
L04-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Popular DNN Models (Transformers),
DNN Evaluation and Training

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

February 14, 2024

L04-2

Sze and Emer

Goals of Today’s Lecture

• Popular DNN Models (cont’d)
– Transformers

• Evaluate and compared DNN Models and Hardware
– Key Metrics and Design Objectives
– Datasets and benchmarks

• Training
• Recommended Reading: Chapter 2 & 3

– https://doi.org/10.1007/978-3-031-01766-7

February 14, 2024

https://doi.org/10.1007/978-3-031-01766-7

L04-3

Sze and Emer

Popular DNN Models

February 14, 2024

L04-4

Sze and Emer

Important Computational Properties

• Latency and energy affected by a variety of properties including
– Number of operations that need to done sequentially

• How many operations can be done in parallel?

– Amount of data storage (memory capacity)
• How much data is needed to perform compute?

– Number of memory accesses (memory bandwidth)
• How often does data change? How often can data be reused for multiple operations?

• More details on latency and energy in “Key Metrics and Design
Objectives” section of today’s lecture

February 14, 2024

L04-5

Sze and Emer

Computation Properties of CONV Layers
• Do operands change during inference?

– Inputs change (dynamic)
– Usually, weights do not change with input (static)

• There are exceptions (e.g., Squeeze-and-Excitation)

• Complexity based on shape of layer
– Number of MACs scales linearly with size of inputs
– Storage:

• Number of weights RSCM
• Number of input activations HWC
• Number of output activations PQM

• Sparse connection – no support outside of spatial dimensions of filter (R x S)
– Fewer weights reduces amount of data storage required

– Fewer MAC operations reduces number of operations

• Shared weights across different spatial locations (input)
– Data reuse reduces number of memory accesses

February 14, 2024

L04-6

Sze and Emer

Computation Properties of CONV Layers
• Multiple forms of parallelism possible

– Across M (apply multiple filters at the same time – reuse input feature maps)
– Across N (filter multiple input feature maps at the same time – reuse filters)
– Across R, S, C (compute MACs at same time, but need to accumulate – reuse both input activations

and filter weights)

• Shape can change per layer (R, S, C, M, H, W) - Flexible hardware required!

February 14, 2024

Filter Input Fmap

Convolutional Reuse
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)

L04-7

Sze and Emer

Convolution versus Attention Mechanism

• Convolution
– Only models dependencies between spatial neighbors

– Use sparsely connected layer to spatial neighbors; no support for dependencies outside of
spatial dimensions of filter (R x S)

– Fixed region of interest in input for given output

• Attention
– “Allows modeling of [global] dependencies without regard to their distance” [Vaswani,

NeurIPS 2017]
– However, fully connected layer is too expensive; develop mechanism to bias “the allocation of

available computational resources towards the most informative components of a signal”
[Hu, CVPR 2018]

– Dynamically select region of interest in input for given output

February 14, 2024

L04-8

Sze and Emer

Transformers

• Built from Attention Mechanism [Vaswani,
NeurIPS 2017]

• Widely used for natural language processing
(e.g., GPT-3 [Brown, NeurIPS 2020]), since long
dependencies between words exist

• Also used for other forms of data including
– audio (e.g., AST [Gong, Interspeech 2021])

– vision (e.g., ViT [Dosovitskiy, ICLR 2021])

February 14, 2024

Image Source: [Vaswani, NeurIPS 2017]

L04-9

Sze and Emer

Format of Input into Attention Mechanism
• Break input into chunks referred to as tokens

– For a sentence, each word is a token
– For an image, each patch of pixels is a token

– For audio, each patch of spectrogram is a token

• Support variable sized input by processing a
sequence of “tokens” one at a time

February 14, 2024

Image Source: https://towardsdatascience.com/why-are-there-so-
many-tokenization-methods-for-transformers-a340e493b3a8

AST [Gong, Interspeech 2021]ViT [Dosovitskiy, ICLR 2021]

https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8
https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8

