6.5930/1 Hardware Architectures for Deep Learning

Kernel Computation - Impact of Memory Hierarchy

February 21, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Goals of Today's Lecture

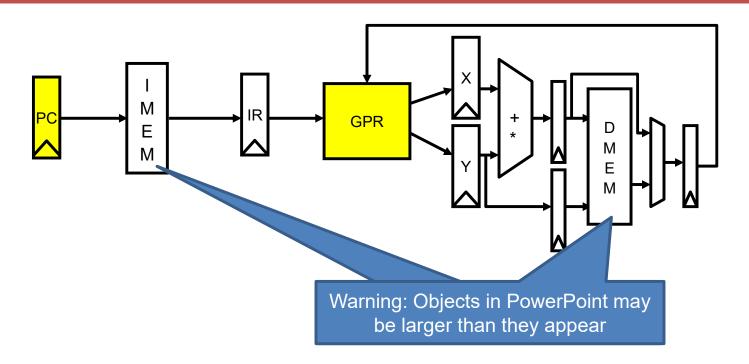
- Understand impact of memory hierarchy
 - Overview of caches
 - Structuring algorithms to work well in caches using tiling
 - Storage technologies

Readings for this Week

- Efficient Processing of Deep Neural Networks
 - Chapter 4 of https://doi.org/10.1007/978-3-031-01766-7

.

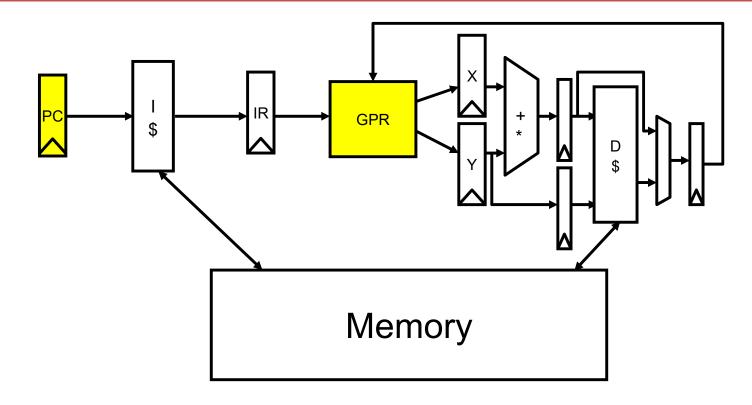
Simple Pipelined µArchitecture



What are consequences of putting large memory (e.g., megabytes) directly in pipeline?

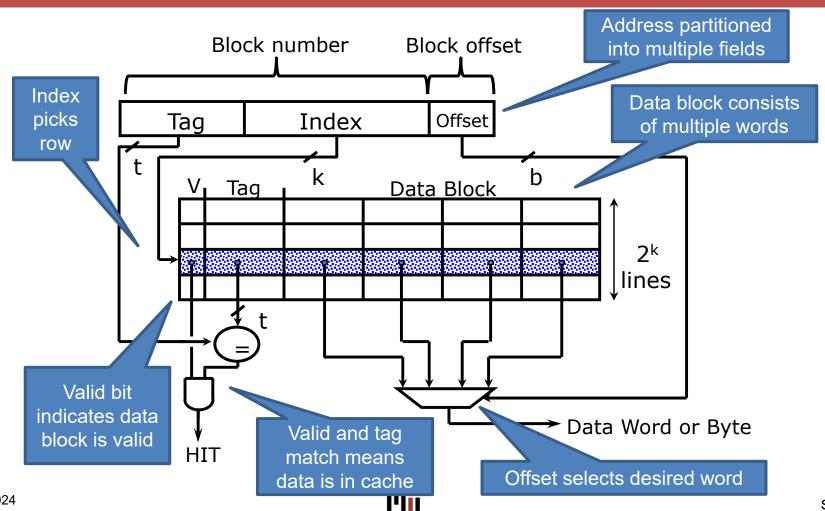
Long latency => dependency stalls Large energy consumption

Pipelined µArchitecture with Caches



Instruction cache (I\$) and data cache (D\$) hold memory data for reuse in small energy efficient buffer

Direct Mapped Cache

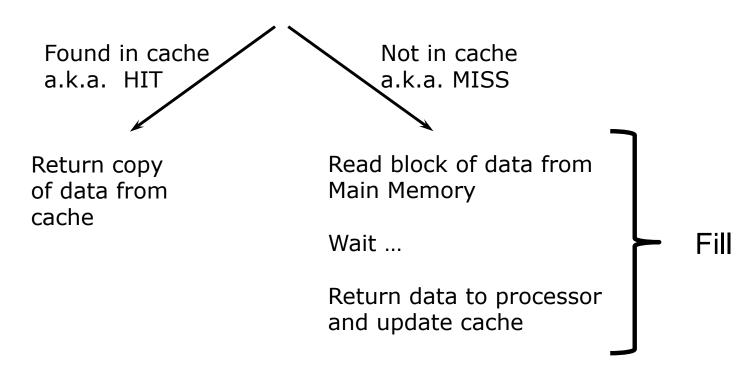


February 21, 2024 Sze and Emer

Cache Operation

Look at data address, search cache tags to find match.

Then if...



