6.5930/1

Hardware Architectures for Deep Learning

Vectorized Kernel Computation

February 26, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

Goals of Today's Lecture

- Understand parallelism and improved efficiency through:
- loop unrolling, and
- vectorization

Background Reading

- Vector architectures
- Computer Architecture: A Quantitative Approach, 6th edition, by Hennessy and Patterson
- Ch 4: p282-310, App G
- Ch 4: p262-288, App G

These books and their online/e-book versions are available through MIT libraries.

Fully Connected Computation

Fully Connected Computation

Fully-Connected (FC) Layer - Flattened

- Matrix-Vector Multiply:
- Multiply all inputs in all channels by a weight and sum

Input fmaps

Filter Memory Layout

Flattened FC Loops

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$
Input fmaps

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters
CHW
Input fmaps

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters
\longleftarrow CHW \longrightarrow

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters
Input fmaps
Output fmaps
$\leftarrow 1 \rightarrow$

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}+\mathrm{W}-1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}+\mathrm{W}-1
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}+\mathrm{W}-1
$$

Fully-Connected (FC) Layer

Filters
\longleftarrow CHW \longrightarrow

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}+\mathrm{W}-1
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$
Input fmaps

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Output fmaps
$\longleftarrow 1 \longrightarrow$

$$
\text { chw }=0
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

Input fmaps

$$
\text { chw }=1
$$

Output fmaps
$\longleftarrow 1 \longrightarrow$

Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters
\longleftarrow CHW \longrightarrow

Input fmaps

$$
\text { chw }=1
$$

Fully-Connected (FC) Layer

Filters
\longleftarrow CHW \longrightarrow

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1
$$

Fully-Connected (FC) Layer

Filters

Input fmaps

$$
\text { chw }=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1
$$

Flattened FC Loops

Loop Iteration Overhead

How many MACs/cycle (ignoring stalls)?
Where is a major source of overhead?

FC scalar computation

Loop Unrolling (2chw)

Fully Connected - Unrolled

Fully Connected - Unrolled

mloop:	```mv r1, 0 mul r3, r1, C*H*W mv r2, 0 mv r8, 0```	\# r1 holds m \# r3 holds m*CHW \# r2 holds chw \# r8 holds psum (o[m])
xloop:	```ld r4, i(r2) add r5, r2, r3 ld r6, f(r5) mac r8, r4, r6 ld r7, i+1(r2)```	
	```ld r9, f+1(r5) mac r8, r7, r9 add r2, r2, 2 blt r2, C*W*H, xloop st r8,o(r1) add r1, r1, 1 blt r1, M, mloop```	

## Fully Connected - Unrolled

```
mv r1, 0 # r1 holds m
mloop: mul r3, r1, C*H*W # r3 holds m*CHW
mv r2, 0
mv r8, 0
xloop: ld r4, i(r2)
add r5, r2, r3
ld r6, f(r5)
mac r8, r4, r6
ld r7, i+1(r2)
ld r9, f+1(r5)
mac r8, r7, r9
add r2, r2, 2
blt r2, C*W*H, xloop
st r8, o(r1)
add r1, r1, 1
blt r1, M, mloop
```

```
r2 holds chw
```


# r2 holds chw

# r8 holds psum (o[m])

# r8 holds psum (o[m])

# r4 = i[chw]

# r4 = i[chw]

# r5 = CHMm + chw

# r5 = CHMm + chw

# r6 = f[CHWm + chw]

# r6 = f[CHWm + chw]

# r8 += i[chw] * f[CHWm+chw]

# r8 += i[chw] * f[CHWm+chw]

# r7 = i[chw + 1]

# r7 = i[chw + 1]

# r9 = f[CHWm + chw + 1]

# r9 = f[CHWm + chw + 1]

# r11 += i[chw] * f[CHWm + chw +1]

# r11 += i[chw] * f[CHWm + chw +1]

# r2 = chw + 1

