 14, 2024
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Computation Properties of CONV Layers 
• Do operands change during inference?

– Inputs change (dynamic)
– Usually, weights do not change with input (static)

• There are exceptions (e.g., Squeeze-and-Excitation)

• Complexity based on shape of layer
– Number of MACs scales linearly with size of inputs
– Storage: 

• Number of weights RSCM
• Number of input activations HWC
• Number of output activations PQM

• Sparse connection – no support outside of spatial dimensions of filter (R x S)  
– Fewer weights reduces amount of data storage required

– Fewer MAC operations reduces number of operations

• Shared weights across different spatial locations (input)
– Data reuse reduces number of memory accesses

February 14, 2024
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Computation Properties of CONV Layers 
• Multiple forms of parallelism possible

– Across M (apply multiple filters at the same time – reuse input feature maps)
– Across N (filter multiple input feature maps at the same time – reuse filters)
– Across R, S, C (compute MACs at same time, but need to accumulate – reuse both input activations 

and filter weights)

• Shape can change per layer (R, S, C, M, H, W) - Flexible hardware required!

February 14, 2024
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Convolution versus Attention Mechanism

• Convolution
– Only models dependencies between spatial neighbors

– Use sparsely connected layer to spatial neighbors; no support for dependencies outside of 
spatial dimensions of filter (R x S) 

– Fixed region of interest in input for given output

• Attention 
– “Allows modeling of [global] dependencies without regard to their distance” [Vaswani, 

NeurIPS 2017]
– However, fully connected layer is too expensive; develop mechanism to bias “the allocation of 

available computational resources towards the most informative components of a signal” 
[Hu, CVPR 2018]

– Dynamically select region of interest in input for given output

February 14, 2024
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Transformers

• Built from Attention Mechanism [Vaswani, 
NeurIPS 2017] 

• Widely used for natural language processing 
(e.g., GPT-3 [Brown, NeurIPS 2020]), since long 
dependencies between words exist

• Also used for other forms of data including
– audio (e.g., AST [Gong, Interspeech 2021])

– vision (e.g., ViT [Dosovitskiy, ICLR 2021])

February 14, 2024

Image Source: [Vaswani, NeurIPS 2017] 
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Format of Input into Attention Mechanism
• Break input into chunks referred to as tokens

– For a sentence, each word is a token
– For an image, each patch of pixels is a token

– For audio, each patch of spectrogram is a token

• Support variable sized input by processing a 
sequence of “tokens” one at a time

February 14, 2024

Image Source: https://towardsdatascience.com/why-are-there-so-
many-tokenization-methods-for-transformers-a340e493b3a8 

AST [Gong, Interspeech 2021]ViT [Dosovitskiy, ICLR 2021]

https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8
https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8
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Attention Mechanism: Overview
• Submit query (q) based on input token
• Assign attention weights for query (q) 

against each keys (k1, k2…km) based 
on a function ⍺(q, ki) that captures 
their dependencies

• Scale values (v1, v2…vm) associated 
with each key (k1, k2…km) using 
attention weights 

• Output sum of scaled values

February 14, 2024

Image Source: https://d2l.ai/ 
(Note: q, ki, and vi are vectors)

Can be viewed as database of key, value pairs

https://d2l.ai/
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Attention Mechanism: Attention Weights
The attention weights are typically computed as follows
1. Compute the dot product between the query (q) and key (k) vectors, 

and scale by the length of the vectors (E). This is referred to as the 
scaled-dot product attention scoring function.

2. Use softmax to scale the weight to be between 0 and 1 

February 14, 2024

Modified from source: https://d2l.ai/ (in class we use ‘E’ rather than ‘d’ for length of vector) Image: https://towardsdatascience.com/sigmoid-
and-softmax-functions-in-5-minutes-f516c80ea1f9 

Softmax
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https://d2l.ai/
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
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Attention Mechanism: Multiple Tokens
• To process multiple tokens at a time within same sequences,  

vectors q, ki, and vi are combined to form matrices Q, K, and V
• Therefore, the scaled-dot product attention becomes

• Key operation in the attention mechanism is matrix multiplication

February 14, 2024

Image Source: 
[Vaswani, NeurIPS 2017] 

where 
• P is the number of queries (tokens) processed at time, 
• E is the length of the queries and key vectors, 
• F is the length of the values vector, and 
• M is the number of key-value pairs in the database such that 

softmax 𝑸𝑲!