Metric: Hit Rate = #Hits / (#Hits + #Misses)

February 21, 2024

Treatment of Writes

- Cache hit:
 - write through: write both cache & memory
 - · generally higher traffic but simplifies cache in processor pipeline
 - write back: write cache only (memory is written only when the entry is evicted)
 - a dirty bit per block can further reduce the traffic
- Cache miss:
 - no write allocate: only write to main memory
 - write allocate (aka fetch on write): fetch into cache
- Common combinations:
 - write through and no write allocate
 - write back with write allocate

Cache Locality

Caches **implicitly** try to optimize data movement by trying to exploit two common properties of memory references:

- Spatial Locality: If a location is referenced it is likely that locations near it will be referenced in the near future.
 - Exploited by having block size larger than a word, which also amortizes fill overheads by getting more bytes with one access
- Temporal Locality: If a location is referenced it is likely to be referenced again in the near future.
 - Exploited by holding blocks for future access

Fully Connected (FC) Computation

Predefined constant

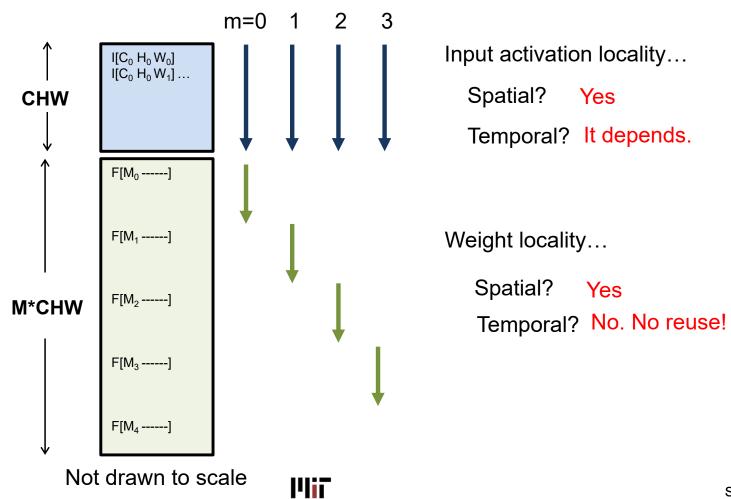
Impact of spatial locality

- Typical in-pipeline cache size
 - 64K bytes => 16K FP32 words
 - 64 byte blocks => 16 FP32 words/block

Hit rate of long sequential reference streams due to spatial locality?

15/16 => ~94%

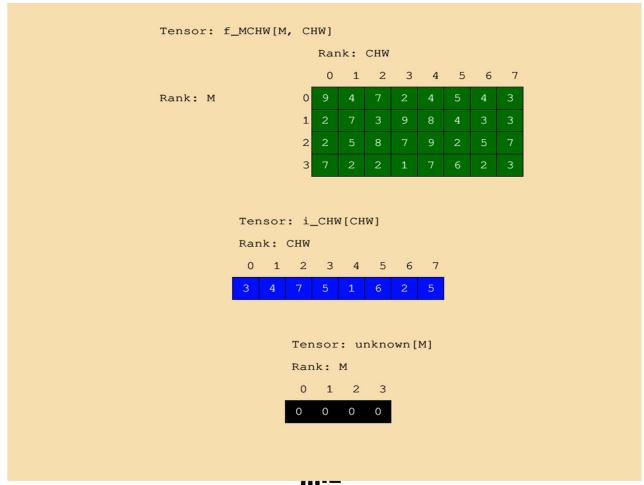
FC – Data Reference Pattern



February 21, 2024

Sze and Emer

FC – Data Reference Pattern



February 21, 2024 Sze and Emer

Amount of temporal locality

- Typical in-pipeline cache size
 - 64K bytes => 16K FP32 words
 - 64 byte blocks => 16 FP32 words/block
- Typical layer size:

$$- H, W = 256 C = 128$$

Size of input activations?

256x256x128x4 => 32MB

What does this imply for Input activation temporary locality?

No temporal locality since 32MB > 64K bytes

Computational Intensity

Computational Intensity =
$$\frac{MACS}{Data\ Words}$$

$$O_m = I_{chw} \times F_{m,chw}$$

Number MACS: M*CHW = M*C*H*W

Computational Intensity – Ideal FC

Computational Intensity =
$$\frac{MACS}{Data\ Words}$$

$$O_m = I_{chw} \times F_{m,chw}$$

Number MACS: M*C*H*W Filter weight accesses: M*CHW = M*C*H*W

Input activation accesses: CHW = C*H*W

Output activation accesses: M

Computational Intensity =
$$\frac{M \times C \times H \times W}{M \times C \times H \times W + C \times H \times W + M} = \frac{1}{1 + \frac{1}{M} + \frac{1}{C \times H \times W}} \sim 1$$

If in one cycle a processor can deliver one word from memory and perform one MAC how well will the machine perform running this code?

Computational Intensity – Naïve FC

Computational Intensity =
$$\frac{MACS}{Data\ Words}$$

```
CHWm = -CHW;
for m in [0, M):
    o[m] = 0;
    CHWm += CHW
    for chw in [0, CHW):
        o[m] += i[chw] * f[CHWm + chw]
```

Number MACS: N

M*C*H*W

Filter weight accesses

M*C*H*W

Input activation accesses

M*C*H*W

Output activation accesses

M

$$\frac{M \times C \times H \times W}{M \times C \times H \times W + M \times C \times H \times W + M} = \frac{1}{2 + \frac{1}{C \times H \times W}} \sim \frac{1}{2}$$

Einsum for strip mined FC

$$O_m = I_{chw} \times F_{m,chw}$$

$$I_{chw/T,chw\%T} = I_{chw}$$

$$chw1 chw0$$

$$I_{chw/T,chw\%T} = I_{chw}$$
 $F_{m,chw/T,chw\%T} = F_{m,chw}$
 $chw1 chw0$
 $F_{m,chw/T,chw\%T} = F_{m,chw}$

$$O_m = I_{chw1,chw0} \times F_{m,chw1,chw0}$$

Fully Connected – Strip Mined

```
for m in [0, M):
    for chw in [0, C*H*W):
    o[m] += i[chw] * f[CHW*m + chw]
```

