L04-1

6.5930/1
Hardware Architectures for Deep Learning

Popular DNN Models (Transformers),
DNN Evaluation and Training

February 14, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

|||il- Sze and Emer

L04-2

Goals of Today’s Lecture

Popular DNN Models (cont'd)

— Transformers

Evaluate and compared DNN Models and Hardware
— Key Metrics and Design Objectives

— Datasets and benchmarks

Training

Recommended Reading: Chapter 2 & 3
— https://doi.org/10.1007/978-3-031-01766-7

February 14, 2024 I||i|- Sze and Emer

https://doi.org/10.1007/978-3-031-01766-7

L04-3

Popular DNN Models

I L
February 14, 2024 M Sze and Emer

L04-4

Important Computational Properties

» Latency and energy affected by a variety of properties including
— Number of operations that need to done sequentially
* How many operations can be done in parallel?
— Amount of data storage (memory capacity)
* How much data is needed to perform compute?

— Number of memory accesses (memory bandwidth)

» How often does data change? How often can data be reused for multiple operations?

» More details on latency and energy in “Key Metrics and Design
Objectives” section of today’s lecture

February 14, 2024 I||i|- Sze and Emer

L04-5

Computation Properties of CONV Layers

* Do operands change during inference?
— Inputs change (dynamic)
— Usually, weights do not change with input (static)
« There are exceptions (e.g., Squeeze-and-Excitation)

« Complexity based on shape of layer
— Number of MACs scales linearly with size of inputs

— Storage:

* Number of weights RSCM
* Number of input activations HWC
* Number of output activations PQM

« Sparse connection — no support outside of spatial dimensions of filter (R x S)
— Fewer weights reduces amount of data storage required
— Fewer MAC operations reduces number of operations

« Shared weights across different spatial locations (input)
— Data reuse reduces number of memory accesses

I L
February 14, 2024 I ||| Sze and Emer

Computation Properties of CONV Layers

* Multiple forms of parallelism possible
— Across M (apply multiple filters at the same time — reuse input feature maps)
— Across N (filter multiple input feature maps at the same time — reuse filters)
— Across R, S, C (compute MACs at same time, but need to accumulate — reuse both input activations

and filter weights) Input Fmaps
Filters _ - . Input Fmap
input Fmap Filter 7 Ellteni
e K .
2 |-

Convolutional Reuse

Fmap Reuse -
o Filter Reuse R, :
(Activations) (Weights) (Activations, Weights)

« Shape can change per layer (R, S, C, M, H, W) - Flexible hardware required!

L |
February 14, 2024 |||II

L04-6

Sze and Emer

L04-7

Convolution versus Attention Mechanism

« Convolution
— Only models dependencies between spatial neighbors

— Use sparsely connected layer to spatial neighbors; no support for dependencies outside of
spatial dimensions of filter (R x S)

— Fixed region of interest in input for given output

+ Attention

— “Allows modeling of [global] dependencies without regard to their distance” [Vaswani,
NeurlPS 2017]

— However, fully connected layer is too expensive; develop mechanism to bias “the allocation of
available computational resources towards the most informative components of a signal”
[Hu, CVPR 2018]

— Dynamically select region of interest in input for given output

February 14, 2024 I||i|- Sze and Emer

L04-8

Transformers

Output
Probabilities

 Built from Attention Mechanism [Vaswani,

NeurlPS 2017]
Feed
Forward
« Widely used for natural language processing —¢ m’ﬁ
(e.g., GPT-3 [Brown, NeurlPS 2020]), since long (e || | [(utiess
. . Forward Nx
dependencies between words exist ‘ —
Nx | —(Add&Norm) Ad;:;l c;rm
Multi-Head Multi-Head
Attention Attention
« Also used for other forms of data including = (=)
— audio (e.g., AST [Gong, Interspeech 2021]) e QU &0 Fooira
— vision (e.g., ViT [Dosovitskiy, /CLR 2021]) Emboading Emboiing
! I
Inputs Outputs
(shifted right)

Image Source: [Vaswani, NeurlPS 2017]
February 14, 2024 III|| Sze and Emer

L04-9

Format of Input into Attention Mechanism

« Break input into chunks referred to as tokens
— For a sentence, each word is a token
— For an image, each patch of pixels is a token
— For audio, each patch of spectrogram is a token

« Support variable sized input by processing a
sequence of “tokens” one at a time

Transformer Encoder

nmmuiddddééééé

* Extra learnable
[class] embedding L1near PI‘O]eCtIOIl of Flattened Patches

i | |
W i i —>- . . m i G E w E

February 14, 2024 ViT [Dosovitskiy, ICLR 2021] Mir

original " "
text hello world!

tokens ['hello’, ‘world', ']

token [7592, 2088, 9949]

Image Source: https://towardsdatascience.com/why-are-there-so-
many-tokenization-methods-for-transformers-a340e493b3a8