L04-10

Sze and Emer

Attention Mechanism: Overview
• Submit query (q) based on input token
• Assign attention weights for query (q)

against each keys (k1, k2…km) based
on a function ⍺(q, ki) that captures
their dependencies

• Scale values (v1, v2…vm) associated
with each key (k1, k2…km) using
attention weights

• Output sum of scaled values

February 14, 2024

Image Source: https://d2l.ai/
(Note: q, ki, and vi are vectors)

Can be viewed as database of key, value pairs

https://d2l.ai/

L04-11

Sze and Emer

Attention Mechanism: Attention Weights
The attention weights are typically computed as follows
1. Compute the dot product between the query (q) and key (k) vectors,

and scale by the length of the vectors (E). This is referred to as the
scaled-dot product attention scoring function.

2. Use softmax to scale the weight to be between 0 and 1

February 14, 2024

Modified from source: https://d2l.ai/ (in class we use ‘E’ rather than ‘d’ for length of vector) Image: https://towardsdatascience.com/sigmoid-
and-softmax-functions-in-5-minutes-f516c80ea1f9

Softmax

𝒒!𝒌"
𝐸

𝛼 𝒒, 𝒌" = softmax 𝑎 𝒒, 𝒌" =
𝑒
𝒒!𝒌"
%

∑&'(𝑒
𝒒!𝒌"
%

https://d2l.ai/
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9

L04-12

Sze and Emer

Attention Mechanism: Multiple Tokens
• To process multiple tokens at a time within same sequences,

vectors q, ki, and vi are combined to form matrices Q, K, and V
• Therefore, the scaled-dot product attention becomes

• Key operation in the attention mechanism is matrix multiplication

February 14, 2024

Image Source:
[Vaswani, NeurIPS 2017]

where
• P is the number of queries (tokens) processed at time,
• E is the length of the queries and key vectors,
• F is the length of the values vector, and
• M is the number of key-value pairs in the database such that

softmax 𝑸𝑲!

%
𝑽 ∈ 	ℝ+×-	 ,

Q ∈ 	ℝ+×%	queries K ∈ 	ℝ.×%	keys V ∈ 	ℝ.×-	values

Modified from source: https://d2l.ai/ (in class we use ‘P’ rather than ‘n’, and ‘F’ rather than ‘v’)

https://d2l.ai/

L04-13

Sze and Emer

Attention Mechanism: Multi-Head Attention
• Desirable to capture different behaviors

– e.g., shorter range versus longer range

• Allow for different transforms of Q, K, and V.
– This is referred to as multi-head attention, where h is the

number of heads.

• Transforms are performed with linear projections
– Three matrix multiplications (WQ, WK, WV) per head

• Outputs are concatenated and undergoes a linear projection
– Another matrix multiplication (WZ)

• The weights of these projections are learned

February 14, 2024 Source: https://d2l.ai/ [Vaswani, NeurIPS 2017]

MultiHead 𝑄,𝐾, 𝑉 = Concat head1,	….,headh 𝑊#

headi = Attention 𝑄𝑊$
%,	𝐾𝑊$

&, 𝑉𝑊$
'where

https://d2l.ai/

L04-14

Sze and Emer

Attention Mechanism: Generating Q, K, and V

February 14, 2024

Example of compute per head, where I is an “embedding” of an input token.
This is referred to as “self-attention” since Q, K, and V are derived from I

Image Source (modified): https://jalammar.github.io/illustrated-transformer/

I

I

I

𝐸/

https://jalammar.github.io/illustrated-transformer/

L04-15

Sze and Emer

Attention Mechanism: Generating Q, K, and V

February 14, 2024

Image Source (modified): https://jalammar.github.io/illustrated-transformer/

Example of compute for multiple heads (Note: concatenate results Zi before multiplying with WZ)

The output Z is
processed by a FC
layer to generate
input R to next
attention layer.