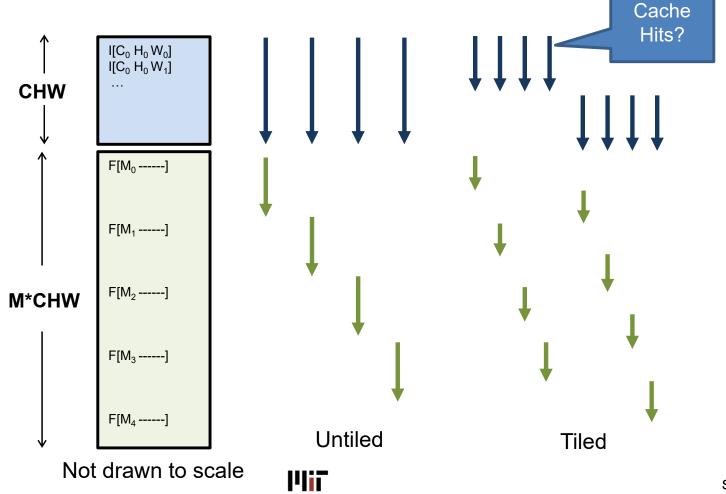
```
// Level 1
for chw1 in [0, CHW1):
    for m in [0, M):

// Level 0
    for chw0 in [0, CHW0):
        chw = CHW0*chw1+chw0
        o[m] += i[chw] * f[CHW*m + chw]

Inner loop working
    set = CHW0
```

Just considering input activations, Less than cache size what value should CHW0 be?

FC - Strip Mined Data Reference Pattern



February 21, 2024

Sze and Emer

Computational Intensity – Strip Mined

```
// Level 1
for chw1 in [0, CHW1):
   for m in [0, M):
   // Level 0
   for chw0 in [0, CHW0):
        chw = CHW0*chw1+chw0
        o[m] += i[chw] * f[CHW*m + chw]
```

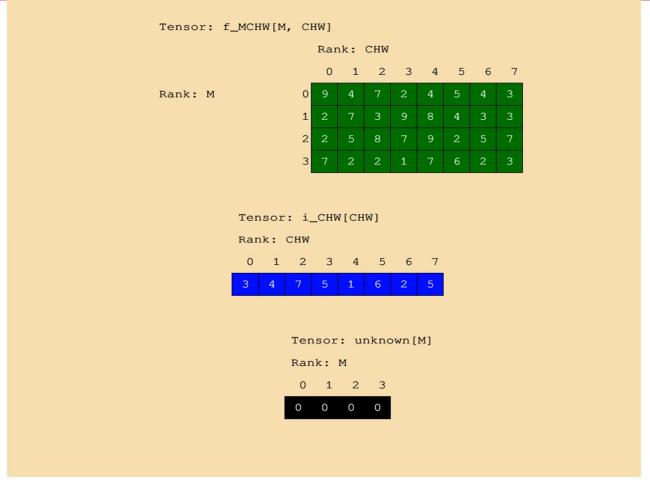
Number MACS: M*C*H*W Filter weight accesses: M*C*H*W

Input activation accesses: C*H*W

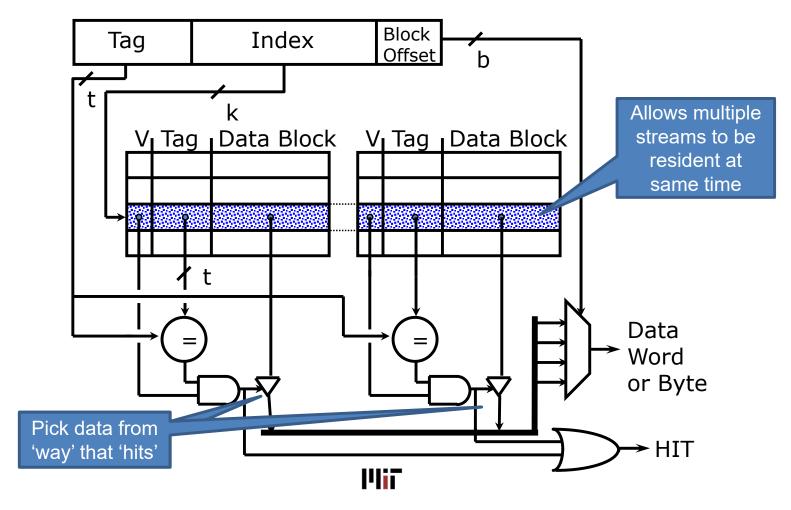
Output activation accesses M

Computational Intensity =
$$\frac{M \times C \times H \times W}{M \times C \times H \times W + C \times H \times W + M} = \frac{1}{1 + \frac{1}{M} + \frac{1}{C \times H \times W}} \sim \frac{1}{1 + \frac{1}{M} + \frac{1}{C \times H \times W}}$$

Matrix-Vector Multiply – Strip Mined



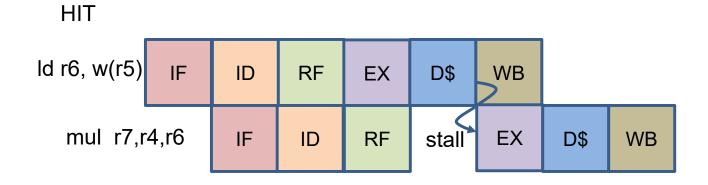
Associative Cache



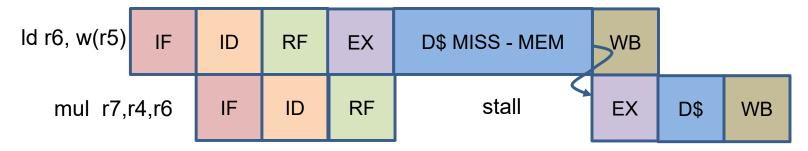
February 21, 2024

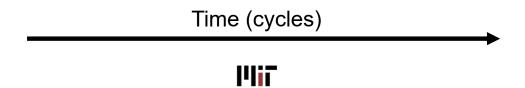
Sze and Emer

Cache Miss Pipeline Diagram



MISS





Avoiding Cache Miss Stalls

- Reorganize code so loads are far ahead of use
 - Requires huge amount of unrolling
 - Consumes lots of registers
- Add 'prefetch' instructions that just load cache
 - Consumes instruction issue slots
- Add hardware that automatically loads cache