```
r2 = chw + 1
```

How many MACs/cycle (ignoring stalls)?

## Fully-Connected (FC) Layer

Filters
CHW $\longrightarrow$


Input fmaps


Output fmaps
$\longleftarrow 1 \longrightarrow$


$$
\text { chw }=0,1
$$

## Fully-Connected (FC) Layer

Filters
CHW $\longrightarrow$


Input fmaps
$\leftarrow 1 \rightarrow$


Output fmaps
$\longleftarrow 1 \longrightarrow$


$$
\text { chw }=0,1
$$

## Fully-Connected (FC) Layer

Filters
CHW $\longrightarrow$


Input fmaps
$\leftarrow 1 \rightarrow$


Output fmaps
$\longleftarrow 1 \longrightarrow$


$$
\text { chw }=0,1
$$

## Fully-Connected (FC) Layer

Filters
CHW $\longrightarrow$


Input fmaps
$\leftarrow 1 \rightarrow$


Output fmaps
$\longleftarrow 1 \longrightarrow$


$$
\text { chw }=0,1
$$

## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=C^{*} H^{*} W-2, C^{*} H^{*} W-1
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=C^{*} H^{*} W-2, C^{*} H^{*} W-1
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=C^{*} H^{*} W-2, C^{*} H^{*} W-1
$$

## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer



## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=2,3
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=2,3
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=2,3
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps


$$
\text { chw }=2,3
$$

## Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHW} \longrightarrow$


Input fmaps

chw $=C^{*} H^{*} W-2, C^{*} H^{*} W-1$

## Fully-Connected (FC) Layer

Filters


Input fmaps

chw $=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-2, \mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1$

## Fully-Connected (FC) Layer

Filters
$\longleftarrow \mathrm{CHM} \longrightarrow$


Input fmaps


$$
\text { chw }=C^{*} \mathrm{H}^{*} \mathrm{~W}-2, \mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1
$$

## Fully-Connected (FC) Layer

Filters


Input fmaps

chw $=\mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-2, \mathrm{C}^{*} \mathrm{H}^{*} \mathrm{~W}-1$
Can we incorporate this "pairing" into the architecture?

## Vector Programming Model

```
Scalar Registers
 r15 v15
 v15
```

VLRMAX - number of elements in a vector register VLR - number of elements to use in an instruction

Vector Arithmetic Instructions

ADDV v3, v1, v2


## Vector Programming Model




## Compiler-based Vectorization



## Loop Unrolled



## Parallel with animation



## Fully Connected - Loop Permutation



## Fully Connected - Loop Permutation

```
int i[C*H*W]; # Input activations
int f[M*C*H*W]; # Filter Weights
int o[M]; # Output activations
for m in [0, M):
 for chw in [0, C*H*W, 2):
 o[m] += i[chw] * f[CHW*m + chw]
 o[m] += i[chw + 1] * f[CHW*m + chw + 1]
```


## Fully Connected - Loop Permutation



## FC - Permuted/Unrolled

```
// Loops permuted
for chw in [0, C*H*W):
 for m in [0, M):
 o[m] += i[chw] * f[CHW*m + chw]
```

```
// Unrolled inner loop
for chw in [0, C*H*W):
 for m in [0, M, 2):
 o[m] += i[chw] * f[CHW*m + chw]
 o[m+1] += i[chw] * f[CHW*(m+1) + chw]
```

Unrolled calculation

## Parallel m animation



## FC - Permuted/Unrolled/Hoisted



## Fully Connection Computation

```
// Loop invariant hosting of i[chw]
for chw in [0, C*H*W):
 i_chw = i[chw];
 for m in [0, M, 2):
 o[m] += i_chw * f[CHW*m + chw]
 o[m+1] += i_chw * f[CHW*(m+1) + chw]
```

$\left[\mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~W}_{0}\right]\left[\mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~W}_{1}\right]$.
$\mathrm{I}\left[\mathrm{C}_{0} \mathrm{H}_{1} \mathrm{~W}_{0}\right] \mathrm{I}\left[\mathrm{C}_{0} \mathrm{H}_{1} \mathrm{~W}_{1}\right]$.
$I\left[\mathrm{C}_{0} \mathrm{H}_{2} \mathrm{~W}_{0}\right] \quad \mathrm{I}\left[\mathrm{C}_{0} \mathrm{H}_{2} \mathrm{~W}_{1}\right] \ldots$
$I\left[\mathrm{C}_{1} \mathrm{H}_{0} \mathrm{~W}_{0}\right] \mid\left[\mathrm{C}_{1} \mathrm{H}_{0} \mathrm{~W}_{1}\right] \ldots$
$I\left[\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{~W}_{0}\right] \mid\left[\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{~W}_{1}\right]$
$\mathrm{I}\left[\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{~W}_{0}\right] \mathrm{I}\left[\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{~W}_{1}\right] \ldots$

Weights needed together are far apart.
What can we do?
$\mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~W}_{0}\right] \mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~W}_{1}\right]$.
$\mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{1} \mathrm{~W}_{0}\right] \mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{1} \mathrm{~W}_{1}\right]$.
$\mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{2} \mathrm{~W}_{0}\right] \quad \mathrm{F}\left[\mathrm{M}_{1} \mathrm{C}_{0} \mathrm{H}_{2} \mathrm{~W}_{1}\right] \ldots$

## FC - Layered Loops



## Einsum Rank Splitting

$$
\begin{gathered}
O_{m}=I_{c h w} \times F_{m, c h w} \\
O_{m} \rightarrow O_{m 1 \times V L+m 0} \rightarrow O_{m 1, m 0} \\
F_{m, c h w} \rightarrow F_{m 1 \times V L+m 0, c h w} \rightarrow F_{m 1, m 0, c h w} \\
O_{m}=I_{c h w} \times F_{m, c h w} \\
-
\end{gathered}
$$

## FC - Layered Loops