I is only the input to
first layer; R is input
to subsequent
attention layers.

I

I

Z

Z

https://jalammar.github.io/illustrated-transformer/

L04-16

Sze and Emer

Computation Properties of Attention Mechanism
• Many matrix multiplications

– Three matrix multiplications for input projections per head for multi-head attention
– One matrix multiplication for output projections for multi-head attention
– Two matrix multiplications for computing scaled-dot product attention
– A total of five matrix multiplications per head plus one for output projection

• Parallel processing across matrix multiplications
– Across projections of Q, K, and V
– Across heads

• Sequential dependency between matrix multiplications
– Within attention: QKT then multiply by V
– Between projection and attention: Input projections à Attention à Output projection

February 14, 2024

L04-17

Sze and Emer

Computation Properties of Attention Mechanism

• Do operands change?
– Matrices Q, K, and V change with input (dynamic)

– Matrices WQ, WK, WV, and WZ does not change with input (static)

• Reuse WQ, WK, WV, and WZ across input tokens
• Complexity based on size of matrices and number of tokens

– Number of MACs scales quadratically with number of input tokens
– Storage: Number of weights in WQ, WK, WV and WZ (multiplied by number of heads), Intermediate

matrices (Q, K, V), Input token matrix I, Output token matrix Z

• Matrix multiplications can be different sizes (design choices: P, D, F, M, H, …)
– Flexible hardware required!

February 14, 2024

L04-18

Sze and Emer

Summary of Steps in Attention Mechanism

February 14, 2024

For more details, please refer to
http://csg.csail.mit.edu/6.5930/Lectures/attention.pdf

Legend:

Einsum Notation

http://csg.csail.mit.edu/6.5930/Lectures/attention.pdf

L04-19

Sze and Emer

Design Choices
• M – number of key-value pairs in the database (sequence length for the query, key and

value in self-attention)
• P – number of queries (tokens) processed at a time
• E – vector length (local space embedding) of the queries and keys
• F – vector length (local space embedding) of the values
• H – number of heads in multi-head attention

• C - dictionary size (words in vocabulary)
• D - input global space embedding

• G - output embedding

February 14, 2024

L04-20

Sze and Emer

Examples of Large Language Models (LLMs)
BERT BERT LLAMA GPT-3

Number of weights (parameters) 110M 340M 6.7B 175B
Total MACs per inference (batch size=1) 53G 131G 12.8T 397T
Number of layers 12 24 32 96

M 512 512 2048 2048
P 512 512 2048 2048
C 30522 30522 32000 50257
D 768 768 4096 12288
E 32 64 128 128
F 32 64 128 128
G 768 768 4096 12288
H 12 16 32 96
Feed Forward dimension 3072 3072 11008 49152

February 14, 2024

L04-21

Sze and Emer

Storage Requirements for LLMs
• Static (Weights)

– Linear projection (increase linearly with number of heads)

• WQ : DxExH, WK : DxExH, WV : DxFxH, WZ : FxGxH
– Feed forward layers: 2* Feed Forward dimension x G

• Dynamic
– Input token matrix I: MxD

– Intermediate matrices
• Q: PxE, K: MxE, V: MxF

• QKT: MxP, softmax 𝑸𝑲!

𝑬
𝑽: PxF

– Output token matrix Z: PxG

February 14, 2024

L04-22

Sze and Emer

LLMs Require a Large Amount of Memory

February 14, 2024

Source: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

L04-23

Sze and Emer

Key Metrics and
Design Objectives

February 14, 2024

How can we compare designs?

L04-24

Sze and Emer

GOPS/W or TOPS/W?

• GOPS = giga (109) operations per second

• TOPS = tera (1012) operations per second
• GOPS/Watt or TOPS/Watt commonly reported in hardware literature to show

efficiency of design
• However, does not provide sufficient insights on hardware capabilities and

limitations (especially if based on peak throughput/performance)

February 14, 2024

Example: high TOPS per watt can be
achieved with inverter (ring oscillator)

L04-25

Sze and Emer

Key Metrics: Much more than OPS/W!