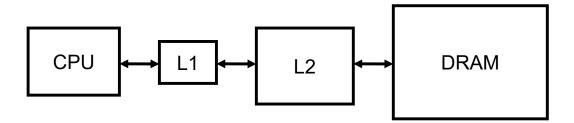
Hardware Data Prefetching

- Prefetch-on-miss:
 - Prefetch b + 1 upon miss on b
- One Block Lookahead (OBL) scheme
 - Initiate prefetch for block b + 1 when block b is accessed
 - Can extend to N block lookahead
- Strided prefetch
 - If observe sequence of accesses to block b, b+N, b+2N, then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent streams of strided prefetch per processor, prefetching 12 lines ahead of current access

Multi-level Caches

- A memory cannot be large and fast
- Add level of cache to reduce miss penalty
 - Each level can have longer latency than level above
 - So, increase sizes of cache at each level



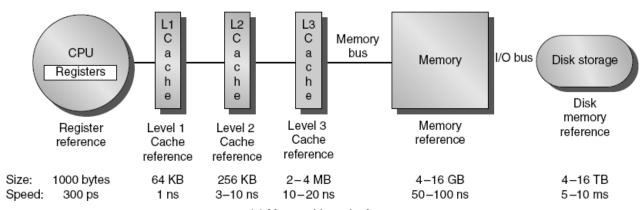
Metrics:

Local miss rate = misses in cache/ accesses to cache

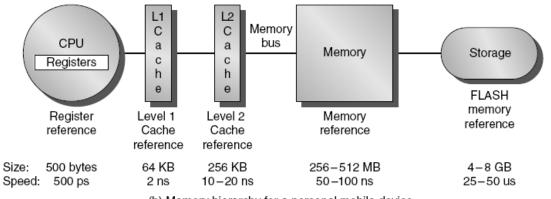
Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

Contemporary CPU Cache Hierarchy

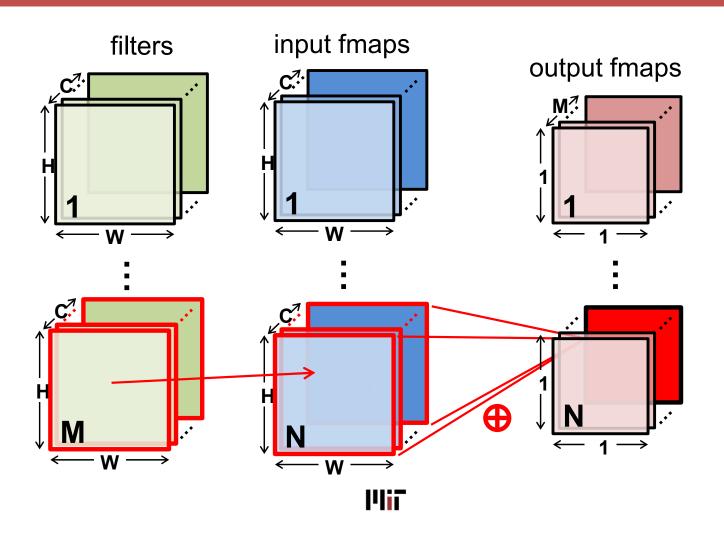


(a) Memory hierarchy for server



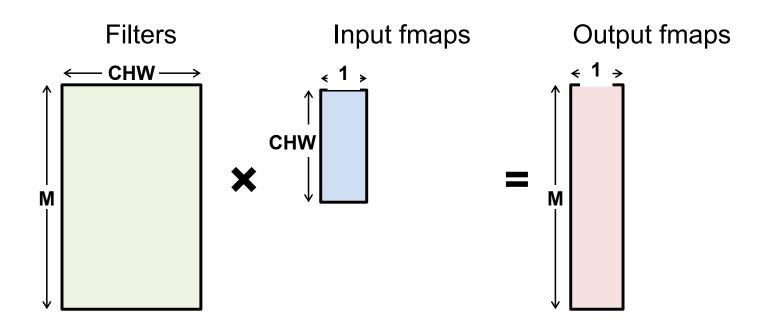
(b) Memory hierarchy for a personal mobile device

