L09-1

6.5930/1
Hardware Architectures for Deep Learning

GPU Computation

March 4, 2024

Joel Emer and Vivienne Sze
Acknowledgement: Srini Devadas (MIT)

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

L09-2

Why are GPU interesting?

Very successful commodity accelerator/co-processor

GPUs combine two strategies to increase efficiency
— Massive parallelism
— Specialization

lllustrates tension between performance and
programmability in accelerators

Pervasively applied in deep learning applications

March 4, 2024 |||i|- Sze and Emer

L09-3

Background Reading

e GPUs

— Computer Architecture: A Quantitative Approach,
by Hennessy and Patterson

» Edition 6: Ch 4: p310-336
» Edition 5: Ch 4: p288-315

All these books and their online/e-book versions are available through
MIT libraries.

March 4, 2024 |||i|- Sze and Emer

L09-4

GPUs were originally designed for 3D rendering

I

ATl

N

iy
N
sk
N
N

A
N
)
N

iy
N
s
N

4y
oy
WY
i
W
W

\

m
I
N
\‘\\‘

W

S|

il

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing
how each triangle in 3D mesh contributes to

appearance of each pixel in the image?
Courtesy Kayvon Fatahalian

March 4, 2024 |||i|- Sze and Emer

L09-5

What GPUs were originally designed to do

MUnreal Enginé-“Kit‘e D‘g
T F

March 4, 2024 |||i|- Sze and Emer

L09-6

Render high complexity 3D scenes, in real time

March 4, 2024 |I|il- Sze and Emer

L09-7

Graphics Processors Timeline

« Until mid-90s
— Most graphics processing in CPU
— VGA controllers used to accelerate some display functions

 Mid-90s to mid-2000s

— Fixed-function accelerators for 2D and 3D graphics
« triangle setup & rasterization,
« texture mapping & shading

— Programming:
* OpenGL and DirectX APIs -> BrookGPU
 Modern GPUs

— Some fixed-function hardware (texture, raster ops, ray tracing...)
— Plus programmable data-parallel multiprocessors
— Programming:

* OpenGL/DirectX

» Plus more general-purpose languages (CUDA, OpenCL, ...)

March 4, 2024 |||i|- Sze and Emer

Programmability vs Efficiency

March 4, 2024

< More Programmable

CPU

GPU

FPGA CGRA ASIC

More Efficient >

FPGA
CGRA
ASIC

=> Field programmable gate array
=> Coarse-grained reconfigurable array
=> Application-specific integrated circuit

L09-8

nhr Sze and Emer

CPU vs GPU Attribute Summary

L09-9

March 4, 2024

CPU
(Intel Core
i7-7700k)

CPU
(Intel Core
i7-6950X)

GPU
(NVIDIA
Titan Xp)

GPU
(NVIDIA
GTX 1070)

Cores

4

(8 threads with
hyperthreading
)

10

(20 threads
with
hyperthreading
)

3840

1920

Clock Speed Memory

4.4 GHz

3.5 GHz

1.6 GHz

1.68 GHz

Price
Shared with system $339
Shared with system $1723
12 GB GDDR5X $1200
8 GB GDDR5 $399

Source: Stanford CS231n

Sze and Emer

L09-10

CPU vs. GPU Performance

I Intel E5-2620v3 [l Pascal Titan X (no cuDNN) B Pascal Titan X (cuDNN 5.1)
24000

18000

o OOX 7x 71x 64X

o A ERFAN B

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

N=16 Forward + Backward time (ms)

Data from https://github.com/jcjohnson/cnn-benchmarks

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)
Source: Stanford CS231n

March 4, 2024 |I|il- Sze and Emer

L09-11

CPU vs. GPU Performance

I Intel E5-2620v3 [Pascal Titan X (no cuDNN) I Pascal Titan X (cuDNN 5.1)
24000

18000

o 2.8X 3.0x 3.1x 3.4x

2.8
o N 1SR 1

0
VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

X

16 Forward + Backward time (ms)

N=.