• Accuracy
– Quality of result

• Throughput
– Analytics on high volume data
– Real-time performance (e.g., video at 30 fps)

• Latency
– For interactive applications (e.g., autonomous navigation)

• Energy and Power
– Embedded devices have limited battery capacity
– Data centers have a power ceiling due to cooling cost

• Hardware Cost
– $$$

• Flexibility
– Range of DNN models and tasks

• Scalability
– Scaling of performance with amount of resources

February 14, 2024

ImageNetMNIST

Computer
Vision

Speech
Recognition

[Sze, CICC 2017]

Data
Center

Embedded
Device

L04-26

Sze and Emer

Evaluating Accuracy

• Important to measure accuracy when considering co-design of algorithm and
hardware

• Datasets help provide a way to evaluate and compare different DNN models
and training algorithms

• All accuracy is not the same
– Must consider difficulty of task and dataset to get fair comparison

February 14, 2024

L04-27

Sze and Emer

Image Classification Datasets
• Image Classification/Recognition

– Given an entire image à Select 1 of N classes
– No localization (detection)

Image Source:
Stanford cs231nDatasets affect difficulty of task

February 14, 2024

L04-28

Sze and Emer

MNIST

LeNet in 1998
(0.95% error)

ICML 2013
(0.21% error)

http://yann.lecun.com/exdb/mnist/

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

February 14, 2024

http://yann.lecun.com/exdb/mnist/

L04-29

Sze and Emer

CIFAR-10/CIFAR-100

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10
Two-layer network in 2009
(35.16% error)

arXiv 2015
(3.47% error)

Image Classification
32x32 pixels (color)
10 or 100 Classes
50,000 Training
10,000 Testing

Subset of 80M Tiny Images Dataset (Torralba)
Image Source: http://karpathy.github.io/

February 14, 2024

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/

L04-30

Sze and Emer

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation) Image Source: http://karpathy.github.io/

February 14, 2024

http://www.image-net.org/challenges/LSVRC/

L04-31

Sze and Emer

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Source: http://karpathy.github.io/

Fine grained
Classes
(120 breeds)

Top-5 Error
Image Source: Krizhevsky et al., NIPS 2012

Winner 2012
(16.42% error)

Winner 2017
(2.25% error)

February 14, 2024

http://www.image-net.org/challenges/LSVRC/

L04-32

Sze and Emer

Image Classification Summary

MNIST CIFAR-10 IMAGENET
Year 1998 2009 2012
Resolution 28x28 32x32 256x256
Classes 10 10 1000
Training 60k 50k 1.3M
Testing 10k 10k 100k
Accuracy 0.21% error

(ICML 2013)
3.47% error
(arXiv 2015)

2.25%
top-5 error

(2017 winner)

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

February 14, 2024

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

L04-33

Sze and Emer

Next Tasks: Localization and Detection

[Russakovsky, IJCV 2015]February 14, 2024

L04-34

Sze and Emer

Effectiveness of More Data

February 14, 2024

Accuracy increases logarithmically based on amount training data
Results from Google Internal Dataset

JFT-300M (300M images, 18291 categories)
Orders of magnitude larger than ImageNet

[Sun, ICCV 2017]

Object Detection Semantic Segmentation

“Disclaimer – Large scale learning:
We would like to highlight that the
training regime, learning schedules
and parameters used in this paper are
based on our understanding of training
ConvNets with 1M images. Searching
the right set of hyper-parameters
requires significant more effort: even
training a JFT model for 4 epochs
needed 2 months on 50 K-80 GPUs.
Therefore, in some sense the
quantitative performance reported in
this paper underestimates the impact
of data for all reported image
volumes.”