Output

Transformer Encoder

EET T]
SOREREEHE

Linear Projection

é "TLLLL. é
—— *—ﬂmll

Patch Split with Overlap B '

B AST [Gong, Inferspeech 2021] =~ Sze and Emer

https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8
https://towardsdatascience.com/why-are-there-so-many-tokenization-methods-for-transformers-a340e493b3a8

L04-10

Attention Mechanism: Overview

« Submit query (q) based on input token Can be viewed as database of key, value pairs

. . . def
« Assign attention weights for query (q) D = {(ki1,Vv1),. .. (km, vim)} adatabase of m tuples of keys and values.

against each keys (k4, ks...k,,) based
on a function a(q, k;) that captures Keys A\\At/teeigtr:?sn Values Output
their dependencies

kl > a(q’ kl) = — = V]
» Scale values (v4, Va...vy,) associated
ith each key (kq, ks...k,,) using K, > aq.k) -] v, \
wi 1, Ka...Km
attention weights > - - > /
* Qutput sum of scaled values > L >
: def - k, sl k) fF--] v,
Attention(q, D) = » _ a(q, k;)v; k)
=1 Attention
o Query q Pooling

(Note: q, k;, and v; are vectors)
Image Source: https://d2l.ai/

L
February 14, 2024 I|||| Sze and Emer

https://d2l.ai/

L04-11

Attention Mechanism: Attention Weights

The attention weights are typically computed as follows

1. Compute the dot product between the query (q) and key (k) vectors,
and scale by the length of the vectors (E). This is referred to as the

scaled-dot product attention scoring function. qTk;

VE
2. Use softmax to scale the weight to be between 0 and 1 - Softmax
&
\/E Lo
e
a(q, k;) = softmax(a(q, k;)) = 7k ﬁ
£ 1

Modified from source: https://d2l.ai/ (in class we use ‘E’ rather than ‘d’ for length of vector) |nage: nttps:/towardsdatascience.com/sigmoid-

and-softmax-functions-in-5-minutes-f516c80ea1f9

I L
February 14, 2024 I ||| Sze and Emer

https://d2l.ai/
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9

L04-12

Attention Mechanism: Multiple Tokens

» To process multiple tokens at a time within same sequences,

vectors q, k;, and v; are combined to form matrices Q, K, and V {
» Therefore, the scaled-dot product attention becomes 7 i) -
KT SoftMax
softmax (—Q)V e RP*F | T
VE
Mask (opt.)
where
« P is the number of queries (tokens) processed at time, Scale
+ E is the length of the queries and key vectors,)
* Fis the length of the values vector, and
* Mis the number of key-value pairs in the database such that TMatMufl
queries Q € RP*E keys K€ RMXE vauesV € RMXF Q K V

« Key operation in the attention mechanism is matrix multiplication Image Source:

. o [Vaswani, NeurlPS 2017]
Modified from source: https://d2l.ai/ (in class we use ‘P’ rather than ‘n’, and ‘F’ rather than ‘v’)

L
February 14, 2024 I|||| Sze and Emer

https://d2l.ai/

L04-13

Attention Mechanism: Multi-Head Attention

» Desirable to capture different behaviors L'f
Inear
— e.g., shorter range versus longer range Y
» Allow for different transforms of Q, K, and V. Concat
— This is referred to as multi-head attention, where h is the A |
number of heads. Scaled Dot-Product J& h
_ _ _ _ Attention ~
« Transforms are performed with linear projections 18 18 18
— Three matrix multiplications (W, WK, WV) per head 'Linear 'Linear T_mear
« QOutputs are concatenated and undergoes a linear projection Y Y Y
— Another matrix multiplication (W?)
V K Q

« The weights of these projections are learned

MultiHead(Q, K, V) = Concat(headq,,heady,)W ?
where head; = Attention(QWiQ, KwX,vwY)

February 14, 2024 [Vaswani, NeurlPS 2017] hr Source: https://d2l.ai/

Sze and Emer

https://d2l.ai/

L04-14

Attention Mechanism: Generating Q, K, and V

Example of compute per head, where | is an “embedding” of an input token.
This is referred to as “self-attention” since Q, K, and V are derived from |

I we Q

)) softmax())
vV Ex

Image Source (modified): https://jalammar.github.io/illustrated-transformer/

I L
February 14, 2024 I ||| Sze and Emer

https://jalammar.github.io/illustrated-transformer/

L04-15

Attention Mechanism: Generating Q, K, and V

Example of compute for multiple heads (Note: concatenate results Z; before multiplying with WZ%)

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply | or using the resulting
with weight matrices Q/K/V matrices

I Wo©
Qo
==
W,Q
* |In all encoders other than #0, QT
we don’t need embedding. [
We start directly with the output ”«‘—‘{
of the encoder right below this one !
W-Q
Q7
:I;I;‘

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix
produce the output of the layer

The output Z is
processed by a FC
layer to generate
input R to next
attention layer.