%
𝑽 ∈ 	ℝ+×-	 ,

Q ∈ 	ℝ+×%	queries K ∈ 	ℝ.×%	keys V ∈ 	ℝ.×-	values

Modified from source: https://d2l.ai/ (in class we use ‘P’ rather than ‘n’, and  ‘F’ rather than ‘v’)

https://d2l.ai/
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Attention Mechanism: Multi-Head Attention
• Desirable to capture different behaviors 

– e.g., shorter range versus longer range

• Allow for different transforms of Q, K, and V. 
– This is referred to as multi-head attention, where h is the 

number of heads.

• Transforms are performed with linear projections
– Three matrix multiplications (WQ, WK, WV) per head

• Outputs are concatenated and undergoes a linear projection
– Another matrix multiplication (WZ)

• The weights of these projections are learned

February 14, 2024 Source: https://d2l.ai/ [Vaswani, NeurIPS 2017] 

MultiHead 𝑄,𝐾, 𝑉 = Concat head1,	….,headh 𝑊#

headi = Attention 𝑄𝑊$
%,	𝐾𝑊$

&, 𝑉𝑊$
'where

https://d2l.ai/
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Attention Mechanism: Generating Q, K, and V

February 14, 2024

Example of compute per head, where I is an “embedding” of an input token.
This is referred to as “self-attention” since Q, K, and V are derived from I

Image Source (modified):  https://jalammar.github.io/illustrated-transformer/   

I

I

I

𝐸/

https://jalammar.github.io/illustrated-transformer/
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Attention Mechanism: Generating Q, K, and V

February 14, 2024

Image Source (modified): https://jalammar.github.io/illustrated-transformer/   

Example of compute for multiple heads (Note: concatenate results Zi before multiplying with WZ)

The output Z is 
processed by a FC 
layer to generate 
input R to next 
attention layer.

I is only the input to 
first layer; R is input 
to subsequent 
attention layers.

I

I

Z

Z

https://jalammar.github.io/illustrated-transformer/
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Computation Properties of Attention Mechanism
• Many matrix multiplications

– Three matrix multiplications for input projections per head for multi-head attention
– One matrix multiplication for output projections for multi-head attention
– Two matrix multiplications for computing scaled-dot product attention 
– A total of five matrix multiplications per head plus one for output projection

• Parallel processing across matrix multiplications
– Across projections of Q, K, and V
– Across heads

• Sequential dependency between matrix multiplications 
– Within attention: QKT then multiply by V
– Between projection and attention: Input projections à Attention à Output projection

February 14, 2024
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Computation Properties of Attention Mechanism

• Do operands change?
– Matrices Q, K, and V change with input (dynamic)

– Matrices WQ, WK, WV, and WZ does not change with input (static)

• Reuse WQ, WK, WV, and WZ across input tokens
• Complexity based on size of matrices and number of tokens

– Number of MACs scales quadratically with number of input tokens
– Storage: Number of weights in WQ, WK, WV and WZ (multiplied by number of heads), Intermediate 

matrices (Q, K, V), Input token matrix I, Output token matrix Z

• Matrix multiplications can be different sizes (design choices: P, D, F, M, H, …)
– Flexible hardware required!

February 14, 2024
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Summary of Steps in Attention Mechanism

February 14, 2024

For more details, please refer to 
http://csg.csail.mit.edu/6.5930/Lectures/attention.pdf 

Legend:

Einsum Notation

http://csg.csail.mit.edu/6.5930/Lectures/attention.pdf
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Design Choices
• M – number of key-value pairs in the database (sequence length for the query, key and 

value in self-attention)
• P – number of queries (tokens) processed at a time
• E – vector length (local space embedding) of the queries and keys
• F – vector length (local space embedding) of the values
• H – number of heads in multi-head attention

• C - dictionary size (words in vocabulary)
• D - input global space embedding 

• G - output embedding

February 14, 2024
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Examples of Large Language Models (LLMs)
BERT BERT LLAMA GPT-3

Number of weights (parameters) 110M 340M 6.7B 175B
Total MACs per inference (batch size=1) 53G 131G 12.8T 397T
Number of layers 12 24 32 96

M 512 512 2048 2048
P 512 512 2048 2048
C 30522 30522 32000 50257
D 768 768 4096 12288
E 32 64 128 128
F 32 64 128 128
G 768 768 4096 12288
H 12 16 32 96
Feed Forward dimension 3072 3072 11008 49152

February 14, 2024
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Storage Requirements for LLMs
• Static (Weights)

– Linear projection (increase linearly with number of heads) 

• WQ : DxExH, WK : DxExH, WV : DxFxH, WZ : FxGxH
– Feed forward layers: 2* Feed Forward dimension x G

• Dynamic 
– Input token matrix I: MxD

– Intermediate matrices
• Q: PxE, K: MxE, V: MxF

• QKT: MxP, softmax 𝑸𝑲!