L04-35

Sze and Emer

Recently Introduced Datasets

• Google Open Images (~9M images)
– https://github.com/openimages/dataset

• Youtube-8M (8M videos)
– https://research.google.com/youtube8m/

• AudioSet (2M sound clips)
– https://research.google.com/audioset/index.html

February 14, 2024

https://github.com/openimages/dataset
https://research.google.com/youtube8m/
https://research.google.com/audioset/index.html

L04-36

Sze and Emer

Kaggle

February 14, 2024

A platform for predictive modeling competitions

Over 3,500 competition submissions per day
Over 2000+ datasets!

Starting 2018, ImageNet Challenge hosted by Kaggle
https://www.kaggle.com/c/imagenet-object-localization-challenge

https://www.kaggle.com/c/imagenet-object-localization-challenge

L04-37

Sze and Emer

Hugging Face

February 14, 2024

https://huggingface.co/

https://huggingface.co/

L04-38

Sze and Emer

Key Design Objectives of DNN Processor
• Increase Throughput and Reduce Latency

– Reduce time per MAC
• Reduce critical path à increase clock frequency
• Reduce instruction overhead

– Avoid unnecessary MACs (save cycles)
– Increase number of processing elements (PE) à more MACs in parallel

• Increase area density of PE or area cost of system

– Increase PE utilization* à keep PEs busy
• Distribute workload to as many PEs as possible
• Balance the workload across PEs
• Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

• Low latency has an additional constraint of small batch size

February 14, 2024

*(100% = peak performance)

L04-39

Sze and Emer

Key Design Objectives of DNN Processor

• Reduce Energy and Power
Consumption
– Reduce data movement as it dominates

energy consumption
• Exploit data reuse

– Reduce energy per MAC
• Reduce switching activity and/or capacitance

• Reduce instruction overhead

– Avoid unnecessary MACs

• Power consumption is limited by heat
dissipation, which limits the maximum
of MACs in parallel (i.e., throughput)

February 14, 2024

Operation: Energy
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]

L04-40

Sze and Emer

Key Design Objectives of DNN Processor

• Flexibility
– Reduce overhead of supporting flexibility
– Maintain efficiency across wide range of DNN models

• Different layer shapes impact the amount of
– Required storage and compute
– Available data reuse that can be exploited

• Different precision across layers & data types (weight, activation, partial sum)
• Different degrees of sparsity (number of zeros in weights or activations)
• Types of DNN layers and computation beyond MACs (e.g., activation functions)

February 14, 2024

L04-41

Sze and Emer

Key Design Objectives of DNN Processor

• Scalability
– Increase how performance (i.e., throughput, latency, energy, power) scales with increase

in amount of resources (e.g., number of PEs, amount of memory, etc.)

February 14, 2024

L04-42

Sze and Emer

Specifications to Evaluate Metrics
• Accuracy

– Difficulty of dataset and/or task should be considered
– Difficult tasks typically require more complex DNN models

• Throughput
– Number of PEs with utilization (not just peak performance)
– Runtime for running specific DNN models

• Latency
– Batch size used in evaluation

• Energy and Power
– Power consumption for running specific DNN models
– Off-chip memory access (e.g., DRAM)

• Hardware Cost
– On-chip storage, # of PEs, chip area + process technology

• Flexibility
– Report performance across a wide range of DNN models
– Define range of DNN models that are efficiently supported

February 14, 2024

DRAM

Chip

Off-chip
memory
access

L04-43

Sze and Emer

Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a
given application might go as follows:

1. Accuracy determines if it can perform the given task
2. Latency and throughput determine if it can run fast enough and in real-

time
3. Energy and power consumption will primarily dictate the form factor of the

device where the processing can operate
4. Cost, which is primarily dictated by the chip area and external interfaces,

determines how much one would pay for this solution
5. Flexibility determines the range of tasks it can support

February 14, 2024

L04-44

Sze and Emer

Example: Metrics of Eyeriss Chip

February 14, 2024

Metric Units Input
Name of CNN Model Text AlexNet
Top-5 error classification
on ImageNet