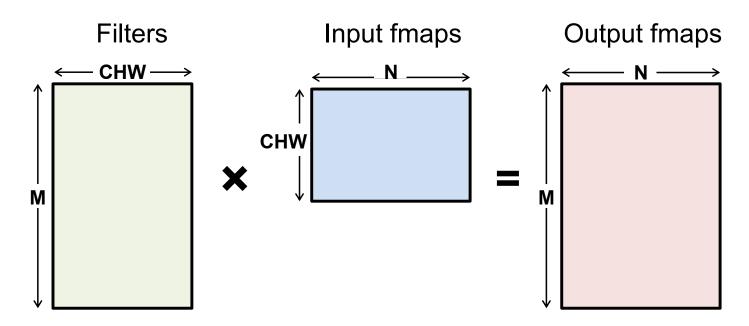
FC Layer – Multichannel



February 21, 2024

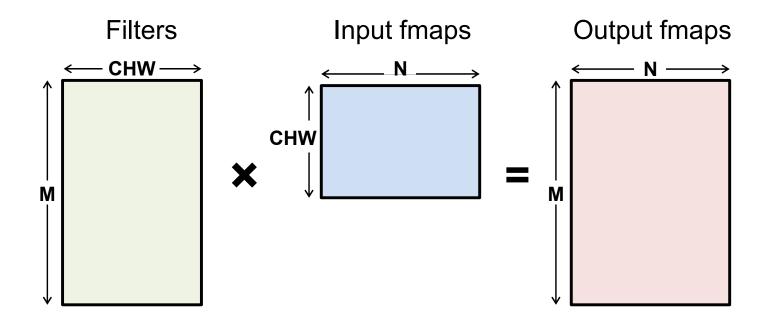
Sze and Emer

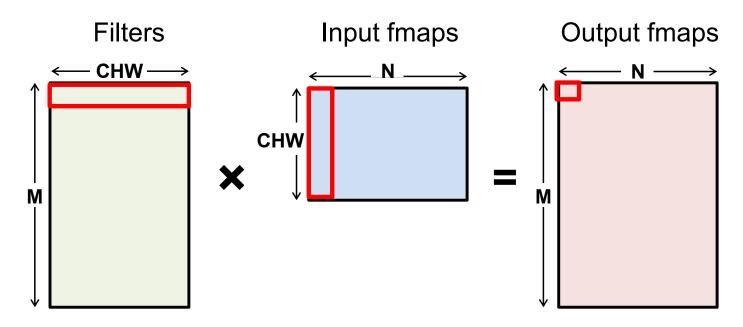


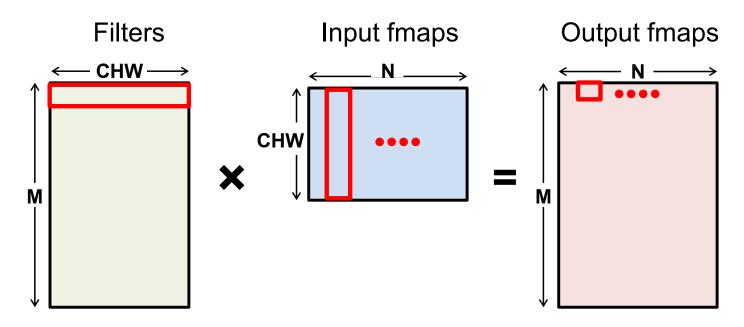


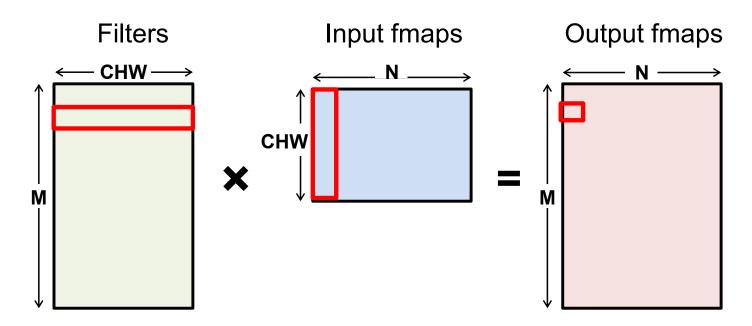
FC Einsum Notation

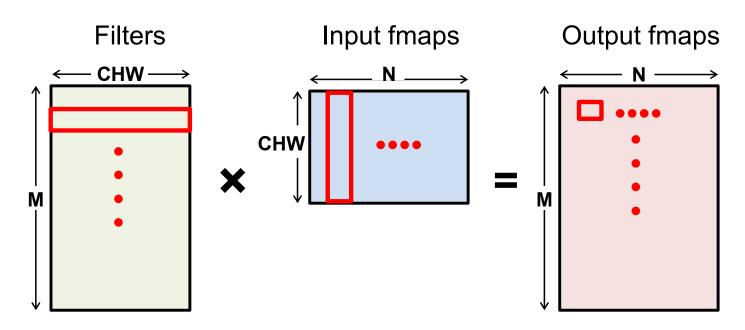
$$O_{n,m} = F_{m,chw} \times I_{n,chw}$$







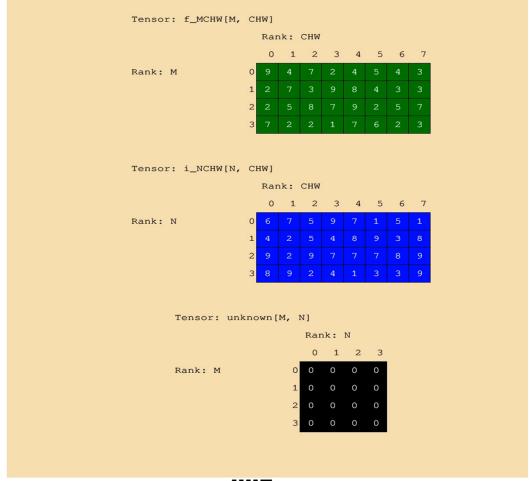




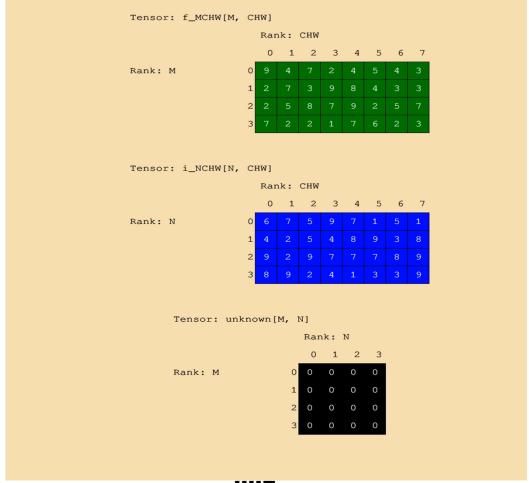
 After flattening, having a batch size of N turns the matrix-vector operation into a matrix-matrix multiply