I is only the input to
first layer; R is input
to subsequent
attention layers.

Image Source (modified): https://jalammar.github.io/illustrated-transformer/

February 14, 2024

Sze and Emer

https://jalammar.github.io/illustrated-transformer/

L04-16

Computation Properties of Attention Mechanism

« Many matrix multiplications
— Three matrix multiplications for input projections per head for multi-head attention
— One matrix multiplication for output projections for multi-head attention
— Two matrix multiplications for computing scaled-dot product attention
— Atotal of five matrix multiplications per head plus one for output projection
» Parallel processing across matrix multiplications
— Across projections of Q, K, and V
— Across heads
« Sequential dependency between matrix multiplications
— Within attention: QKT then multiply by V

— Between projection and attention: Input projections - Attention - Output projection

I L
February 14, 2024 I ||| Sze and Emer

L04-17

Computation Properties of Attention Mechanism

Do operands change?
— Matrices Q, K, and V change with input (dynamic)

— Matrices WQ, WK, WV, and W4 does not change with input (static)
Reuse WQ, WK WV, and W< across input tokens

Complexity based on size of matrices and number of tokens

— Number of MACs scales quadratically with number of input tokens

— Storage: Number of weights in WQ, WK, WY and W# (multiplied by number of heads), Intermediate
matrices (Q, K, V), Input token matrix I, Output token matrix Z

Matrix multiplications can be different sizes (design choices: P, D, F, M, H, ...)

— Flexible hardware required!

-
February 14, 2024 III||- Sze and Emer

L04-18

Summary of Steps in Attention Mechanism

Einsum Notation

Im,d =]Rm,c X Wl q

Km,e = Im,d X WK,

Qm,e = Im,d X WQyq,

M,P=M M,E
QKm,,p — Qp 4 X Km,e

,€

e Rounded box > Tensor .
o Examples: A, B, AB, Z SDp T Svap
. AB Wz D.Z o Hexagonal box > Operation
Legend “ . . ° Examplcs: X, SOftma?E Am — SNm /SD
E e Vertical lined box —> Projection P P p

o Examples: xWZ S
Vmaf — [m7d X W d,,

wQ

P=M,F _
For more details, please refer to AV}o,f = Amp X Vit
http://csg.csail. mit.edu/6.5930/L ectures/attention.pdf Zypy = AV, s x WZj,

L
February 14, 2024 I|||| Sze and Emer

http://csg.csail.mit.edu/6.5930/Lectures/attention.pdf

L04-19

Design Choices

M - number of key-value pairs in the database (sequence length for the query, key and
value in self-attention)

P —number of queries (tokens) processed at a time
« E - vector length (local space embedding) of the queries and keys
« F — vector length (local space embedding) of the values

« H — number of heads in multi-head attention

« C - dictionary size (words in vocabulary)
« D -input global space embedding

* G - output embedding

I L
February 14, 2024 I ||| Sze and Emer

L04-20

Examples of Large Language Models (LLMs)
.| BERT | BERT | LLAMA | GPT3_

Number of weights (parameters) 110M 340M 6.7B 175B
Total MACs per inference (batch size=1) 53G 131G 12.8T 397T
Number of layers 12 24 32 96
M 512 512 2048 2048
P 512 512 2048 2048
C 30522 30522 32000 50257
D 768 768 4096 12288
E 32 64 128 128
F 32 64 128 128
G 768 768 4096 12288
H 12 16 32 96
Feed Forward dimension 3072 3072 11008 49152

I o -
February 14, 2024 M Sze and Emer

L04-21

Storage Requirements for LLMs

« Static (Weights)
— Linear projection (increase linearly with number of heads)
« WQ: DxExH, WK : DxExH, WV : DxFxH, WZ : FxGxH
— Feed forward layers: 2* Feed Forward dimension x G

* Dynamic
— Input token matrix |: MxD

— Intermediate matrices
* Q: PxE, K: MxE, V: MxF

¢ QKT: MxP, softmax (%) V: PxF

— Output token matrix Z: PxG

L
February 14, 2024 I|||| Sze and Emer

LLMs Require a Large Amount of Memory

L04-22

Parameter Count (Billion)

=
o
o
o
o

1000

100

(=
o

(=]

e
[

e
o
=1

February 14, 2024

Al and Memory Wall

10TB Baidu RecSys

E ®
] Transformer Size: 410x / 2 yrs Switeh Transrornag
T Al HW Memory: 2x /2 yrs
= L y GShard Megatron-Turing
= o ®
] GPT-3
1 ®
4 Microsoft T-NLG
i A100-80 (80GB) H100 (80GB)
Megatron LM O o ©
_E V100 (32GB) TPUv3 (32GB) . .
: o ® A100 (40GB)
7l P100 (12GB) GPT-2
] ® TPUV2 (16GB) Y
BERT
] E GPT-1
Inception V4 ResNext101 Transformer @
E [] [] @
] ResNet50 DenseNet
i [J (R J
- T - - - T - - - T - - - T - - - T - - - — - - — -
2016 2017 2018 2019 2020 2021 2022
YEAR

Source: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Sze and Emer

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

L04-23

Key Metrics and
Design Objectives

How can we compare designs?