Data from https://github.com/jcjohnson/cnn-benchmarks

Ratio of unoptimized CUDA vs. CUDA library (cuDNN)
Source: Stanford CS231n

March 4, 2024 |I|il- Sze and Emer

L09-12

Single Instruction Multiple Thread

y X —
_—
PC o 1S » IR > GPR >

N T~ v A
SIMT] A M
« Many threads . Lane e
each with / m
private] a
architectural] r

state or X —
context, e.g., | o — A |_ y

registers. 32 Lanes ~ A

A Y —

AN ,
N

green-> Nvidia terminology
March 4, 2024 |||i|- Sze and Emer

Multiple Thread — Single Instruction Multiple Thread

L09-13

March 4, 2024

+1 I

o _
% =R GPR1
I [~ N
,A y
e
m
(0]
r
I _»] y
—| GPR1
- [~ A
A R
32 Lanes "
N
/2 :u /2 :u

Sze and Emer

SIMT

Many threads, each with private
architectural state, e.g., registers

Group of threads that issue
together (same color) called a
warp (32)

All threads that issue together
execute same instruction

Entire pipeline is an SM or
streaming multiprocessor (32-48
warps)

Many (64-128) SMs in a GPU

green-> Nvidia terminology

L09-14

L09-15

Function unit optimization

PC o 1$ o IR - GPR <+ .
a\ ‘/1

Specialize
Function Units

—-rGPR - _l_

=3

< =030

12>

March 4, 2024 |||i|- Sze and Emer

Function unit optimization

L09-16

March 4, 2024

PC

1$ » IR > » GPR
A
C
r
(0]
S
S
b
a
r
— IR — -—rGPR
N\

- 0o onw n o0 = 0O

1>

12>

< =030

A

Restriction: Can’t issue same operation twice in a row

Sze and Emer

L09-17

Function unit optimization

—Pl GPR »>

1

=0 on nu 0= 0O

GPR —>

- 0O TCnw »n 0= 0O

Addy, Muly,
Add ,

Add,

Key: OpCOdeinum,thread(s)

March 4, 2024 Illil-

Muls ,
Add, ,
Add, ,

Mul, 4

Sze and Emer

L09-18

Streaming Multiprocessor Overview

« Each SM supports 10s of

Warp scheduler Seoreboard
‘ mitucton % Marpo. | Aditose | SMD eeions | Operanda? | warps (e.g., 64 in Kepler) with
E—— ahis32 Foatiy | 32 threads/warp
3 96 add.s32 No
‘ 8 11 Id.global 164 Ready
8 12 id.global 164 Ready .
— ' « Fetch 1 instr/cycle

Instruction register

|
i i i1 i i | | |] i | J"—‘—*—‘—‘
IS 0 A A 6 A A JUFS'MU‘LBHBS .
SEEEEREEEEEEEEREEE + issue 1 ready instricycle
Rogi- | Reg | Aeg | Reg | Aeg | Reg | Aeg | Reg | Aeg | Reg | Reg | Reg | Aeg | Reg | Reg | Reg . . .
If{l?::? TKe32 [1K xcE2 [1Kx32 [1K x32 | 1Kx32 | 1K= 32 [1Kx32 [1KxX2 le:!ZEH(x:Q TKcE2 | 1K 52 | 132 | 1Kx32 | K32 - Slmple SCoreboardlng (or Statlc
o | | o | e | | | e o dependency tracking): all warp
e L LT R b L ET B LT 14T £ 418 elements must be ready

| Address coalescing unit | | Interconnection network |

; — b * Instruction broadcast to all
e o lanes

* Multithreading is the main
latency-hiding mechanism

March 4, 2024 |||i|- Sze and Emer

L09-19

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

Issue | : | Execution

Example:
64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput)

= <64 cycle average instruction latency

March 4, 2024 |||i|- Sze and Emer

L09-20

Number of Active Warps

« SMs support a variable number of active warps based on required
registers (and shared memory). Fewer warps allows more registers
per warp, i.e., a larger context.