19.8

Supported Layers All CONV
Bits per weight # 16
Bits per input activation # 16
Batch Size # 4
Runtime ms 115.3
Power mW 278
Off-chip Access per Image
Inference

MBytes 3.85

Number of Images Tested # 100

ASIC Specs Input
Process Technology 65nm LP

TSMC (1.0V)
Total Core Area (mm2) 12.25
Total On-Chip Memory
(kB)

192

Number of Multipliers 168
Clock Frequency (MHz) 200
Core area (mm2)
/multiplier

0.073

On-Chip memory (kB) /
multiplier

1.14

Measured or Simulated Measured

L04-45

Sze and Emer

Comprehensive Coverage for Evaluation

• All metrics should be reported for fair evaluation of design tradeoffs
• Examples of what can happen if certain metric is omitted:

– Without the accuracy given for a specific dataset and task, one could run a simple DNN
and claim low power, high throughput, and low cost – however, the processor might not be
usable for a meaningful task

– Without reporting the off-chip bandwidth, one could build a processor with only multipliers
and claim low cost, high throughput, high accuracy, and low chip power – however, when
evaluating system power, the off-chip memory access would be substantial

• Are results measured or simulated? On what test data?
• Hardware should be evaluated on a wide range of DNNs

– No guarantee that DNN algorithm designer will use a given DNN model or given reduce
complexity approach. Need flexible hardware!

February 14, 2024

L04-46

Sze and Emer

MLPerf: Workloads for Benchmarking

• A broad suite of DNN models to serve as a common set of benchmarks to measure the performance
and enable fair comparison of various software frameworks, hardware accelerators, and cloud
platforms for both training and inference of DNNs. (edge compute in the works!)

• The suite includes a wide range of DNNs (e.g., CNN, RNN, etc.) for a variety of tasks include image
classification, object identification, translation, speech-to-text, recommendation, sentiment analysis
and reinforcement learning.

• Categories: cloud/edge; training/inference; closed/open

February 14, 2024

https://mlperf.org/

First results in Dec 201823 Companies
7 Institutions

https://mlperf.org/

L04-47

Sze and Emer

Specifications of DNN Models

• Accuracy
– Define task and dataset

• Shape of DNN Model (“Network Architecture”)
– # of layers, filter size (R, S), # of channels (C), # of filters (M)

• # of Weights & Activations (storage capacity)
– Number of non-zero (NZ) weights and activations

• # of MACs (operations)
– Number of non-zero (NZ) MACS

February 14, 2024

L04-48

Sze and Emer

Specifications of DNN Models
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
of CONV Layers 5 16 21 49
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of NZ MACs** 394M 7.3G 806M 1.5G
of FC layers 3 3 1 1
of Weights 58.6M 124M 1M 2M
of MACs 58.6M 124M 1M 2M
of NZ MACs** 14.4M 17.7M 639k 1.8M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G
of NZ MACs** 409M 7.3G 806M 1.5G

**# of NZ MACs computed based on 50,000 validation images
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

February 14, 2024

https://github.com/jcjohnson/cnn-benchmarks

L04-49

Sze and Emer

Weights & MACs à Energy & Latency
• Warning: Fewer weights and MACs (indirect metrics) do not necessarily result in lower

energy consumption or latency (direct metrics). Other factors also important such as filter
shape, batch size and hardware mapping.

February 14, 2024

Image Source:
Google AI Blog

[Yang, CVPR 2017], [Chen, SysML, 2018], [Yang, ECCV 2018]

L04-50

Sze and Emer

Example: AlexNet vs. SqueezeNet

0
200
400
600
800

AlexNet SqueezeNet
0

20

40

60

AlexNet SqueezeNet

Normalized Energy# of Weights

x105 x108

51.8x

1.3x

www.movidius.com
© Copyright Movidius 2016

18

1,7

IS IT WORTH IT?
Incremental Accuracy and the Power Efficiency Cost

1.59 1.13 0

15.66

8.81

4.69

41.43

24.54

10.26

1.97 1.61 1.43 1.10

15.86

11.13
9.69

6.60

83.00%

92.00% 93.33%

83.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

AlexNet (2012) VGG-16 (2013) GoogLeNet (2014) SqueezeNet (2016)

