
L06-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Kernel Computation -
Impact of Memory Hierarchy

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

February 21, 2024

L06-2

Sze and EmerSze and Emer

Goals of Today’s Lecture

• Understand impact of memory hierarchy
– Overview of caches
– Structuring algorithms to work well in caches using tiling
– Storage technologies

February 21, 2024

L06-3

Sze and EmerSze and Emer

Readings for this Week

• Efficient Processing of Deep Neural Networks
– Chapter 4 of https://doi.org/10.1007/978-3-031-01766-7

.

February 21, 2024

L06-4

Sze and EmerSze and Emer

Simple Pipelined µArchitecture

February 21, 2024

PC

I
M
E
M

IR GPR

X

Y

+
* D

M
E
M

Warning: Objects in PowerPoint may
be larger than they appear

What are consequences of putting
large memory (e.g., megabytes)
directly in pipeline?

L06-5

Sze and EmerSze and Emer

Pipelined µArchitecture with Caches

February 21, 2024

PC I
$

IR GPR

X

Y

+
* D

$

Memory

Instruction cache (I$) and data cache (D$) hold memory data
for reuse in small energy efficient buffer

L06-6

Sze and EmerSze and Emer

Direct Mapped Cache

February 21, 2024

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT
Data Word or Byte

2k

lines

Block number Block offset

Valid bit
indicates data
block is valid

Data block consists
of multiple words

Valid and tag
match means

data is in cache Offset selects desired word

Address partitioned
into multiple fields

Index
picks
row

L06-7

Sze and EmerSze and Emer

Cache Operation

February 21, 2024

Look at data address, search cache tags to find match.
Then if…

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Metric: Hit Rate = #Hits / (#Hits + #Misses)

Fill

L06-8

Sze and EmerSze and Emer

Treatment of Writes

• Cache hit:
– write through: write both cache & memory

• generally higher traffic but simplifies cache in processor pipeline

– write back: write cache only
(memory is written only when the entry is evicted)

• a dirty bit per block can further reduce the traffic

• Cache miss:
– no write allocate: only write to main memory
– write allocate (aka fetch on write): fetch into cache

• Common combinations:
– write through and no write allocate
– write back with write allocate

February 21, 2024

L06-9

Sze and EmerSze and Emer

Cache Locality

Caches implicitly try to optimize data movement by trying to exploit
two common properties of memory references:

– Spatial Locality: If a location is referenced it is likely that locations near it
will be referenced in the near future.

• Exploited by having block size larger than a word, which also amortizes fill
overheads by getting more bytes with one access

– Temporal Locality: If a location is referenced it is likely to be referenced
again in the near future.

• Exploited by holding blocks for future access

February 21, 2024

L06-10

Sze and EmerSze and Emer

Fully Connected (FC) Computation

February 21, 2024

int i[CHW]; # Input activations
int f[M*CHW]; # Filter Weights
int o[M]; # Output activations

CHWm = ‐CHW
for m in [0, M):
o[m] = 0
CHWm += CHW
for chw in [0, CHW):

o[m] += i[chw] * f[CHWm + chw]

M iterations

C*H*W iterations

M*C*H*W loadsM*C*H*W loads of each
weight and input activation

Predefined constant

L06-11

Sze and EmerSze and Emer

Impact of spatial locality

February 21, 2024

• Typical in-pipeline cache size
– 64K bytes => 16K FP32 words
– 64 byte blocks => 16 FP32 words/block

Hit rate of long sequential reference
streams due to spatial locality?

L06-12

Sze and EmerSze and Emer

FC – Data Reference Pattern

February 21, 2024

F[M0 ------]

F[M1 ------]

F[M2 ------]

F[M3 ------]

F[M4 ------]

I[C0 H0 W0]
I[C0 H0 W1] …

Not drawn to scale

Weight locality…

Spatial?

Input activation locality…

Spatial?CHW

M*CHW

m=0 1 2 3

Temporal?

Temporal?

