Hardware Architectures for Deep Learning

Computational Transforms

February 28, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

FC - Vector Operation Counts

Order: m, chw1, chw0
Factors: $\mathrm{M}, \mathrm{C} * \mathrm{H}^{*} \mathrm{~W} / \mathrm{L}, \mathrm{L}$

FC - Vector Operation Counts

$$
O_{m}=I_{c h w 1, c h w 0} \times F_{m, c h w 1, c h w 0}
$$

```
// Level 2 loops
for m in [0, M):
    for chw1 in [0, C*H*W/L):
// Level 1 loops
    parallel_for chw0 in [0, L):
        o[m] += i[L*chw1+chw0] * f[C*H*W*m + L*chw1+chw0];
```

How many MACs?
How many reads of "inputs"
How many reads of "weights"
How many writes of "outputs"
$M^{*}\left(C^{*} H^{*} W / L\right){ }^{*} L=M^{*} C^{*} H^{*} W$
C*H*W*M
C*H*W*M
M

Compute Intensity (MACs/Read)

```
// Level 2 loops
for m in [0,M):
    for chw2 in [0, C*H*W/L:
// Level 1 loops
        parallel_for chw1 in [0, L):
            o[m] += i[L*chw2+chw1] * f[C*H*W*m + L*chw2+chw1];
```

MACs/Read?
$\frac{\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M}}{\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M}+\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M}} \sim \frac{1}{2}$

If system can support 1 Read/MAC
will system run at full throttle?

Roofline Model

— 8 MAC Lanes with 1 Read/MA -

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures." Communications of the ACM 52.4 (2009): 65-76.

Roofline Model

Where will the previous slide's code be?
How can we change the compute intensity?

Compute intensity $=1 / 2$
Code changes, e.g., different splitting, loop inversions?

FC - Reordered + loop invariant hoisted

$$
\begin{gathered}
O_{m}=I_{c h w} \times F_{m, c h w} \\
O_{m 2, m 1}=I_{c h w} \times F_{m 2, m 1, c h w}
\end{gathered}
$$

Order: m2, chw, m1
Factors: M/L, C***W, L

FC - Reordered + loop invariant hoisted

```
// Level 2 loops
for m2 in [0, M/L):
    L == Lanes
    for chw in [0, C*H*W):
// Level 1 loops
parallel_for m1 in [0, L):
        o[m2*L+m1] += i[chw] * f[CHW*(m2*L+m1) + chw]
```


FC - Operation Counts

$$
O_{m 2, m 1}=I_{c h w} \times F_{m 2, m 1, c h w}
$$

```
// Level 2 loops
L == Lanes
for m2 in [0, M/L):
    for chw in [0, C*H*W):
        i_chw = i[chw]
// Level 1 loops
            parallel_for m1 in [0, L):
            o[m1*L+m0] += i_chw * f[CHW*(m1*L+m0) + chw]
```

How many MACs?
How many reads of "inputs"
How many reads of "weights"
How many writes of "outputs"

C*H*W*M
C* ${ }^{*}$ W**/L
C*H*W*M
M
Measuring reads/writes in units of 32-bit integers

Compute Intensity

```
// Level 2 loops
for m1 in [0, M/L):
    for chw in [0, C*H*W):
        i_chw = i[chw]
// Level 1 loops
        parallel_for m1 in [0, L):
            o[m1*L+m0] += i_chw * f[CHW*(m1*L+m0) + chw]
```

MACs/Read?
$\frac{\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M}}{\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M}+\mathrm{C} * \mathrm{H} * \mathrm{~W} * \mathrm{M} / \mathrm{L}} \sim \frac{L}{1+L}$

If system can support 1 Read/MAC will system run at full throttle?

Roofline Model

-1 MAC/Read - 8 lanes

Where will the previous slide's code be? Compute intensity $=\mathrm{L} /(1+\mathrm{L})=8 / 9$

Why might points be below the line?
Is being on the flat part always best?

Other overheads (e.g. instructions, stalls)
Not necessarily...

Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Gauss's Multiplication Algorithm

$$
\begin{gathered}
(a+b i)(c+d i)=(a c-b d)+(b c+a d) i . \\
4 \text { multipications }+3 \text { additions } \\
k_{1}=c \cdot(a+b) \\
k_{2}=a \cdot(d-c) \\
k_{3}=b \cdot(c+d) \\
\text { Real part }=k_{1}-k_{3} \\
\text { Imaginary part }=k_{1}+k_{2} .
\end{gathered}
$$

3 multiplications + 5 additions

Strassen

8 multiplications +4 additions

$$
\begin{array}{ll}
P 1=a(f-h) & P 5=(a+d)(e+h) \\
P 2=(a+b) h & P 6=(b-d)(g+h) \\
P 3=(c+d) e & P 7=(a-c)(e+f) \\
P 4=d(g-e) & A B=
\end{array} \quad\left[\begin{array}{cc}
p 5+P 4-p 2+p 6 & p 1+p 2 \\
p 3+p 4 & p 1+P 5-P 3-p 7
\end{array}\right]
$$

7 multiplications + 18 additions
7 multiplications +13 additions (for constant B matrix - weights)

Strassen

- Reduce the complexity of matrix multiplication from $\boldsymbol{\Theta}\left(\mathbf{N}^{3}\right)$ to $\boldsymbol{\Theta}\left(\mathbf{N}^{2.807}\right)$ by reducing multiplications Complexity

Comes at the price of reduced numerical stability and requires significantly more memory

Python to C++ Chart

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
1	Python	$25,552.48$	0.005	1	-	0.00%
2	Java	$2,372.68$	0.058	11	10.8	0.01%
3	C	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	366	7.8	0.24%
5	Parallel divide-and-conquer	3.80	36.180	6,727	18.4	4.33%
6	+ vectorization	1.10	124.914	23,224	3.5	14.96%
7	A AVX intrinsics	0.41	337.812	62,806	2.7	40.45%
8	Strassen	0.38	361.177	67,150	1.1	43.24%

[Leiserson, There's plenty of room at the top, Science, 2020]