— Few large contexts > Fewer register spills
— Many small contexts > More latency tolerance
— Choice left to the compiler

« Example: Kepler has 2K registers/SM and supports up to 64 warps
— Max: 64 warps @ <=32 registers/thread
— Min: 8 warps @ 256 registers/thread

March 4, 2024 |||i|- Sze and Emer

L09-21

GPU ISA and Compilation

« GPU micro-architecture and instruction set change
very frequently

« To achieve compatibility:
— Compiler produces intermediate pseudo-assembler
language (e.g., Nvidia PTX)
— GPU driver JITs kernel, tailoring it to specific micro-
architecture

 |In practice, little performance portability
— Code is often tuned to specific GPU architecture

March 4, 2024 |||i|- Sze and Emer

L09-22

Multiple Thread — Single Instruction Multiple Thread

Y
A M
e
m
o
r
I "X _|_ y
— || GPR1
= \Y é
ZaN >
+1 [A

2
March 4, 2024 |||i|- Sze and Emer

L09-23

Many Memory Types

Thread 0 Per Thread Memory
Thread 1
Thread 2

Scratchpad Shared Memory

Global Memory

Note: Implementation is distinct from semantics.

March 4, 2024 |||i|- Sze and Emer

L09-24

Private Per Thread Memory

Thread 0 > Thread 0 Memory
Thread 1 > Thread 1 Memory >
Thread 2 > Thread 2 Memory

Private memory
* No cross-thread sharing
« Small, fixed size memory
— Can be used for constants
* Multi-bank implementation (can be in global memory)

March 4, 2024 |||i|- Sze and Emer

Shared Scratchpad Memory

—>

Thread 0 A | Shared Memory Bank
C

Thread 1 U | Shared Memory Bank
+
X

Thread 2 b — Shared Memory Bank
a
r

-0 o X +CO>X

Shared scratchpad memory (threads share data)

« Small, fixed size memory (16K-64K / ‘core’)

« Banked for high bandwidth

» Fed with address coalescing unit (ACU) + crossbar

— ACU can buffer/coalesce requests

March 4, 2024 Illil-

L09-25

Sze and Emer

L09-26

Memory Access Divergence

» All loads are gathers, all stores are scatters

« Address coalescing unit (ACU) detects sequential and
strided patterns, coalesces memory requests

« Complex patterns can result in multiple lower bandwidth
requests — this is called memory divergence, which hurts
performance

« Writing efficient GPU code requires most accesses to
not conflict, even though programming model allows
arbitrary patterns!

Why isn’t address coalescing as serious
. : |
problem as in vector machines? Latency tolerance!

March 4, 2024 |||i|- Sze and Emer

L09-27

Shared Global Memory (off-chip)

Thread 0 A | Global Memory Bank [P A
C C
Thread 1 U | Global Memory Bank [P{ U
+ +
X X
Thread 2 b — Global Memory Bank |7 A
a a
r r

Shared global memory

« Large shared memory

 Different requests going to different banks is good
« Will suffer also from memory divergence

March 4, 2024 |||i|- Sze and Emer

L09-28

Shared Global Memory (off-chip)

. 1\ » C LI Global Memory Bank I" C —
Misses r r
J o I Global Memory Bank [© —
S S
Z -PI Global Memory Bank I'F tS) > —>
é ->| Cache Tags/Data I" C " N a a N
r r r
> l: ->| Cache Tags/Data I" Z T T
—); -PI Cache Tags/Data I" z \:)v \g —
a a r :I Buffered Data : r =
r r k k
—>
:! Buffered Data :
L
:! Buffered Data :
Hits

Need all requests to come back at the same time!
If hits take the same time as misses, what'’s the point of caches?

March 4, 2024 |||i|- Sze and Emer

L09-29

Shared Global Memory (off-chip)

. » C LI Global Memory Bank I'P (o} —>
Misses r .
- ol © Bl GiovalMemoryBank P © —
S S
> ts> 'PI Global Memory Bank I'F tS) > —
> é ->| Cache Tags/Data I'P C " N a a N
r r r
-> l: ->| Cache Tags/Data I" Z T T
—); -PI Cache Tags/Data I" z \:)V Vc‘)’ —
a a r :I Buffered Data : r =
r r k Kk
—>
:! Buffered Data :
L—
:! Buffered Data :
Hits

Memory hierarchy with caches
— Cache to save memory bandwidth
— Caches also enable compression/decompression of data