I L
February 14, 2024 M Sze and Emer

L04-24

GOPS/W or TOPS/W?

« GOPS = giga (10°) operations per second
« TOPS = tera (10'2) operations per second

« GOPS/Watt or TOPS/Watt commonly reported in hardware literature to show
efficiency of design

« However, does not provide sufficient insights on hardware capabilities and
limitations (especially if based on peak throughput/performance)

Example: high TOPS per watt can be
achieved with inverter (ring oscillator)

I L
February 14, 2024 I ||| Sze and Emer

L04-25

Key Metrics: Much more than OPS/W!

Accuracy
— Quality of result

Throughput

— Analytics on high volume data

— Real-time performance (e.g., video at 30 fps)
Latency

— Forinteractive applications (e.g., autonomous navigation)
Energy and Power

— Embedded devices have limited battery capacity

— Data centers have a power ceiling due to cooling cost

Hardware Cost
- $%$
Flexibility
— Range of DNN models and tasks
Scalability
— Scaling of performance with amount of resources

February 14, 2024 |||il-

MNIST ImageNet
F e/ 79 66a\ S
67578 6b34%s
20790133+ 6
“wyl9o0! ¢ 89Y
Tl ¥4 /5 é0
17589265 % 1 97
Z222A>34%#4§0
a3 go073857
Ol by b o2¢3d
7 /28106498¢06/
Embedded Data
Device Center
&y
\,,“ 4“
Computer Speech

Vision Recognition

[Sze, CICC 2017]

Sze and Emer

L04-26

Evaluating Accuracy

« Important to measure accuracy when considering co-design of algorithm and

hardware
« Datasets help provide a way to evaluate and compare different DNN models

and training algorithms

« All accuracy is not the same
— Must consider difficulty of task and dataset to get fair comparison

February 14, 2024 I||i|- Sze and Emer

Image Classification Datasets

L04-27

» Image Classification/Recognition
— Given an entire image - Select 1 of N classes
— No localization (detection)

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONV CONVl CONVlCONVl

. by

filick
aifplane

ship

horse

=
s
=

i B
=
;e:‘
=
=
=
-

Input Image Scores

Image Source:

Datasets affect difficulty of task Stanford 6s231n
February 14, 2024 Illil-

Sze and Emer

February 14, 2024

Digit Classification

?gxcz;ls pixels B8W) 7 ¢ 3 / 79 b 6 4 |
60,00%S'T'Sas}ning 6757 86345%s
10,000 Testing 2 (790 /&A1 46
| gl 90| ¢ %9 Y
0.95% orron) 161l Y 44U 1540
‘ 1759265 %\ 99
AZR22ALDI4# Y § O

ICML 2013 03 073857
(0.21% error) O | (P(o‘(602({3
7/ 28100649806/

http://yann.lecun.com/exdb/mnist/

L04-28

ze and Emer

http://yann.lecun.com/exdb/mnist/

CIFAR-10/CIFAR-100

L04-29

February 14, 2024

Image Classification
32x32 pixels (color)
10 or 100 Classes
50,000 Training
10,000 Testing

CIFAR-10
Two-layer network in 2009
(35.16% error)

4

arXiv 2015
(3.47% error)

airplane ﬁ%\ V..:“'—:
automobile EEﬂh‘
o ElmalEWES ¥ EE
=« EEGHNEEEs P
ceer [VI 0 1 I T
“ [HESCI®BPIE L
weo i IR I N I 2 D S B
e EERIEEIP IR ST
ship =T PP
o O 0 Y

Image Source: http://karpathy.github.io/

Subset of 80M Tiny Images Dataset (Torralba)

https://www.cs.toronto.edu/~kriz/cifar.html

Sze and Emer

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/

L04-30

IMAGENET

Image Classification

~256x256 pixels (color)

1000 Classes

1.3M Training

100,000 Testing (50,000 Validation)

AL .