Tensor Computations

Matrix Multiply

$$
O_{n, m}=I_{n, c h w} \times F_{m, c h w}
$$

CONV Layer

$$
O_{n, m, p, q}=I_{n, c, U p+r, U q+s} \cdot F_{m, c, r, s}
$$

Convolution (CONV) Layer

Many

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```
for n in [0..N):
    for m in [0..M):
        for q in [0..Q):
                for p in [0..P):
        f for each output fmap value
convolve
a window
and apply
activation
\[
: 1
\]
\[
1
\]
```


Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$
\mathrm{F}(2,3)=\left[\begin{array}{ccc}
\text { inputs } & \text { filter } & \text { outputs } \\
i_{\mathrm{O}} & i_{1} & i_{2} \\
i_{1} & i_{2} & i_{3}
\end{array}\right]\left[\begin{array}{l}
f_{\mathrm{O}} \\
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{c}
o_{0} \\
o_{1}
\end{array}\right]
$$

6 multiplications + 4 additions

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$
\begin{gathered}
\text { inputs }
\end{gathered} \begin{gathered}
\text { filter } \\
\text { outputs } \\
\mathrm{F}(2,3)=\left[\begin{array}{ccc}
i_{0} & i_{1} & i_{2} \\
i_{1} & i_{2} & i_{3}
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{c}
k_{1}+k_{2}+k_{3} \\
k_{2}-k_{3}-k_{4}
\end{array}\right] \\
k_{1}=\left(i_{0}-i_{2}\right) f_{0} \\
k_{2}=\left(i_{1}+i_{2}\right) \frac{f_{0}+f_{1}+f_{2}}{2}
\end{gathered} \begin{gathered}
k_{3}=\left(i_{2}-i_{1}\right) \frac{f_{0}-f_{1}+f_{2}}{2} \\
k_{4}=\left(i_{1}-i_{3}\right) f_{2}
\end{gathered}
$$

4 multiplications +12 additions +2 shifts
4 multiplications +8 additions (for constant weights)
[Lavin et al., CVPR 2016]

Winograd 2D - F(2x2, 3x3)

- 1D Winograd is nested to make 2D Winograd
Filter

f_{00}	f_{01}	f_{02}					
f_{10}	f_{11}	f_{12}					
f_{20}	f_{21}	f_{22}	$*$	i_{00}	i_{01}	i_{02}	i_{03}
:---:	:---:	:---:	:---:				
i_{10}	i_{11}	i_{12}	i_{13}				
i_{20}	i_{21}	i_{22}	i_{23}				
i_{30}	i_{31}	i_{32}	i_{33}	$=$	o_{00}	o_{01}	
:---:	:---:	:---:					
o_{10}	o_{11}						

Original: 36 multiplications
Winograd: $\quad 16$ multiplications $\rightarrow 2.25$ times reduction

Winograd Halos

- Winograd works on a small region (tile) of output at a time, and therefore uses inputs repeatedly

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, $\mathrm{N}=1$)								
	1.84	1.83	2.03	2.07	2.26	1.92	1.98	
0.73								
conv 1.1	conv 1.2	conv 2.1	conv 2.2	conv 3.1	conv 3.2	conv 4.1	conv 4.2	conv 5.0

Meta-parameters (data layouts, texture memory) afford higher performance
Using texture memory for convolutions: 13% inference speedup
(GoogLeNet, batch size 1)

Winograd Summary

- Winograd is an optimized computation for convolutions
- It can significantly reduce multiplies
- For example, for 3×3 filter by 2.25 X
- But, each filter size (and output size) is a different computation.

Winograd as a Transform

$$
\begin{aligned}
B^{T} & =\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \\
G & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right] \\
A^{T} & =\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

filter $\quad f=\left[\begin{array}{lll}f_{0} & f_{1} & f_{2}\end{array}\right]^{T}$
input $\quad i=\left[\begin{array}{llll}i_{0} & i_{1} & i_{2} & i_{3}\end{array}\right]^{T}$
Note: GfG^{\top} can be precomputed

Fast Fourier Transform (FFT) Flow

FFT Overview

- Convert filter and input to frequency domain to make convolution a simple multiply then convert back to space domain.
- Convert direct convolution $\mathrm{O}\left(\mathrm{N}_{\mathrm{o}}{ }^{2} \mathrm{~N}_{\mathrm{f}}{ }^{2}\right)$ computation to $\mathrm{O}\left(\mathrm{N}_{\mathrm{o}}{ }^{2} \log _{2} \mathrm{~N}_{\mathrm{o}}\right)$
- Note that computational benefit of FFT decreases with decreasing size of filter
[Mathieu, ArXiv 2013], [Vasilache, ArXiv 2014]

FFT Costs

- Input and Filter matrices are ' 0 -completed',
- i.e., expanded to size $\mathrm{P}+\mathrm{R}-1 \times \mathrm{Q}+\mathrm{S}-1$
- Frequency domain matrices are same dimensions as input, but complex.
- FFT often reduces computation, but requires much more memory space and bandwidth