March 4, 2024 |||i|- Sze and Emer

Serialized cache access

L09-30

March 4, 2024

~ 0 0 —wW
~ ® » - -0

Data Store

— @

x O O

X ®© QO 3 —

~® » -~ —=+0

Tag Store

X ® QO 5 —

Tag Store

Trade latency for power/flexibility
— Only access data bank that contains data

Data Store

— Facilitate more sophisticated cache organizations

* e.g., greater associatively

Sze and Emer

March 4, 2024

GPU Programming Environments

Hard to generate efficient GPU code directly from
C/C++, so new languages (or language variants)
have been introduced:

« CUDA (Nvidia-only)
— C-like language that runs on GPU
— Libraries: cuDNN, cuBLAS, cuFFT

* OpenCL (open standard)
— C-like language that runs on GPU, CPU or FPGA
— usually less optimized than CUDA

L09-31

Sze and Emer

L09-32

CUDA GPU Thread Model

Single-program multiple data (SPMD) model

Thread

per-Threa d Lo cal M emory Each context is a M
» Threads have registers
Thread Block » Threads have local memory
per-Block
Sha red Me mory Parallel threads packed in blocks

» Blocks have shared memory
=awre s Threads synchronize with barrier
- » Blocks run to completion (or abort)

Ty merendSnchroniztion T T T Grids include independent blocks
; » May execute concurrently
» Share global memory, but
« Have limited inter-block synchronization

March 4, 2024 |||i|- Sze and Emer

Hardware Scheduling

L09-33

Stream Queues
Ordered queues of grids

CUDA-Created
Work

v
Grid Management Unit
Pending & suspended grids

H SMX SMX SMX SMX

4

| 1000's of pending grids |

y
b Two-way link allows
pausing dispatch
r

<' Actively dispatching grids

| 32 Active Grids ‘

March 4, 2024

Grids can be launched by CPU or GPU

— Work from multiple CPU threads and processes

HW unit schedules grids on SMs (labeled

SMX in diagram)

— Priority-based scheduling

32 active grids
— More queued/paused

Sze and Emer

L09-34

GPU Kernel Execution

Mem I

e

Mem

A

crl o

March 4, 2024

@ Transfer input data from CPU to GPU memory
@ Launch kernel (grid)
@ Wait for kernel to finish (if synchronous)

@ Transfer results to CPU memory

Data transfers can dominate execution time
 Integrated GPUs with unified address space - no copies, but...

|I|i|- Sze and Emer

L09-35

Fully-Connected (FC) Layer

« Matrix—Vector Multiply:
« Multiply all inputs in all channels by a weight and sum

Filters Input fmaps Output fmaps

<« CHW— 11—

~— 1 -

March 4, 2024 |||i|- Sze and Emer

Fully Connected Computation

L09-36

Parallelize
here

March 4, 2024

int i[C*H*W];
int F[M*C*H*W];

int o[M];
Gopa{ k= "0'; <
o[m] = 6;
= C*H*W*
QR =ieT
o[m] += i

}
¥

Input activations
Filter Weights
Output activations

M;

++) {

2ol il g S

] *

[

+

++) {
1

I[Co HoWo] 1[Co Ho W] ...
I[Co Hy W] 1[Co Hy W, ...
I[Co Hy W] 1[Co Hy W] ...

I[C, Ho W] 1[C; HoW,] ...
I[C, H, W,] I[C, Hy W] ...
I[C, HyW,] I[Cy HyW,] ...

4

F[MO CO HO WO]
F[M, Co Hy W]
F[MO CO H2 WO]

F[M, C4 Ho W]
F[MO C1 H1 WO]
F[M, C4 Hy W]

F[M; Co Ho W]
F[M‘l CO H1 WO]
FIM; Co Hy W]

F[Mo Co Ho W4] ...
F[Mo Co Hy W] ...
F[Mo Co Hy W] ...

F[M, C; Ho W] ...
F[M C, Hy W] ...
F[Mo C; Hy W,] ...

F[M, Co Ho W,] ...
F[M, Co H, W] ...
F[M, Co Hy W,] ...