Image Source: http://karpathy.github.io/

L
February 14, 2024 I||" Sze and Emer

http://www.image-net.org/challenges/LSVRC/

IMAGENET

L04-31

February 14, 2024

Danoe DOnment, Dande Dnment terier

Fine grained

Cl m’""
(123?::6(13) ‘ ! ” -- ﬂ--?“

Image Source: http://karpathy.github.io/
Image Source Krlzhevsky et al., NIPS 2012
B

Top-5 Error

Winner 2012
(16.42% error)

Winner 2017
(2.25% error)

http://www.i |mage -net. org/challenges/LSVRC/
i

Sze and Emer

http://www.image-net.org/challenges/LSVRC/

Image Classification Summary

L04-32

February 14, 2024

| MNIST | CIFAR-10 | IMAGENET

Year 1998 2009 2012
Resolution 28x28 32x32 256x256
Classes 10 10 1000
Training 60k 90k 1.3M
Testing 10k 10k 100k
Accuracy 0.21% error 3.47% error 2.25%
(ICML 2013) (arXiv 2015) top-5 error
(2017 winner)

http://rodrigob.qgithub.io/are_we_there_yet/build/classification_datasets_results.html

Sze and Emer

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

L04-33

Next Tasks: Localization and Detection

Image classification

Steel drum |
> -] e
) [E Scale Scale
: | Steeldrum | T-shirt T-shirt
I | Folding chair | Steeldrum Giant panda
£ ol L_O S(_jip_e?bie_r ______ E Drumstick Drumstick
i | Mud turtle Mud turtle
|
|
Ground truth ! Accuracy: 1 Accuracy: 1 Accuracy: 0

Steel drum Smsle object localization

Ground truth Accuracy: 1 Accuracy: 0 Accuracy: 0

Object detection

M“"OPMM Steel drum "ﬂSOﬂ FOM"\S chair Mlcrophone Steel drum Person Foldmgchalr Microphone Steel drum Person Folding chair

(e]
e

Ground truth

AP: 1.0 1.0 1.0 1.0 AP: 0.0 0.5 1.0 0.3 AP: 1.0 0.7 0.5 0.9

February 14, 2024 hr [Russakovsky, /JCV 2015] Sze and Emer

L04-34

Effectiveness of More Data

Accuracy increases logarithmically based on amount training data

Results from Google Internal Dataset
JFT-300M (300M images, 18291 categories)
Orders of magnitude larger than ImageNet

Object Detection Semantic Segmentation

40

30/

[=2] 0s)
o (e}

mean AP —
(W)
o
=
o

mean IOU —

—
o

DO

o

®—@ Fine-tuning
®—® No Fine-tuning

0
10 30 100 300
Number of examples (in millions) —

0
10 30 100 300
Number of examples (in millions) —

February 14, 2024

“Disclaimer — Large scale learning:
We would like to highlight that the
training regime, learning schedules
and parameters used in this paper are
based on our understanding of training
ConvNets with 1M images. Searching
the right set of hyper-parameters
requires significant more effort: even
training a JFT model for 4 epochs
needed 2 months on 50 K-80 GPUs.
Therefore, in some sense the
quantitative performance reported in
this paper underestimates the impact
of data for all reported image
volumes.”

[Sun, ICCV 2017]

Sze and Emer

L04-35

Recently Introduced Datasets

« Google Open Images (~9M images)
— https://github.com/openimages/dataset
* Youtube-8M (8M videos)
— https://research.google.com/youtube8m/
« AudioSet (2M sound clips)

— https://research.google.com/audioset/index.html

I L
February 14, 2024 I ||| Sze and Emer

https://github.com/openimages/dataset
https://research.google.com/youtube8m/
https://research.google.com/audioset/index.html

L04-36

Kaggle

A platform for predictive modeling competitions

il

Over 3,500 competition submissions per day
Over 2000+ datasets!

Starting 2018, ImageNet Challenge hosted by Kaggle
https://www.kaggle.com/c/imagenet-object-localization-challenge

L
February 14, 2024 I||" Sze and Emer

https://www.kaggle.com/c/imagenet-object-localization-challenge

L04-37

Hugging Face

~. Hugging Face Models Datasets Spaces Posts Docs Pricing =

The Al community

building the future.

The platform where the machine learning community
collaborates on models, datasets, and applications.

Tabular R

Robotics

https://hugqgingface.co/

February 14, 2024 III| Sze and Emer

https://huggingface.co/

L04-38

Key Design Objectives of DNN Processor

* Increase Throughput and Reduce Latency
— Reduce time per MAC

» Reduce critical path - increase clock frequency
» Reduce instruction overhead

— Avoid unnecessary MACs (save cycles)

— Increase number of processing elements (PE) - more MACs in parallel
* Increase area density of PE or area cost of system

— Increase PE utilization* - keep PEs busy

* Distribute workload to as many PEs as possible
» Balance the workload across PEs
« Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

» Low latency has an additional constraint of small batch size

*(100% = peak performance)

I L
February 14, 2024 I ||| Sze and Emer

L04-39

Key Design Objectives of DNN Processor

 Reduce Energy and Power
Consumption
— Reduce data movement as it dominates

energy consumption

» Exploit data reuse

— Reduce energy per MAC
* Reduce switching activity and/or capacitance

* Reduce instruction overhead

— Avoid unnecessary MACs
* Power consumption is limited by heat
dissipation, which limits the maximum
of MACs in parallel (i.e., throughput)

February 14, 2024

Operation: Energy
(P)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014]