𝑬
𝑽: PxF

– Output token matrix Z: PxG

February 14, 2024
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LLMs Require a Large Amount of Memory

February 14, 2024

Source: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Key Metrics and 
Design Objectives

February 14, 2024

How can we compare designs?
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GOPS/W or TOPS/W?

• GOPS = giga (109) operations per second

• TOPS = tera (1012) operations per second
• GOPS/Watt or TOPS/Watt commonly reported in hardware literature to show 

efficiency of design
• However, does not provide sufficient insights on hardware capabilities and 

limitations (especially if based on peak throughput/performance)

February 14, 2024

Example: high TOPS per watt can be 
achieved with inverter (ring oscillator)
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Key Metrics: Much more than OPS/W!

• Accuracy
– Quality of result

• Throughput
– Analytics on high volume data
– Real-time performance (e.g., video at 30 fps)

• Latency
– For interactive applications (e.g., autonomous navigation)

• Energy and Power
– Embedded devices have limited battery capacity
– Data centers have a power ceiling due to cooling cost

• Hardware Cost
– $$$

• Flexibility 
– Range of DNN models and tasks

• Scalability
– Scaling of performance with amount of resources

February 14, 2024

ImageNetMNIST

Computer 
Vision

Speech 
Recognition

[Sze, CICC 2017]

Data 
Center

Embedded 
Device
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Evaluating Accuracy

• Important to measure accuracy when considering co-design of algorithm and 
hardware

• Datasets help provide a way to evaluate and compare different DNN models 
and training algorithms

• All accuracy is not the same
– Must consider difficulty of task and dataset to get fair comparison

February 14, 2024
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Image Classification Datasets 
• Image Classification/Recognition

– Given an entire image à Select 1 of N classes
– No localization (detection)

Image Source: 
Stanford cs231nDatasets affect difficulty of task

February 14, 2024
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MNIST

LeNet in 1998 
(0.95% error)

ICML 2013
(0.21% error)

http://yann.lecun.com/exdb/mnist/ 

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

February 14, 2024

http://yann.lecun.com/exdb/mnist/
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CIFAR-10/CIFAR-100

https://www.cs.toronto.edu/~kriz/cifar.html 

CIFAR-10
Two-layer network in 2009 
(35.16% error)

arXiv 2015
(3.47% error)

Image Classification
32x32 pixels (color)
10 or 100 Classes
50,000 Training
10,000 Testing

Subset of 80M Tiny Images Dataset (Torralba)
Image Source: http://karpathy.github.io/

February 14, 2024

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/
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ImageNet

http://www.image-net.org/challenges/LSVRC/ 

Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation) Image Source: http://karpathy.github.io/

February 14, 2024

http://www.image-net.org/challenges/LSVRC/


L04-31

Sze and Emer

ImageNet

http://www.image-net.org/challenges/LSVRC/ 

Image Source: http://karpathy.github.io/

Fine grained 
Classes
(120 breeds)

Top-5 Error
Image Source: Krizhevsky et al., NIPS 2012

Winner 2012 
(16.42% error)

Winner 2017
(2.25% error)

February 14, 2024

http://www.image-net.org/challenges/LSVRC/
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Image Classification Summary

MNIST CIFAR-10 IMAGENET
Year 1998 2009 2012
Resolution 28x28 32x32 256x256
Classes 10 10 1000
Training 60k 50k 1.3M
Testing 10k 10k 100k
Accuracy 0.21% error

(ICML 2013)
3.47% error
(arXiv 2015)

2.25% 
top-5 error

(2017 winner)

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

February 14, 2024

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
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Next Tasks: Localization and Detection

[Russakovsky, IJCV 2015]February 14, 2024
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Effectiveness of More Data

February 14, 2024

Accuracy increases logarithmically based on amount training data
Results from Google Internal Dataset