%
 A

cc
ur

ac
y

Po
w

er
 E

ffi
ci

en
cy

 (G
FL

O
PS

/W
)

Network, Year Developed

XU4 TK1 TX1 x86 K40 Accuracy %

mobile server

Notes: ImageNet, Batch = 10/64, using active cooling [Movidius, Hot Chips 2016]

SqueezeNetAlexNet

Power
Efficiency

(GFLOPS/W)

Output Feature Map
47%

Input
Feature Map

23%
Weights

21%

Computation
10%

Energy Breakdown
(SqueezeNet)

February 14, 2024

Results for SqueezeNetv1.0
Batch size=48

L04-51

Sze and Emer

DNN Processor Evaluation Tools
• Require systematic way to

– Evaluate and compare wide range of DNN
processor designs

– Rapidly explore design space

• Accelergy [Wu, ICCAD 2019]

– Early-stage energy estimation tool at the
architecture level

• Estimate energy consumption based on
architecture level components (e.g., # of PEs,
memory size, on-chip network)

– Evaluate architecture level energy impact of
emerging devices

• Plug-ins for different technologies

• Timeloop [Parashar, ISPASS 2019]

– DNN mapping tool
– Performance Simulator à Action counts

February 14, 2024

Open-source code available at:
http://accelergy.mit.edu

Accelergy
(Energy Estimator

Tool)

Architecture
description

Action
countsAction
counts

Compound
component
description

Energy
estimation

Timeloop
(DNN Mapping Tool

&
Performance

Simulator)

Labs and final project

DNN Model
Shape

(Workload)

Technology
Plug-in

http://accelergy.mit.edu/

L04-52

Sze and Emer

Summary

• Evaluate hardware using the appropriate DNN model and dataset
– Difficult tasks typically require larger models
– Different datasets for different tasks
– Number of datasets growing at a rapid pace

• A comprehensive set of metrics should be considered when
comparing DNN hardware to fully understand design tradeoffs

February 14, 2024

L04-53

Sze and Emer

Training

February 14, 2024

L04-54

Sze and Emer

Training vs. Inference

• Training: Determine weights
– Supervised

• Training set has inputs and outputs, i.e., labeled

– Unsupervised (Self-Supervised)
• Training set is unlabeled

– Semi-supervised
• Training set is partially labeled

– Reinforcement
• Output assessed via rewards and punishments

• Inference: Apply weights to determine output

February 14, 2024

L04-55

Sze and Emer

Unsupervised Learning

Finds structure in unlabeled data

February 14, 2024

[image source: cambridgespark.com]

L04-56

Sze and Emer

Reinforcement Learning

February 14, 2024

Given the state of the current environment, learn a policy that decides
what action the agent should take next to maximize expected rewards.

However, the rewards might not be available immediately after an
action, but instead only after a series of actions.

L04-57

Sze and Emer

Reinforcement Learning Examples

February 14, 2024

Game Play Robotics

L04-58

Sze and Emer

Training versus Inference

Training
(determine weights)

Weights
Large Datasets

Inference
(use weights)

February 14, 2024

L04-59

Sze and Emer

Gradient Descent

• Goal: Determine set of weights to minimize loss

• Use gradient descent to incrementally update weights to reduce loss
– Compute derivative of loss relative to weights to indicate how to change weights (linear

approximation of loss function)

February 14, 2024

[Image Source: http://sebastianraschka.com/]

L(w)

Lmin(w)
Learning rate

L04-60

Sze and Emer

Visualization of Gradient Descent

February 14, 2024

[Image Source: Wikipedia]

L04-61

Sze and Emer

Computing Gradients for DNN

February 14, 2024

gradient

An efficient way to compute gradient (a.k.a. partial derivative)
for DNN is using a process called back propagation.