Relative Energy Cost

1 10 102 103

104

Sze and Emer

L04-40

Key Design Objectives of DNN Processor

* Flexibility
— Reduce overhead of supporting flexibility
— Maintain efficiency across wide range of DNN models
+ Different layer shapes impact the amount of
— Required storage and compute
— Available data reuse that can be exploited
« Different precision across layers & data types (weight, activation, partial sum)
« Different degrees of sparsity (number of zeros in weights or activations)
» Types of DNN layers and computation beyond MACs (e.g., activation functions)

I L
February 14, 2024 I ||| Sze and Emer

L04-41

Key Design Objectives of DNN Processor

« Scalability

— Increase how performance (i.e., throughput, latency, energy, power) scales with increase
in amount of resources (e.g., number of PEs, amount of memory, etc.)

I L
February 14, 2024 I ||| Sze and Emer

L04-42

Specifications to Evaluate Metrics

« Accuracy
— Difficulty of dataset and/or task should be considered
— Difficult tasks typically require more complex DNN models Chip
* Throughput [7 e |
— Number of PEs with utilization (not just peak performance)
— Runtime for running specific DNN models
 Latency
— Batch size used in evaluation
 Energy and Power
— Power consumption for running specific DNN models
— Off-chip memory access (e.g., DRAM)
* Hardware Cost
— On-chip storage, # of PEs, chip area + process technology
* Flexibility
— Report performance across a wide range of DNN models

— Define range of DNN models that are efficiently supported
February 14, 2024 |||il-

Off-chip
memory
access

Sze and Emer

L04-43

Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a
given application might go as follows:

1.
2,

5.

-
February 14, 2024 M

Accuracy determines if it can perform the given task

Latency and throughput determine if it can run fast enough and in real-
time

Energy and power consumption will primarily dictate the form factor of the
device where the processing can operate

Cost, which is primarily dictated by the chip area and external interfaces,
determines how much one would pay for this solution

Flexibility determines the range of tasks it can support

Sze and Emer

February 14, 2024

L04-44

Example: Metrics of Eyeriss Chip

AsiCSpecs |imput [Metic _|uUnits linput |

Process Technology 65nm LP
TSMC (1.0V)

Total Core Area (mm?) 12.25

Total On-Chip Memory 192
(kB)

Number of Multipliers 168
Clock Frequency (MHz) 200
Core area (mm?) 0.073
/multiplier

On-Chip memory (kB) / 1.14
multiplier

Measured or Simulated Measured

Name of CNN Model Text

Top-5 error classification #
on ImageNet

Supported Layers

Bits per weight #
Bits per input activation #
Batch Size #
Runtime ms
Power mW

Off-chip Access per Image MBytes
Inference

Number of Images Tested #

AlexNet
19.8

All CONV
16

16

4

115.3
278

3.85

100

Sze and Emer

L04-45

Comprehensive Coverage for Evaluation

« All metrics should be reported for fair evaluation of design tradeoffs

« Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task, one could run a simple DNN

and claim low power, high throughput, and low cost — however, the processor might not be
usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build a processor with only multipliers
and claim low cost, high throughput, high accuracy, and low chip power — however, when
evaluating system power, the off-chip memory access would be substantial

* Are results measured or simulated? On what test data?
« Hardware should be evaluated on a wide range of DNNs

— No guarantee that DNN algorithm designer will use a given DNN model or given reduce
complexity approach. Need flexible hardware!

February 14, 2024 I||i|- Sze and Emer

L04-46

MLPerf: Workloads for Benchmarking

23 Companies First results in Dec 2018
7 Institutions /

MLPerf

A broad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ML cloud platforms.

https://mlperf.org/

» Abroad suite of DNN models to serve as a common set of benchmarks to measure the performance
and enable fair comparison of various software frameworks, hardware accelerators, and cloud
platforms for both training and inference of DNNs. (edge compute in the works!)

» The suite includes a wide range of DNNs (e.g., CNN, RNN, etc.) for a variety of tasks include image
classification, object identification, translation, speech-to-text, recommendation, sentiment analysis
and reinforcement learning.

» Categories: cloud/edge; training/inference; closed/open

I L
February 14, 2024 I ||| Sze and Emer

https://mlperf.org/

L04-47

Specifications of DNN Models

 Accuracy

— Define task and dataset

« Shape of DNN Model (“Network Architecture”)
— # of layers, filter size (R, S), # of channels (C), # of filters (M)

- # of Weights & Activations (storage capacity)

— Number of non-zero (NZ) weights and activations

« # of MACs (operations)
— Number of non-zero (NZ) MACS

I L
February 14, 2024 I ||| Sze and Emer

L04-48

Specifications of DNN Models

Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
of CONV Layers 5 16 21 49
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of NZ MACs** 394M 7.3G 806M 1.5G
of FC layers 3 3 1 1

of Weights 58.6M 124M 1™ 2M
of MACs 58.6M 124M 1™ 2M
of NZ MACs** 14.4M 17.7TM 639k 1.8M
Total Weights 61M 138M ™ 25.5M
Total MACs 724M 15.5G 1.43G 3.9G
of NZ MACs** 409M 7.3G 806M 1.5G

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks
**# of NZ MACs computed based on 50,000 validation images

L |
February 14, 2024 |||II

Sze and Emer

https://github.com/jcjohnson/cnn-benchmarks

Weights & MACs - Energy & Latency

» Warning: Fewer weights and MACs (indirect metrics) do not necessatrily result in lower

L04-49

energy consumption or latency (direct metrics). Other factors also important such as filter
shape, batch size and hardware mapping.