JFT-300M (300M images, 18291 categories)
Orders of magnitude larger than ImageNet

[Sun, ICCV 2017]

Object Detection Semantic Segmentation

“Disclaimer – Large scale learning: 
We would like to highlight that the 
training regime, learning schedules 
and parameters used in this paper are 
based on our understanding of training 
ConvNets with 1M images. Searching 
the right set of hyper-parameters 
requires significant more effort: even 
training a JFT model for 4 epochs 
needed 2 months on 50 K-80 GPUs. 
Therefore, in some sense the 
quantitative performance reported in 
this paper underestimates the impact 
of data for all reported image 
volumes.”
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Recently Introduced Datasets

• Google Open Images (~9M images)
– https://github.com/openimages/dataset

• Youtube-8M (8M videos)
– https://research.google.com/youtube8m/

• AudioSet (2M sound clips)
– https://research.google.com/audioset/index.html

February 14, 2024

https://github.com/openimages/dataset
https://research.google.com/youtube8m/
https://research.google.com/audioset/index.html
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Kaggle

February 14, 2024

A platform for predictive modeling competitions 

Over 3,500 competition submissions per day
Over 2000+ datasets!

Starting 2018, ImageNet Challenge hosted by Kaggle 
https://www.kaggle.com/c/imagenet-object-localization-challenge

https://www.kaggle.com/c/imagenet-object-localization-challenge
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Hugging Face

February 14, 2024

https://huggingface.co/ 

https://huggingface.co/
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Key Design Objectives of DNN Processor
• Increase Throughput and Reduce Latency

– Reduce time per MAC 
• Reduce critical path à increase clock frequency
• Reduce instruction overhead

– Avoid unnecessary MACs (save cycles)
– Increase number of processing elements (PE) à more MACs in parallel

• Increase area density of PE or area cost of system

– Increase PE utilization* à keep PEs busy
• Distribute workload to as many PEs as possible
• Balance the workload across PEs
• Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

• Low latency has an additional constraint of small batch size 

February 14, 2024

*(100% = peak performance)
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Key Design Objectives of DNN Processor

• Reduce Energy and Power 
Consumption
– Reduce data movement as it dominates 

energy consumption
• Exploit data reuse

– Reduce energy per MAC 
• Reduce switching activity and/or capacitance

• Reduce instruction overhead

– Avoid unnecessary MACs

• Power consumption is limited by heat 
dissipation, which limits the maximum 
# of MACs in parallel (i.e., throughput)

February 14, 2024

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]
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Key Design Objectives of DNN Processor

• Flexibility
– Reduce overhead of supporting flexibility 
– Maintain efficiency across wide range of DNN models 

• Different layer shapes impact the amount of
– Required storage and compute
– Available data reuse that can be exploited

• Different precision across layers & data types (weight, activation, partial sum)
• Different degrees of sparsity (number of zeros in weights or activations)
• Types of DNN layers and computation beyond MACs (e.g., activation functions)

February 14, 2024
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Key Design Objectives of DNN Processor

• Scalability
– Increase how performance (i.e., throughput, latency, energy, power) scales with increase 

in amount of resources (e.g., number of PEs, amount of memory, etc.)

February 14, 2024
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Specifications to Evaluate Metrics
• Accuracy

– Difficulty of dataset and/or task should be considered
– Difficult tasks typically require more complex DNN models

• Throughput
– Number of PEs with utilization (not just peak performance)
– Runtime for running specific DNN models

• Latency
– Batch size used in evaluation

• Energy and Power
– Power consumption for running specific DNN models
– Off-chip memory access (e.g., DRAM)

• Hardware Cost 
– On-chip storage, # of PEs, chip area + process technology

• Flexibility 
– Report performance across a wide range of DNN models
– Define range of DNN models that are efficiently supported 

February 14, 2024

DRAM

Chip

Off-chip 
memory 
access
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Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a 
given application might go as follows: 

1. Accuracy determines if it can perform the given task 
2. Latency and throughput determine if it can run fast enough and in real-

time
3. Energy and power consumption will primarily dictate the form factor of the 

device where the processing can operate 
4. Cost, which is primarily dictated by the chip area and external interfaces, 

determines how much one would pay for this solution
5. Flexibility determines the range of tasks it can support

February 14, 2024



L04-44

Sze and Emer

Example: Metrics of Eyeriss Chip

February 14, 2024

Metric Units Input
Name of CNN Model Text AlexNet
Top-5 error classification 
on ImageNet