```
// Level 2 loops
for chw in [0, C*H*W):
 for m1 in [0, M/VL):
 // Level 1 loops
 parallel_for m0 in [0, VL):
 o[m1][m0] += i[chw] * f[m1][m0][chw]
```

Flatten data structures

```
// Level 2 loops
for chw in [0, C*H*W):
 for m1 in [0, M/VL):
 // Level 1 loops
 parallel_for m0 in [0, VL):
 o[m1*VL+m0] += i[chw] * f[VL*CWH*m1+CWH*m0+chw]
```


## FC - Layered Loops

```
// Level 2 loops
for chw in [0, C*H*W): Hoist Loop
 i_chw \(=\mathrm{i}[\mathrm{chw}]\) Invariant!
 for m1 in [0, M/VL):
// Level 1 loops
 parallel_for m0 in [0, VL):
 o[m1*VL+m0] += i_chw * f[VL*CWH*m1 +CWH*m0+chw]
 Invariant in inner loop!
// Level 1 loop
 \(m 1 \mathrm{VL}=\mathrm{m1} * \mathrm{VL}\)
 CHWVLm1_chw \(=\mathrm{CHW}\) VL \(* m 1+c h w\)
 parallel_for m0 in [0, VL):
 o[m1VL+m0] += i_chw * f[CHWVLm1_chw + CHW*m0]
```


## FC - Layered Loops



## Full Connected - Vectorized

```
 mv r1, 0 # r1 holds chw
 add r4, 0 # r4 holds CHWVLm1_chw
 xloop: ldv v1, i(r1), 0 # fill v1 with i[cwh]
 mv r2, 0 # r2 holds m1VL
 mloop: ldv v3, f(r4), CWH # v3 holds f[]
 ldv v5, o(r2), 1 # v5 holds o[]
 macv v5, v1, v3 # multiply f[] * i[]
 stv v5,o(r2), 1 # store o
 add r2, r2, VL # update m1VL
 add r4, r4, CHWVL # update CHWVLm1_chw
blt r2, M, mloop
add r1, r1, 1 # update chw
add r4, r4, r1 # update CHWVLm1_chw
blt r1, CWH, xloop
```


## Full Connected - Vectorized

```
 mv r1, 0 # r1 holds chw
 add r4, 0 # r4 holds CHWVLm1_chw
xloop: ldv v1, i(r1), 0 # fill v1 with i[cwh]
 mv r2, 0 # r2 holds m1VL
mloop: ldv v3, f(r4), CWH # v3 holds f[]
 ldv v5, o(r2), 1 # v5 holds o[]
 macv v5, v1, v3 # multiply f[] * i[]
 stv v5,o(r2), 1 # store o
 add r2, r2, VL # update m1VL
 add r4, r4, CHWVL # update CHWVLm1_chw
 blt r2, M, mloop Strength reduced
 add r1, r1, 1 # update chw
 add r4, r4, r1 # update CHWVLm1_chw
 blt r1, CWH, xloop
```


## Full Connected - Vectorized

```
 mv r1, 0 # r1 holds chw
 add r4, 0 # r4 holds CHWVLm1_chw
 xloop: ldv v1, i(r1), 0 # fill v1 with i[cwh]
 mv r2, 0 # r2 holds m1VL
 mloop: ldv v3, f(r4), CWH # v3 holds f[]
 ldv v5, o(r2), 1 # v5 holds o[]
 macv v5, v1, v3 # multiply f[] * i[]
 stv v5, o(r2), 1 # store o
 add r2, r2, VL # update m1VL
 add r4, r4, CHWVL # update CHWVLm1_chw
 blt r2, M, mloop Strength reduced
 add r1, r1, 1 # update chw
 add r4, r4, r1 # update CHWVLm1_chw
 blt r1, CWH, xloop
```

How many MACs/cycle (ignoring stalls)?
Can we unroll this to get even more?

## FC - Layered Loops