Optimization opportunities

- FFT of real matrix is symmetric allowing one to save $1 / 2$ the computes
- Filters can be pre-computed and stored, but convolutional filter in frequency domain is much larger than in space domain
- Can reuse frequency domain version of input for creating different output channels to avoid FFT re-computations
- Can accumulate across channels before performing inverse transform to reduce number of IFFT

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:
CPU: 1x E5-2680v3 12 Core 2.5 GHz . 128GB System Memory, Ubuntu 14.04
M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

UCNN - Convolution (Simplified)

Filters
a b c d
e f g h$*$$\mathrm{i}_{00}$ i_{01} i_{02} i_{03} i_{10} i_{11} i_{12} i_{13} i_{20} i_{21} i_{22} i_{23} i_{30} i_{31} i_{32} i_{33}

7 additions
8 multiplications
[Hegde, ISCA 2018]

UCNN - Convolution (Simplified)

Filters

Input Fmap

i_{00}	i_{01}	i_{02}	i_{03}
i_{10}	i_{11}	i_{12}	i_{13}
i_{20}	i_{21}	i_{22}	i_{23}
i_{30}	i_{31}	i_{32}	i_{33}

Output Fmap
=

o_{00}	o_{01}
o_{10}	o_{11}

$o_{00}=a i_{00}+b i_{01}+c i_{10}+d i_{11}+\mathrm{b} i_{00}+a i_{01}+g i_{10}+\mathrm{h} i_{11}$
$o_{00}=(a+b) i_{00}+(a+b) i_{01}+\mathrm{c} i_{10}+d i_{11}+g i_{10}+\mathrm{h} i_{11}$

7 additions
8 multiplications

6 additions
6 multiplications
[Hegde, ISCA 2018]

Convolution (CONV) Layer

Convolution (CONV) Layer

Filter 1 2 3 4$*$1 2 3 4 5 6 7 8 9$\quad=$1 2 3 4

Convolution:

Flattened

Convolution (CONV) Layer

Filter
Input Fmap
1 2 3 4$*$1 2 3 4 5 6 7 8 9

Convolution:

Flattened

Convolution (CONV) Layer

Matrix Multiply (by Toeplitz Matrix)

$$
\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array} \times \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 5 \\
\hline 2 & 3 & 5 & 6 \\
\hline 4 & 5 & 7 & 8 \\
\hline 5 & 6 & 8 & 9 \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$

Convolution (CONV) Layer

Filter \begin{tabular}{l}
Input Fmap

1	2				
3	4	$*$	1	2	3
:---	:---	:---			
4	5	6			
7	8	9			

$=$

\hline 1 \& 2

\hline 3 \& 4

\hline
\end{tabular}

Convolution:

Matrix Multiply (by Toeplitz Matrix)

Convert to matrix multiply using the Toeplitz Matrix

Convolution (CONV) Layer

Filter Input Fmap Output Fmap

Convolution:

Matrix Multiply (by Toeplitz Matrix)

Data is repeated

Convolution (CONV) Layer

- Multiple Input Channels

Convolution (CONV) Layer

- Multiple Input Channels
$\begin{array}{ll}\text { Filter } & \text { Input Fmap as } \\ & \text { Toeplitz matrix }\end{array} \quad$ Output Fmap
Chnl 1 Chnl 2

Filter 1 \begin{tabular}{|l|l|l|l|l|l|l}
\hline 1 \& 2 \& 3 \& 4 \& \& 2 \& 3

\hline

\times

1 \& 2 \& 4 \& 5

\hline 2 \& 3 \& 5 \& 6

\hline

$=$

\hline 1 \& 2 \& 3 \& 4

Chnl 1
\end{tabular}

Toeplitz
converted inputs
Chnl 1

Convolution (CONV) Layer

- Multiple Input Channels and Output Channels

Filter Input Fmap Output Fmap

Chnl 1 Chnl 2
Key:
Black: Input channel 1
Yellow: Input channel 2
Underlined: Output
channel 2

Convolution (CONV) Layer

- Multiple Input Channels and Output Channels

Filter
Input Fmap as Output Fmap Toeplitz matrix

Chnl 1 Chnl 2

Convolution (CONV) Layer

- Dimensions of matrices for matrix multiply in convolution layers with batch size N

1-D Toeplitz Convolution Einsum

$$
O_{n, m, p, q}=I_{n, c, U p+r, U q+s} \times F_{m, c, r, s}
$$

Simplify to 1-D with $N=1, C=1, M=1, U=1$

$$
O_{q}=I_{q+s} \times F_{s}
$$

Break into two steps

$$
\begin{gathered}
T_{q, s}=I_{q+s} \\
O_{q}=T_{q, s} \times F_{s}
\end{gathered}
$$

1-D Toeplitz Convolution Einsum

Filter	Input Fmap			Output Fmap
1 2 3 1 2 3 4 5 6	$=$1 2 3 4			
	$=$1 2 3 4			

1-D Toeplitz Convolution Einsum

2-D Toeplitz Convolution Einsum

$$
O_{m, p, q}=I_{c, p+r, q+s} \times F_{m, c, r, s}
$$

Break out Toeplitz conversion

$$
T_{c, p, q, r, s}=I_{c, p+r, q+s}
$$

Flatten ranks

$$
\begin{gathered}
T^{\prime}{ }_{p q, c r s}=T_{c, p, q, r, s} \\
F^{\prime}{ }_{m, c r s}=F_{m, c, r, s} \\
O_{m, p q}=T^{\prime}{ }_{p q, c r s} \times F^{\prime}{ }_{m, c r s}
\end{gathered}
$$

Next Lecture: GPUs

Thank you!