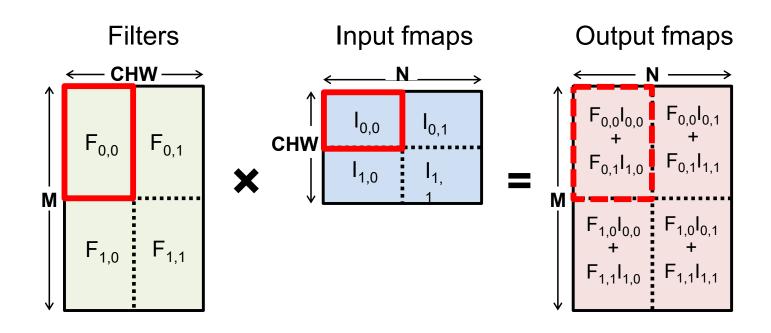
How much temporal locality for naïve implementation? None

Matrix-Matrix Multiply

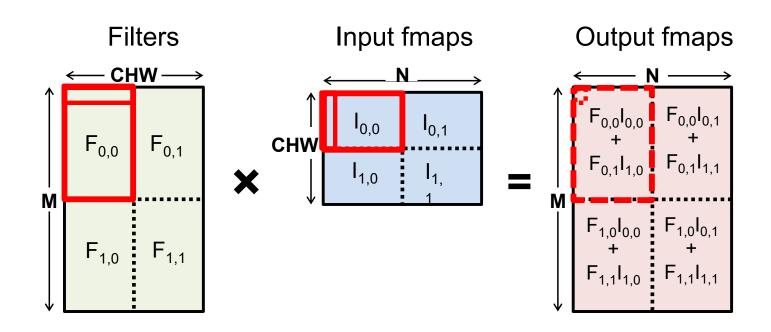


Matrix-Matrix Multiply Tiled

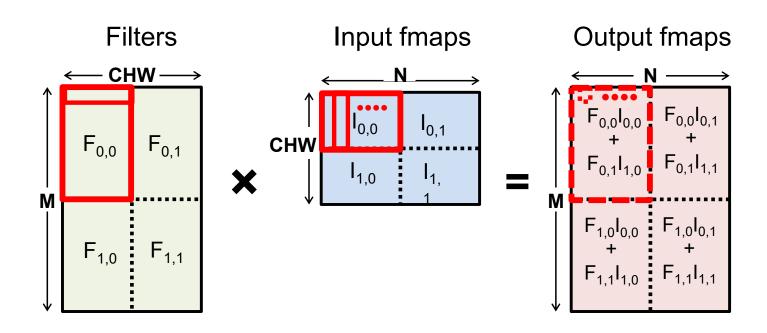




Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

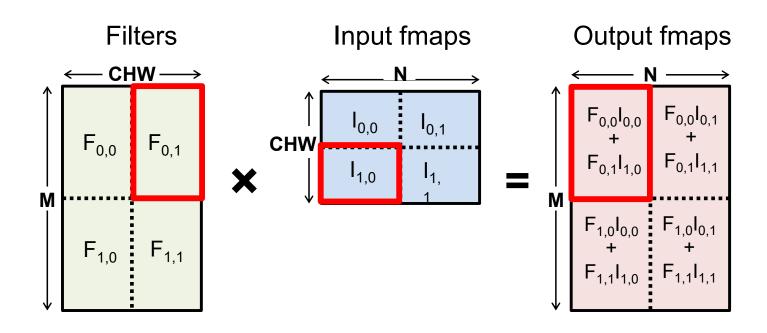


Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache



Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

*Dotted line means partial result



Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

Einsum for tiled FC

$$O_m = I_{n,chw} \times F_{m,chw}$$

$$I_{n,chw} \rightarrow I_{n1,chw1,n0,chw1}$$

$$F_{m,chw} \rightarrow F_{m1,chw1,m0,chw0}$$

$$O_{m1,m0} = I_{n1,chw1,n0,chw0} \times F_{m1,chw1,m0,chw0}$$

Fully-Connected (FC) Layer

Implementation: Matrix Multiplication (GEMM)

• CPU: OpenBLAS, Intel MKL, etc

• GPU: cuBLAS, cuDNN, etc

- Library will note shape of the matrix multiply and select implementation optimized for that shape.
- Optimization usually involves proper tiling to storage hierarchy

Tradeoffs in Memories

Overview of Memories

Memory consist of arrays of cells that hold a value.

- Types of Memories/Storage
 - Latches/Flip Flops (Registers)
 - SRAM (Register File, Caches)
 - DRAM (Main Memory)
 - Flash (Storage)

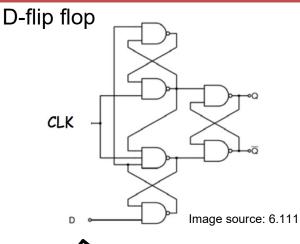
Elements of Memory Operation

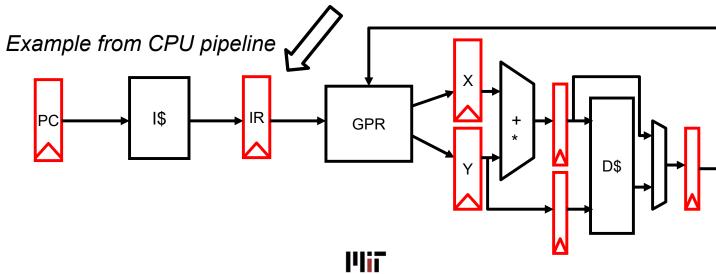
Implementations vary based on:

- How a memory cell holds a value?
- How is a value obtained from a memory cell?
- How is a value set in a memory cell?
- How is array constructed out of individual cells?
- Results in tradeoffs between cost, density, speed, energy and power consumption