# 19.8

Supported Layers All CONV
Bits per weight # 16
Bits per input activation # 16
Batch Size # 4
Runtime ms 115.3
Power mW 278
Off-chip Access per Image 
Inference

MBytes 3.85

Number of Images Tested # 100

ASIC Specs Input
Process Technology 65nm LP 

TSMC (1.0V)
Total Core Area (mm2) 12.25
Total On-Chip Memory 
(kB)

192

Number of Multipliers 168
Clock Frequency (MHz) 200
Core area (mm2) 
/multiplier

0.073

On-Chip memory (kB) / 
multiplier

1.14

Measured or Simulated Measured
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Comprehensive Coverage for Evaluation

• All metrics should be reported for fair evaluation of design tradeoffs
• Examples of what can happen if certain metric is omitted:

– Without the accuracy given for a specific dataset and task, one could run a simple DNN 
and claim low power, high throughput, and low cost – however, the processor might not be 
usable for a meaningful task

– Without reporting the off-chip bandwidth, one could build a processor with only multipliers 
and claim low cost, high throughput, high accuracy, and low chip power – however, when 
evaluating system power, the off-chip memory access would be substantial

• Are results measured or simulated? On what test data?
• Hardware should be evaluated on a wide range of DNNs

– No guarantee that DNN algorithm designer will use a given DNN model or given reduce 
complexity approach. Need flexible hardware!

February 14, 2024
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MLPerf: Workloads for Benchmarking

• A broad suite of DNN models to serve as a common set of benchmarks to measure the performance 
and enable fair comparison of various software frameworks, hardware accelerators, and cloud 
platforms for both training and inference of DNNs. (edge compute in the works!)

• The suite includes a wide range of DNNs (e.g., CNN, RNN, etc.) for a variety of tasks include image 
classification, object identification, translation, speech-to-text, recommendation, sentiment analysis 
and reinforcement learning.

• Categories: cloud/edge; training/inference; closed/open

February 14, 2024

https://mlperf.org/ 

First results in Dec 201823 Companies
7 Institutions

https://mlperf.org/
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Specifications of DNN Models

• Accuracy  
– Define task and dataset

• Shape of DNN Model (“Network Architecture”) 
– # of layers, filter size (R, S), # of channels (C), # of filters (M)

• # of Weights & Activations (storage capacity)
– Number of non-zero (NZ) weights and activations 

• # of MACs (operations)
– Number of non-zero (NZ) MACS

February 14, 2024
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Specifications of DNN Models
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
# of CONV Layers 5 16 21 49
# of Weights 2.3M 14.7M 6.0M 23.5M
# of MACs 666M 15.3G 1.43G 3.86G
# of NZ MACs** 394M 7.3G 806M 1.5G
# of FC layers 3 3 1 1
# of Weights 58.6M 124M 1M 2M
# of MACs 58.6M 124M 1M 2M
# of NZ MACs** 14.4M 17.7M 639k 1.8M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G
# of NZ MACs** 409M 7.3G 806M 1.5G

**# of NZ MACs computed based on 50,000 validation images
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks 

February 14, 2024

https://github.com/jcjohnson/cnn-benchmarks
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Weights & MACs à Energy & Latency
• Warning: Fewer weights and MACs (indirect metrics) do not necessarily result in lower 

energy consumption or latency (direct metrics). Other factors also important such as filter 
shape, batch size and hardware mapping.

February 14, 2024

Image Source: 
Google AI Blog

[Yang, CVPR 2017], [Chen, SysML, 2018], [Yang, ECCV 2018]
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Example: AlexNet vs. SqueezeNet

0
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400
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AlexNet SqueezeNet
0

20
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AlexNet SqueezeNet

Normalized Energy# of Weights

x105 x108

51.8x

1.3x

www.movidius.com 
© Copyright Movidius 2016 
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Results for SqueezeNetv1.0
Batch size=48
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DNN Processor Evaluation Tools
• Require systematic way to

– Evaluate and compare wide range of DNN 
processor designs

– Rapidly explore design space

• Accelergy [Wu, ICCAD 2019]

– Early-stage energy estimation tool at the 
architecture level

• Estimate energy consumption based on 
architecture level components (e.g., # of PEs, 
memory size, on-chip network)