L06-13

Sze and EmerSze and Emer

FC – Data Reference Pattern

February 21, 2024

L06-14

Sze and EmerSze and Emer

Amount of temporal locality

• Typical layer size:
– H, W = 256 C = 128

February 21, 2024

Size of input activations?

What does this imply for
Input activation temporary locality?

• Typical in-pipeline cache size
– 64K bytes => 16K FP32 words
– 64 byte blocks => 16 FP32 words/block

L06-15

Sze and EmerSze and Emer

Computational Intensity

February 21, 2024

Computational Intensity =
𝑀𝐴𝐶𝑆

𝐷𝑎𝑡𝑎 𝑊𝑜𝑟𝑑𝑠

Number MACS:

L06-16

Sze and EmerSze and Emer

Computational Intensity – Ideal FC

Number MACS: M*C*H*W

Input activation accesses:

Filter weight accesses:

Output activation accesses:

February 21, 2024

Computational Intensity =
𝑀𝐴𝐶𝑆

𝐷𝑎𝑡𝑎 𝑊𝑜𝑟𝑑𝑠

Computational Intensity =

If in one cycle a processor can deliver one word from memory and perform one MAC how well
will the machine perform running this code?

L06-17

Sze and EmerSze and Emer

Computational Intensity – Naïve FC

Number MACS: M*C*H*W

Input activation accesses

Filter weight accesses

Output activation accesses

CHWm = ‐CHW;
for m in [0, M):
o[m] = 0;
CHWm += CHW
for chw in [0, CHW):

o[m] += i[chw] * f[CHWm + chw]

February 21, 2024

Computational Intensity =
𝑀𝐴𝐶𝑆

𝐷𝑎𝑡𝑎 𝑊𝑜𝑟𝑑𝑠

Computational Intensity =

L06-18

Sze and EmerSze and Emer

Einsum for strip mined FC

/ , %

,

February 21, 2024

, / , % ,

, , ,

𝑐ℎ𝑤1 𝑐ℎ𝑤1𝑐ℎ𝑤0 𝑐ℎ𝑤0

L06-19

Sze and EmerSze and Emer

// Level 1
for chw1 in [0, CHW1):
for m in [0, M):

// Level 0
for chw0 in [0, CHW0):

chw = CHW0*chw1+chw0
o[m] += i[chw] * f[CHW*m + chw]

Fully Connected – Strip Mined

February 21, 2024

for m in [0, M):
for chw in [0, C*H*W):
o[m] += i[chw] * f[CHW*m + chw]

Just considering input activations,
what value should CHW0 be?

Inner loop
working set = X
Inner loop working

set = CHW0

CHW1*CHW0 =
C*H*W

L06-20

Sze and EmerSze and Emer

FC - Strip Mined Data Reference Pattern

February 21, 2024

Untiled Tiled

Cache
Hits?

F[M0 ------]

F[M1 ------]

F[M2 ------]

F[M3 ------]

F[M4 ------]

I[C0 H0 W0]
I[C0 H0 W1]
…

Not drawn to scale

CHW

M*CHW

L06-21

Sze and EmerSze and Emer

Computational Intensity – Strip Mined

Number MACS: M*C*H*W

Input activation accesses:

Filter weight accesses:

Output activation accesses

February 21, 2024

// Level 1
for chw1 in [0, CHW1):
for m in [0, M):

// Level 0
for chw0 in [0, CHW0):

chw = CHW0*chw1+chw0
o[m] += i[chw] * f[CHW*m + chw]

Computational Intensity =

L06-22

Sze and EmerSze and Emer

Matrix-Vector Multiply – Strip Mined

February 21, 2024

L06-23

Sze and EmerSze and Emer

Associative Cache

February 21, 2024

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

Allows multiple
streams to be

resident at
same time

Pick data from
‘way’ that ‘hits’
Pick data from
‘way’ that ‘hits’

L06-24

Sze and EmerSze and Emer

Cache Miss Pipeline Diagram

February 21, 2024

ld r6, w(r5)

mul r7,r4,r6

Time (cycles)