Latches/Flip Flops

- Fast and low latency
- Located with logic

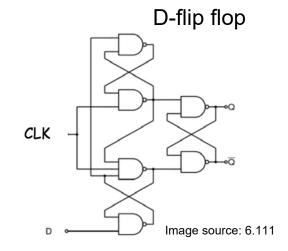




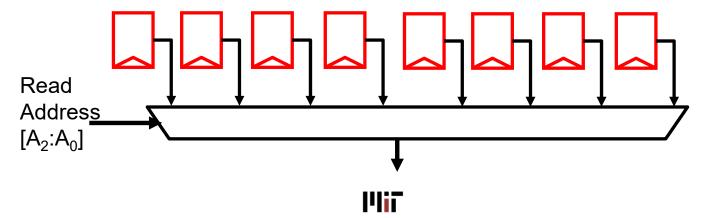
February 21, 2024

Latches/Flip Flops (< 0.5 kB)

- Fast and low latency
- Located with logic
- Not very dense
 - 10+ transistors per bit
 - Usually use for arrays smaller than 0.5kB



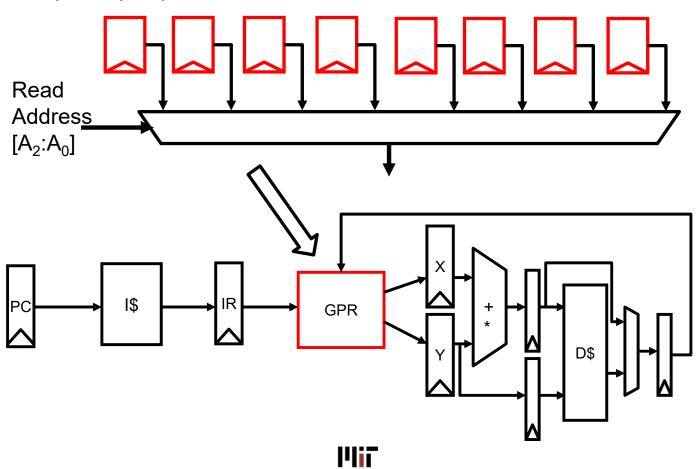
Array of Flip flops



February 21, 2024

Latches/Flip Flops (< 0.5 kB)

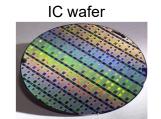
Array of Flip flops

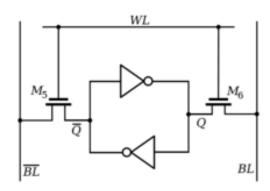


February 21, 2024

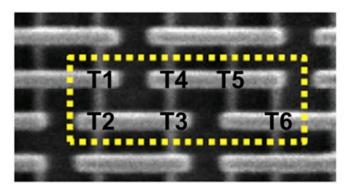
SRAM

- Higher density than register
 - Usually, 6 transistors per bit-cell
- Less robust and slower than latches/flip-flop

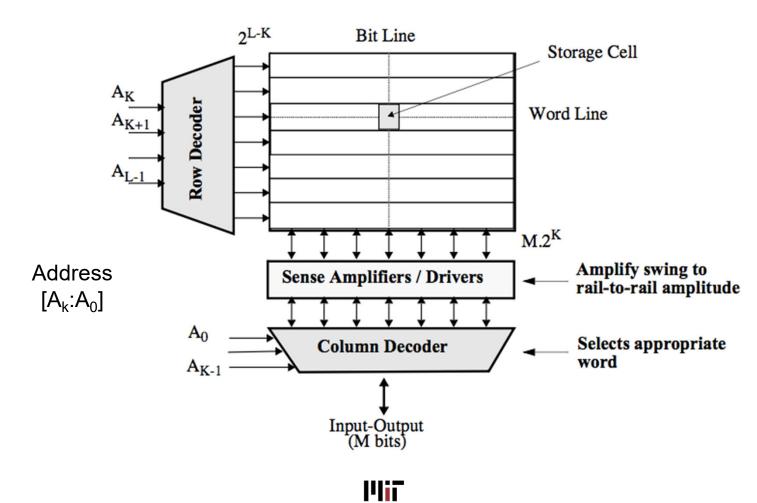




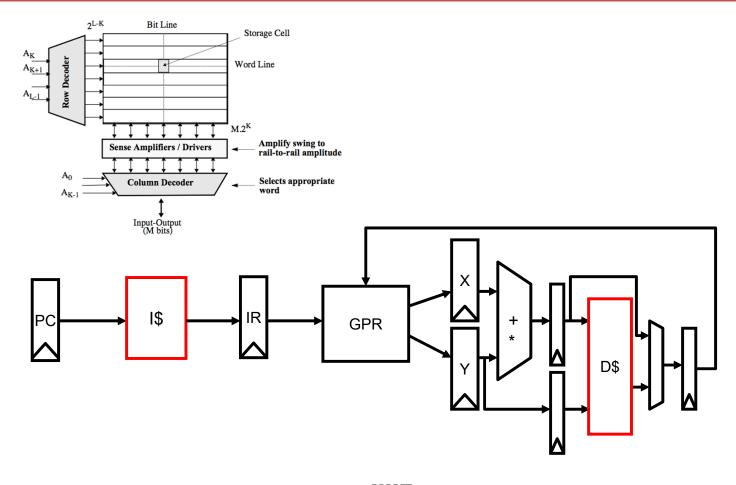
Bit cell size 0.75um² in 14nm



SRAM (kB – MB)