February 14, 2024

30

o .' Similar latency, 3x range in # MACs
’___’ ________________________
(™ © e
D N P A EE B 4
/-‘\ ©
- 20 O |. : [)
\E, ' @
> %! ¢
C | 1 ® °
% .: . ! Image Source:
- 10
€ oele Simiar#MACs, Google Al Blog
% o .‘ ~ - 2xrange in latency
4
0
25 50 75 100 125 150 175

MACs (Million)
[Yang, CVPR 2017], [Chen, SysML, 2018], [Yang, ECCV 2018]

Sze and Emer

L04-50

Example: AlexNet vs. SqueezeNet

x10° x108 Computation Input
800 60 10% eature Map

23%

600 40 13x4
400 51.8 Weights
-0X 21%
200 20 o
0 0 ap

AlexNet SqueezeNet AlexNet SqueezeNet

of Weights Normalized Energy Energy Breakdown
(SqueezeNet)

XU4 mmTK1 mTX1 ||-x86 mK40 I--Accuracy%

mobile server

Results for SqueezeNetv1.0

45.00 100.00% -
40.00 90.00% Batch size=48
% 35.00 80.00%
S 70.00%
S 30.00 o
& 60.00% 3
225,00 g
2 50.00% 3
§20.00 g
P F 40.00% =
ower 4 15.00 o0
. = g
Efficiency 2000%
GFLOPS
(IW) 0.00 0.00%

AlexNet (2012) VGG-16 (2013) GooglLeNet (2014) SqueezeNet (2016)
Network, Year Developed

Notes: ImageNet, Batch = 10/64, using 8gtive cooling [MOVidius, Hot Chlps 201 6]
February 14, 2024 AlexNet Uk SqueezeNet

Sze and Emer

DNN Processor Evaluation Tools

L04-51

* Require systematic way to
— Evaluate and compare wide range of DNN
processor designs

— Rapidly explore design space
« Accelergy [Wu, ICCAD 2019]

— Early-stage energy estimation tool at the
architecture level

+ Estimate energy consumption based on
architecture level components (e.g., # of PEs,
memory size, on-chip network)

— Evaluate architecture level energy impact of
emerging devices
* Plug-ins for different technologies
« Timeloop [Parashar, ISPASS 2019]
— DNN mapping tool
— Performance Simulator - Action counts

February 14, 2024

DNN Model
Shape
(Workload)

Architecture
description

—

Compound
component
description

J

&

Tool)

Timeloop
(DNN Mapping Tool

Performance
Simulator)

Accelergy
(Energy Estimator

A

v

Technology
Plug-in

Energy
estimation

—

J

Labs and final project

Open-source code

available at:

http://accelergy.mit.edu

Action
counts

Sze and Emer

http://accelergy.mit.edu/

L04-52

Summary

« Evaluate hardware using the appropriate DNN model and dataset
— Difficult tasks typically require larger models
— Different datasets for different tasks
— Number of datasets growing at a rapid pace

» A comprehensive set of metrics should be considered when
comparing DNN hardware to fully understand design tradeoffs

I L
February 14, 2024 I ||| Sze and Emer

L04-53

Training

L
February 14, 2024 M Sze and Emer

L04-54

Training vs. Inference

* Training: Determine weights
— Supervised
« Training set has inputs and outputs, i.e., labeled
— Unsupervised (Self-Supervised)
* Training set is unlabeled
— Semi-supervised
« Training set is partially labeled

— Reinforcement
» Output assessed via rewards and punishments

 Inference: Apply weights to determine output

L
February 14, 2024 I|I|| Sze and Emer

L04-55

Unsupervised Learning

Finds structure in unlabeled data

Supervised learning Unsupervised learning
A
A clusters
X OOO
X X O
Xy X X3 5
O o O
boundary O
X4 X1

[image source: cambridgespark.com]

L
February 14, 2024 M Sze and Emer

Reinforcement Learning

state

’_I Agent l

7

reward
R,
< Rt+1
Sz+1
«

\,

Environment]<

action
A

Given the state of the current environment, learn a policy that decides
what action the agent should take next to maximize expected rewards.

However, the rewards might not be available immediately after an
action, but instead only after a series of actions.