Recall method to update weights during training:

L04-62

Sze and Emer

Training DNN

February 14, 2024

Forward propagation*

Back propagation

Input
Class

Scores

Loss

Gradient

* inference also uses
forward propagation

Loss
Function

∂L
∂wij

L04-63

Sze and Emer

Back-Propagation of Weights (per Layer)

February 14, 2024

Determine how loss changes w.r.t. to weights

∂L
∂wij

=
∂L
∂yj

∂yj
∂wij

∂L
∂wij

=
∂L
∂yj

xi

chain rule

y =Wx + b
∂yj
∂wij

= xi

Need to compute
∂L
∂yj

𝒙𝟏
𝝏𝑳
𝝏𝒚𝟏

𝝏𝑳
𝝏𝒚𝟐

𝝏𝑳
𝝏𝒚𝟑

𝝏𝑳
𝝏𝑾𝟏𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒 𝝏𝑳
𝝏𝑾𝟒𝟑

backpropagation

L04-64

Sze and Emer

Back-Propagation of Activations (per Layer)

February 14, 2024

Determine how loss changes w.r.t. to input activations

Similar in form to the computation used for inference

∂L
∂yj

∂L
∂x j

Layer 1 Layer 2

=W11

W43

𝝏𝑳
𝝏𝒙𝟏

𝝏𝑳
𝝏𝒙𝟐

𝝏𝑳
𝝏𝒙𝟑

𝝏𝑳
𝝏𝒙𝟒

𝝏𝑳
𝝏𝒚𝟏

𝝏𝑳
𝝏𝒚𝟐

𝝏𝑳
𝝏𝒚𝟑

backpropagation

Layer 2

𝜕𝐿
𝜕𝑥"

=%
&

𝑤"&
𝜕𝐿
𝜕𝑦&

L04-65

Sze and Emer

Back Propagation Across All Layers
Gradient w.r.t. activations

Layer n Layer n+1

∂L
∂wn

ij

=
∂L
∂ynj

∂ynj
∂wn

ij

=
∂L
∂ynj

xni

Gradient w.r.t. weights

ynj = wn
ij x

n
i + b

i
∑where

February 14, 2024

yni = x
n+1
iNote:

Need to store
activations from

forward propagation!

𝑥"5

𝑊"&
5 𝑊"&

56(

𝑦&5 𝑦&56(

𝜕𝐿
𝜕𝑦!"

=%
#

𝑤!#"
𝜕𝐿

𝜕𝑦#"$%

L04-66

Sze and Emer

Demo of CIFAR-10 CNN Training

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

February 14, 2024

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

L04-67

Sze and Emer

References

• Chapter 2 & 3 in Book
– https://doi.org/10.1007/978-3-031-01766-7

• Other Works Cited in Lecture
– Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115.3 (2015):

211-252.
– Sun, Chen, et al. "Revisiting unreasonable effectiveness of data in deep learning era." arXiv preprint arXiv:1707.02968 (2017).
– Shrivastava, Ashish, et al. "Learning from simulated and unsupervised images through adversarial training." arXiv preprint

arXiv:1612.07828 (2016).
– T.-J. Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications,” ECCV 2018.
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep

Neural Networks,” SysML Conference 2018.
– T.-J. Yang et al., “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” CVPR 2017.
– Chen et al., Eyexam, https://arxiv.org/abs/1807.07928
– Williams et al., “Roofline: An insightful visual performance model for floating-point programs and multicore architectures,” CACM 2009
– Wu et al., “Accelergy: An architecture-level energy estimation methodology for accelerator designs,” ICCAD 2019
– Parashar et al., “Timeloop: A systematic approach to dnn accelerator evaluation,” ISPASS 2019

February 14, 2024

https://doi.org/10.1007/978-3-031-01766-7
https://arxiv.org/abs/1807.07928