IF ID RF EX D$ WB

IF ID RF EX D$ WB

ld r6, w(r5)

mul r7,r4,r6

IF ID RF EX D$ MISS - MEM WB

IF ID RF EX D$ WB

HIT

MISS

stall

stall

L06-25

Sze and EmerSze and Emer

Avoiding Cache Miss Stalls

• Reorganize code so loads are far ahead of use
– Requires huge amount of unrolling
– Consumes lots of registers

• Add ‘prefetch’ instructions that just load cache
– Consumes instruction issue slots

• Add hardware that automatically loads cache

February 21, 2024

L06-26

Sze and EmerSze and Emer

Hardware Data Prefetching

February 21, 2024

• Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed
– Can extend to N block lookahead

• Strided prefetch
– If observe sequence of accesses to block b, b+N, b+2N, then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent streams of strided prefetch per processor,
prefetching 12 lines ahead of current access

L06-27

Sze and EmerSze and Emer

Multi-level Caches

February 21, 2024

• A memory cannot be large and fast
• Add level of cache to reduce miss penalty

– Each level can have longer latency than level above
– So, increase sizes of cache at each level

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

L06-28

Sze and EmerSze and Emer

Contemporary CPU Cache Hierarchy

February 21, 2024

L06-29

Sze and EmerSze and Emer

H

W

C

N

FC Layer – Multichannel

February 21, 2024

…

M

…

input fmaps
output fmaps

…
filters

H

C

1
1 1

1

1
N

W 1

H

C

1
W

H

W

C

M

L06-30

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M=

L06-31

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

L06-32

Sze and EmerSze and Emer

FC Einsum Notation

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

, , ,

L06-33

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

L06-34

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

●●●●

●●●●

L06-35

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

L06-36

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

How much temporal locality for naïve implementation? None

●●●●
●●●●

●
●
●
●

●
●
●
●

L06-37

Sze and EmerSze and Emer

Matrix-Matrix Multiply

February 21, 2024

L06-38

Sze and EmerSze and Emer

Matrix-Matrix Multiply Tiled

February 21, 2024

L06-39

Sze and EmerSze and Emer

Tiled Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,
1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in cache
and computation ordered to maximize reuse of data in cache

L06-40

Sze and EmerSze and Emer

Tiled Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,
1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in cache
and computation ordered to maximize reuse of data in cache

L06-41

Sze and EmerSze and Emer

Tiled Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,
1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in cache
and computation ordered to maximize reuse of data in cache

●●●●
●●●●

*Dotted line means partial result

L06-42

Sze and EmerSze and Emer

Tiled Fully-Connected (FC) Layer

February 21, 2024

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,
1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in cache
and computation ordered to maximize reuse of data in cache

L06-43

Sze and EmerSze and Emer

Einsum for tiled FC

February 21, 2024

, , , ,

, ,

, , , ,

, , , , , , ,

L06-44

Sze and EmerSze and Emer

Fully-Connected (FC) Layer

February 21, 2024

• Implementation: Matrix Multiplication (GEMM)

• CPU: OpenBLAS, Intel MKL, etc
• GPU: cuBLAS, cuDNN, etc

• Library will note shape of the matrix multiply
and select implementation optimized for that
shape.

• Optimization usually involves proper tiling to
storage hierarchy

L06-45

Sze and EmerSze and Emer

Tradeoffs in Memories

February 21, 2024

L06-46

Sze and EmerSze and Emer

Overview of Memories

Memory consist of arrays of cells that hold a value.

• Types of Memories/Storage
– Latches/Flip Flops (Registers)
– SRAM (Register File, Caches)
– DRAM (Main Memory)
– Flash (Storage)

February 21, 2024

L06-47

Sze and EmerSze and Emer

Elements of Memory Operation

Implementations vary based on:

– How a memory cell holds a value?
– How is a value obtained from a memory cell?
– How is a value set in a memory cell?
– How is array constructed out of individual cells?