February 14, 2024

L04-56

Sze and Emer

Reinforcement Learning Examples

Game Play Robotics
' ' ' |
‘\ Google DeepMind

Challenge Match

February 14, 2024 hr

L04-57

Sze and Emer

L04-58

Training versus Inference

Training Inference
(determine weights) (use weights)

Weights

L
February 14, 2024 M Sze and Emer

L04-59

Gradient Descent

* Goal: Determine set of weights to minimize loss

« Use gradient descent to incrementally update weights to reduce loss

— Compute derivative of loss relative to weights to indicate how to change weights (linear
approximation of loss function)

Lw) |
t"‘]. - t _ 8.[/ Iniﬁal
w’l,] T w’LJ X 8’(1),,,7 e
T Lmin(W) >
Learning rate w

[Image Source: http://sebastianraschka.com/]

L
February 14, 2024 I|||| Sze and Emer

L04-60

Visualization of Gradient Descent

[Image Source: Wikipedia]

I L
February 14, 2024 I I" Sze and Emer

L04-61

Computing Gradients for DNN

Recall method to update weights during training:

t+1 _ .t _ [OL
ij — Wij T YPu;
gradient

w

An efficient way to compute gradient (a.k.a. partial derivative)
for DNN is using a process called back propagation.

I L
February 14, 2024 I ||| Sze and Emer

L04-62

Training DNN

Forward propagation*®

Class
nput I S corcs
A

XIS
§,«‘§ Al“

Q
N\
Gradient _/

L (. oss

awij Back propagation * inference also uses
forward propagation

7,
‘:I‘:‘
4"‘('

Loss
Function

)

February 14, 2024 Illil- Sze and Emer

L04-63

Back-Propagation of Weights (per Layer)

February 14, 2024

Determine how loss changes w.r.t. to weights

oL ayj
ayj aw..

backpropagation
dL k\

X1 6W11

6y1
X2

oL

ay,
X3

oL

63’3
X4

aW43 Q

y = Wx+b~
dL dL
ow, 09y,

chain rule

ayJ

oL

Need to compute ——

dy;

Sze and Emer

L04-64

Back-Propagation of Activations (per Layer)

February 14, 2024

ax,

backpropagation

oL
Wi

9%, oL
oL 971
9xz oL
oL 9y2
9x3 oL

oL
Was

Determine how loss changes w.r.t. to input activations

Layer 1 Layer 2

oL _ oL
dy; 0X;
Layer 2

axl Z Y By, ay,

Similar in form to the computation used for inference

Sze and Emer

L04-65

Back Propagation Across All Layers

Gradient w.r.t. weights Gradient w.r.t. activations
oL 9y; _ oL o oL ~~ , oL
dy’; ow;; 9y’ i iyl ZW” oyt

where Y} = Y wixi+b Note:y! = x/'*!

Need to store
activations from
forward propagation!

I L
February 14, 2024 I I" Sze and Emer

L04-66

Demo of CIFAR-10 CNN Training

Network Visualization

Input (32x32x3) Activations:

ConvNetJS CIFAR-10 demo max activation: 0.34313, min- -0.49608

max gradient: 0.04754, min. -0.0368

Description
conv (32x32x16)
This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but o avatone 142813, mi 120123
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% ﬁ,"’:‘,ﬁ:‘o ol
parameters: 16xSx5x3+16 » 1216

(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we Achaton S
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields .-.....
for changing these if you'd like to play around with SGD+Momentum trainer.
o trstmrto S o I I
Weights:
PRYSQLeRFEOXRSEN
Weight Gradients:

[Labinal Lol | PR L g)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

L
February 14, 2024 I||" Sze and Emer

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

L04-67

References

 Chapter 2 & 3 in Book

https://doi.org/10.1007/978-3-031-01766-7

« Other Works Cited in Lecture

Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115.3 (2015):
211-252.

Sun, Chen, et al. "Revisiting unreasonable effectiveness of data in deep learning era." arXiv preprint arXiv:1707.02968 (2017).
Shrivastava, Ashish, et al. "Learning from simulated and unsupervised images through adversarial training." arXiv preprint
arXiv:1612.07828 (2016).

T.-J. Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications,” ECCV 2018.

Y.-H. Chen*, T.-J. Yang®, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep
Neural Networks,” SysML Conference 2018.

T.-J. Yang et al., “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” CVPR 2017.

Chen et al., Eyexam, https://arxiv.org/abs/1807.07928

Williams et al., “Roofline: An insightful visual performance model for floating-point programs and multicore architectures,” CACM 2009

Wu et al., “Accelergy: An architecture-level energy estimation methodology for accelerator designs,” ICCAD 2019

Parashar et al., “Timeloop: A systematic approach to dnn accelerator evaluation,” ISPASS 2019

I L
February 14, 2024 I ||| Sze and Emer

https://doi.org/10.1007/978-3-031-01766-7
https://arxiv.org/abs/1807.07928