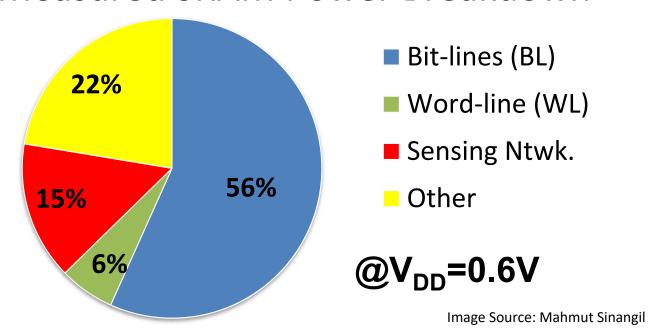


SRAM



SRAM Power Dominated by Bit Line

Measured SRAM Power Breakdown



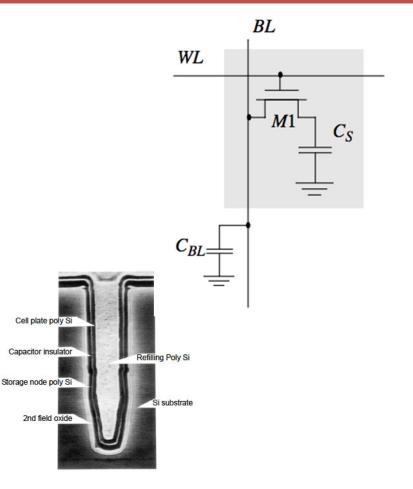
Larger array → Longer bit-lines

→ Higher capacitance → Higher power

DRAM

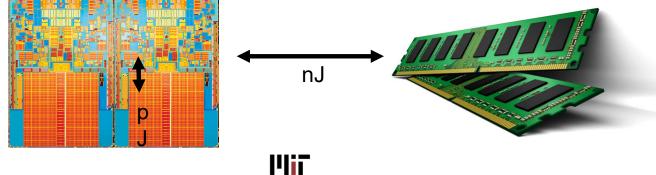
- Higher density than SRAM
 - 1 transistor per bit-cell
 - Needs periodic refresh
- Special device process





DRAM (GB)

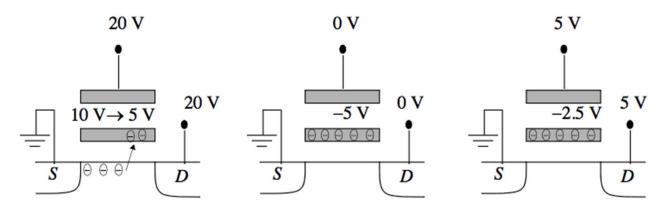
- Higher density than SRAM
 - 1 transistor per bit-cell
 - Needs periodic refresh
- Special device process
 - Usually off-chip (except eDRAM which is pricey!)
 - Off-chip interconnect has much higher capacitance



February 21, 2024 Sze and Emer

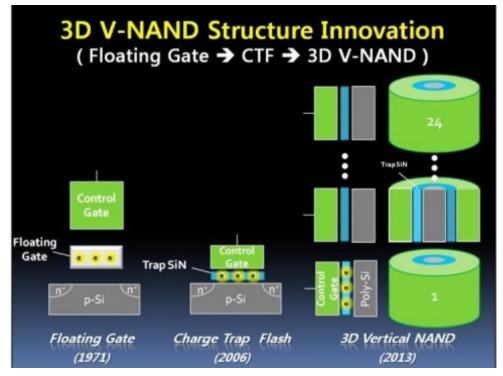
Flash (100GB to TB)

- More dense than DRAM
- Non-volatile
 - Needs high powered write (change V_{TH} of transistor)



- (a) Avalanche injection.
- (b) Removing programming voltage leaves charge trapped.
- (c) Programming results in higher V_T .

Flash Memory



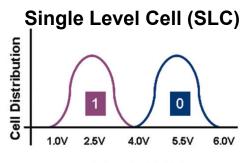
Single Level Cell (SLC)

Multi-levels cell (MLC)

48 layer, Ternary level cell (TLC)

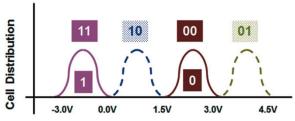
Aug 2015

256 Gb per die (for SSD)



Threshold Voltage

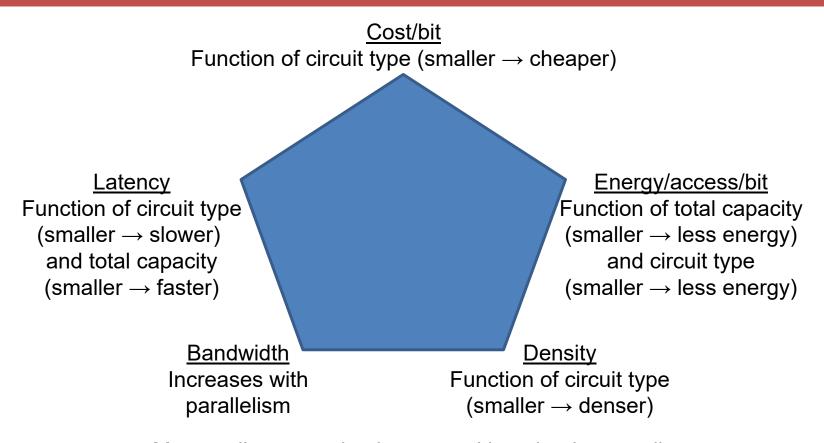
Multi-levels cell (MLC)



Threshold Voltage

February 21, 2024

Memory Tradeoffs



Most attributes tend to improve with technology scaling, lower voltage and sometimes smaller capacitors

February 21, 2024

Summary

- Reduce main memory access with caches
 - Main memory (i.e., DRAM) is slow and has high energy consumption
 - Exploits spatial and temporal locality
- Tiling to reduce cache misses
 - Possible since processing order does not affect result (MACs are commutative)
 - Add levels to loop nest to improve temporal locality
 - Size of tile depends on cache size and cache associativity
- Tradeoffs in storage technology
 - Various tradeoffs in cost, speed, energy, capacity...
 - Different technologies appropriate at different spots in the design

Next Lecture: Vectorization

February 21, 2024

Thank you!