• Results in tradeoffs between cost, density, speed, energy and
power consumption

February 21, 2024

L06-48

Sze and EmerSze and Emer

Latches/Flip Flops

• Fast and low latency
• Located with logic

February 21, 2024

D$

PC I$ IR GPR

X

Y

+
*

Example from CPU pipeline

D-flip flop

Image source: 6.111

L06-49

Sze and EmerSze and Emer

Latches/Flip Flops (< 0.5 kB)

• Fast and low latency
• Located with logic
• Not very dense

– 10+ transistors per bit
– Usually use for arrays smaller than 0.5kB

February 21, 2024

Array of Flip flops

D-flip flop

Image source: 6.111

Read
Address
[A2:A0]

L06-50

Sze and EmerSze and Emer

Latches/Flip Flops (< 0.5 kB)

February 21, 2024

Array of Flip flops

Read
Address
[A2:A0]

PC I$ IR GPR

X

Y

+
*

D$

L06-51

Sze and EmerSze and Emer

SRAM

• Higher density than register
– Usually, 6 transistors per bit-cell

• Less robust and slower than latches/flip-flop

February 21, 2024

Bit cell size 0.75um2 in 14nm

IC wafer

L06-52

Sze and EmerSze and Emer

SRAM (kB – MB)

February 21, 2024

Address
[Ak:A0]

L06-53

Sze and EmerSze and Emer

SRAM

February 21, 2024

PC I$ IR GPR

X

Y

+
*

D$

L06-54

Sze and EmerSze and Emer

SRAM Power Dominated by Bit Line

February 21, 2024

56%

6%

15%

22%
Bit-lines (BL)

Word-line (WL)

Sensing Ntwk.

Other

Measured SRAM Power Breakdown

@VDD=0.6V

Larger array Longer bit-lines
 Higher capacitance Higher power

Image Source: Mahmut Sinangil

L06-55

Sze and EmerSze and Emer

DRAM

• Higher density than SRAM
– 1 transistor per bit-cell
– Needs periodic refresh

• Special device process

February 21, 2024

L06-56

Sze and EmerSze and Emer

DRAM (GB)

• Higher density than SRAM
– 1 transistor per bit-cell
– Needs periodic refresh

• Special device process
– Usually off-chip (except eDRAM – which is pricey!)
– Off-chip interconnect has much higher capacitance

February 21, 2024

p
J

nJ

L06-57

Sze and EmerSze and Emer

Flash (100GB to TB)

• More dense than DRAM
• Non-volatile

– Needs high powered write (change VTH of transistor)

February 21, 2024

L06-58

Sze and EmerSze and Emer

Flash Memory

Multi-levels
cell (MLC)

48 layer, Ternary
level cell (TLC)

Aug 2015
256 Gb per die (for SSD)

Single Level
Cell (SLC)

Single Level Cell (SLC)

Multi-levels cell (MLC)

February 21, 2024

L06-59

Sze and EmerSze and Emer

Memory Tradeoffs

February 21, 2024

Density
Function of circuit type

(smaller → denser)

Cost/bit
Function of circuit type (smaller → cheaper)

Energy/access/bit
Function of total capacity
(smaller → less energy)

and circuit type
(smaller → less energy)

Latency
Function of circuit type

(smaller → slower)
and total capacity
(smaller → faster)

Bandwidth
Increases with

parallelism

Most attributes tend to improve with technology scaling,
lower voltage and sometimes smaller capacitors

L06-60

Sze and EmerSze and Emer

Summary

• Reduce main memory access with caches
– Main memory (i.e., DRAM) is slow and has high energy consumption
– Exploits spatial and temporal locality

• Tiling to reduce cache misses
– Possible since processing order does not affect result (MACs are commutative)
– Add levels to loop nest to improve temporal locality
– Size of tile depends on cache size and cache associativity

• Tradeoffs in storage technology
– Various tradeoffs in cost, speed, energy, capacity…
– Different technologies appropriate at different spots in the design

February 21, 2024

L06-61

Sze and EmerSze and Emer

Next Lecture: Vectorization

Thank you!

February 21, 2024