```
// Level 2 loops
for chw in [0, C*H*W):
 for m1 in [0, M/VL):
// Level 1 loops
 parallel_for m0 in VL):
 o[m1*VL+m0] += i[chw] * f[VL*CWH*m1+CWH*m0+chw]
```


## FC - Layered Loops



## Vector ISA Attributes

- Compact
- one short instruction encodes $\mathbf{N}$ operations
- many implicit bookkeeping/control operations
- Expressive, hardware knows the $\mathbf{N}$ operations:
- are independent
- use the same functional unit
- access disjoint registers
- access registers in same pattern as previous instructions
- access a contiguous block of memory (unit-stride load/store)
- access memory in a known pattern (strided load/store)

Vector instructions make "explicit" many things that are "implicit" with standard instructions

## Vector ISA Hardware Implications

- Large amount of work per instruction
-> Less instruction fetch bandwidth requirements
-> Allows simplified instruction fetch design
- Architecturally defined bookkeeping operations
-> Bookkeeping can run in parallel with main compute
- Disjoint vector element accesses
-> Banked rather than multi-ported register files
- No data dependence within a vector
-> Amenable to deeply pipelined/parallel designs
- Known regular memory access pattern
-> Allows for banked memory for higher bandwidth


## Vector Arithmetic Execution

- Use deep pipeline (=> fast clock) to execute element operations
- Simplifies control of deep pipeline because elements in vector are independent (=> no hazards!)


V3 <- V1 * V2

## Vector Instruction Execution

ADDV $C, A, B$, where $A, B, C$ are registers, e.g., $V 3, V 1$ and $V 2$


## Vector Unit Structure



## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes
Load Unit
Multiply Unit
Add Unit


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## Vector Instruction Parallelism

Can overlap execution of multiple vector instructions

- example machine has 32 elements per vector register and 8 lanes


Complete 24 operations/cycle while issuing 1 short instruction/cycle

## ISA Datatypes

	1			23	Range	Accuracy
FP32	S	E		M	$10^{-38}-10^{38}$	.000006\%
	1	5	10			
FP16	S	E	M		$6 \times 10^{-5}-6 \times 10^{4}$	.05\%
	1					
Int32	S				$0-2 \times 10^{9}$	1/2
	1		15			
Int16	S		M		$0-6 \times 10^{4}$	$1 / 2$
	1					
Int8					0-127	1/2

## Intel - MMX/SSE/AVX

	Width	Int8	Int16	Int 32	Int64	FP16	FP32	FP64	Features
MMX	64	8	4	2	1				
SSE	128						4		
SSE2	128	16	8	4	2		4	2	
SSE3	128	16	8	4	2		4	2	R
AVX	256	32	16	8	4	16	8	4	
AVX2	256	32	16	8	4	16	8	4	GUMR
AVX3	512	64	32	16	8	$?$	16	8	GUMRP


G: gather	$R$ : reductions/permutations
$\mathrm{U}:$ unaligned	$P$ : Predicate masks
M: MAC	

Source: Myriad non-authoritative sources on web

## Python to C++ Chart

Version	Implementation	Running   time (s)	GFLOPS	Absolute   speedup	Relative   speedup	Fraction   of peak
1	Python	$25,552.48$	0.005	1	-	$0.00 \%$
2	Java	$2,372.68$	0.058	11	10.8	$0.01 \%$
3	C	542.67	0.253	47	4.4	$0.03 \%$
4	Parallel loops	69.80	1.969	366	7.8	$0.24 \%$
5	Parallel divide-and-conquer	3.80	36.180	6,727	18.4	$4.33 \%$
6	+ vectorization	1.10	124.914	23,224	3.5	$14.96 \%$
7	+ AVX intrinsics	0.41	337.812	62,806	2.7	$40.45 \%$
8	Strassen	0.38	361.177	67,150	1.1	$43.24 \%$

[Leiserson, There's plenty of room at the top, Science, 2020]

# Next Lecture: Roofline Analysis and Transforms 

## Thank you!