– Evaluate architecture level energy impact of 
emerging devices

• Plug-ins for different technologies

• Timeloop [Parashar, ISPASS 2019]

– DNN mapping tool 
– Performance Simulator à Action counts

February 14, 2024

Open-source code available at: 
http://accelergy.mit.edu 

Accelergy
(Energy Estimator 

Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

Energy 
estimation

Timeloop 
(DNN Mapping Tool 

& 
Performance 

Simulator)

Labs and final project

DNN Model 
Shape 

(Workload)

Technology
Plug-in

http://accelergy.mit.edu/
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Summary

• Evaluate hardware using the appropriate DNN model and dataset
– Difficult tasks typically require larger models
– Different datasets for different tasks
– Number of datasets growing at a rapid pace

• A comprehensive set of metrics should be considered when 
comparing DNN hardware to fully understand design tradeoffs

February 14, 2024
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Training

February 14, 2024
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Training vs. Inference

• Training: Determine weights
– Supervised 

• Training set has inputs and outputs, i.e., labeled

– Unsupervised (Self-Supervised)
• Training set is unlabeled

– Semi-supervised 
• Training set is partially labeled 

– Reinforcement
• Output assessed via rewards and punishments

• Inference: Apply weights to determine output 

February 14, 2024
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Unsupervised Learning

Finds structure in unlabeled data

February 14, 2024

[image source: cambridgespark.com]
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Reinforcement Learning

February 14, 2024

Given the state of the current environment, learn a policy that decides 
what action the agent should take next to maximize expected rewards.

However, the rewards might not be available immediately after an 
action, but instead only after a series of actions.
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Reinforcement Learning Examples

February 14, 2024

Game Play Robotics
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Training versus Inference

Training
(determine weights)

Weights
Large Datasets

Inference
(use weights)

February 14, 2024
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Gradient Descent

• Goal: Determine set of weights to minimize loss

• Use gradient descent to incrementally update weights to reduce loss
– Compute derivative of loss relative to weights to indicate how to change weights (linear 

approximation of loss function)

February 14, 2024

[Image Source: http://sebastianraschka.com/]

L(w)

Lmin(w)
Learning rate
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Visualization of Gradient Descent

February 14, 2024

[Image Source: Wikipedia]
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Computing Gradients for DNN

February 14, 2024

gradient

An efficient way to compute gradient (a.k.a. partial derivative) 
for DNN is using a process called back propagation. 

Recall method to update weights during training:
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Training DNN

February 14, 2024

Forward propagation*

Back propagation

Input
Class 

Scores

Loss

Gradient

* inference also uses 
forward propagation

Loss 
Function

∂L
∂wij
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Back-Propagation of Weights (per Layer)

February 14, 2024

Determine how loss changes w.r.t. to weights

∂L
∂wij

=
∂L
∂yj

∂yj
∂wij

∂L
∂wij

=
∂L
∂yj

xi

chain rule

y =Wx + b
∂yj
∂wij

= xi

Need to compute
∂L
∂yj

𝒙𝟏
𝝏𝑳
𝝏𝒚𝟏

𝝏𝑳
𝝏𝒚𝟐

𝝏𝑳
𝝏𝒚𝟑

𝝏𝑳
𝝏𝑾𝟏𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒 𝝏𝑳
𝝏𝑾𝟒𝟑

backpropagation



L04-64

Sze and Emer

Back-Propagation of Activations (per Layer)

February 14, 2024

Determine how loss changes w.r.t. to input activations

Similar in form to the computation used for inference

∂L
∂yj

∂L
∂x j

Layer 1 Layer 2

=W11

W43

𝝏𝑳
𝝏𝒙𝟏
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𝝏𝒙𝟑

𝝏𝑳
𝝏𝒙𝟒

𝝏𝑳
𝝏𝒚𝟏

𝝏𝑳
𝝏𝒚𝟐

𝝏𝑳
𝝏𝒚𝟑

backpropagation

Layer 2
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Back Propagation Across All Layers
Gradient w.r.t. activations

Layer n Layer n+1

∂L
∂wn

ij

=
∂L
∂ynj

∂ynj
∂wn

ij

=
∂L
∂ynj

xni

Gradient w.r.t. weights

ynj = wn
ij x

n
i + b

i
∑where 
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yni = x
n+1
iNote:

Need to store 
activations from 

forward propagation!
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Demo of CIFAR-10 CNN Training

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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