Sze and Emer

L09-37

GPU Kernel Execution

Mem I

e

Mem

A

crl o

March 4, 2024

@ Transfer input data from CPU to GPU memory
@ Launch kernel (grid)
@ Wait for kernel to finish (if synchronous)

@ Transfer results to CPU memory

Data transfers can dominate execution time
 Integrated GPUs with unified address space - no copies, but...

|I|i|- Sze and Emer

FC - CUDA Main Program

L09-38

—

—

int i[C*H*W], *gpu_1i; # Input activations
int f[M*C*H*W], *gpu f; # Filter Weights
int o[M], *opu 0 # Output activations

Allocate space on GPU References to data
cudaMalloc((void**) &gpu i, sizeof(int)*C*H*W); on GPU
cudaMalloc((void**) &gzpu f, sizeof(int)*M*C*H*W);

Copy data to GPU
cudaMemcpy(gpu i, i, sizeof(int)*C*H*W);
cudaMemcpy (zpu ©, f, sizeof(int)*M*C*H*W); Num thread blocks

Thread block size

Run kernel __—
fc<<<M/256 + 1, 256>>>(gpu_i, gpu f, gpu_ o, C*H*W, M);

Copy result back and free device memory
cudaMemcpy (o, gpu o, sizeof(int)*M, cudaMemCpyDevicetoHost);

cudaFree(gpu 1); £;7

March 4, 2024

Sze and Emer

L09-39

FC — CUDA Terminology

» CUDA code launches 256 threads per block

« CUDA vs vector terminology:
— Thread = 1 iteration of scalar loop [1 element in vector loop]

— Block = Body of vectorized loop [VL=256 in this example]

« Warp size = 32 [Number of vector lanes]

— Grid = Vectorizable loop

[vector terminology |

March 4, 2024 |||i|- Sze and Emer

FC - CUDA Kernel |

.. globals
L 2Wie A ¢ (A nE s, GEin T S TE ko', T cons tn e CHWS Yeonsit Snt MY

Code for int tid=threadIdx.x + blockIdx.x * blockDim.x;
one thread int m = tid
int sum = @; Calculate “global”
thread id (tid)
if (m < M){ "
for (int chw=@; chw <CHW; chw ++) { tid is “output
sum += i[chw]*f[(m*CHW)+chw]; channel” number
}
—> o[m] = sum;
y } Can be unrolled

Any consequences of [(m*CHW)+chw]? Yes, strided references

Any consequences of f[(chw*M)+m]? Yes, different data layout

March 4, 2024 |||i|- Sze and Emer

L09-41

Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters Output fmaps (N)
M7 ;
c’ 2=
C.
,L E A
l |1
c’ R
L- D J
E
| [- @~ H N R

March 4, 2024 i Batch Size (N) Sz and Emer

L09-42

Convolution (CONV) Layer

March 4, 2024

Filter Input Fmap as Output Fmap
Chnl 1 Chnl 2

Toeplitz matrix

9 _ Chnl 1
Chnl 2

GPU Implementation:

Keep original input activation matrix in main memory
Conceptually do tiled matrix-matrix multiplication

Copy input activations into scratchpad to small Toeplitz matrix tile
On Volta tile again to use ‘tensor core’

|I|i|- Sze and Emer

L09-43

GV100 - “Tensor Core”

&/ o\) \
FP16 or FP32 FP16 FP16 FP16 or FP32

New opcodes — Matrix Multiply Accumulate (HMMA)
How many FP16 operands? Inputs 48 / Outputs 16
How many multiplies? 64

How many adds? 64

Volta tensor Core.... 120 TFLOPS (FP16), 400 GFLOPS/W (FP16)

Toeplitz expansion is essential to exploit hardware

March 4, 2024 |I|il- Sze and Emer

L09-44

Tensor Core Integration

> X [
> i— 1$, ‘ ‘ \ .
A GPR1

>

\

.

/
1>

A M
e
In addition to m
normal function o
units... r
A
+1 [A

7 2 7 2
March 4, 2024 |||i|- Sze and Emer

Tensor Core Integration

L09-45

March 4, 2024

-

\ 4

+1 I

\
I

/
I

GPR1 ‘ ‘ \

Nemwnoov Adiiny xuyen JOSUG/

Cross thread

2

> —

operands

Sze and Emer

L09-46

Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
«—— CHW— N N

CHW

X
|

« After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

March 4, 2024 |||i|- Sze and Emer

L09-47

Tiled Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
1
lo.o ‘ lo.1 Fooloo 1 Foolos
Foo | Fo CHW I T
x |10 E |11 — F01|10l FO,1|11
U e - M L._.___!
: Fioloo i Frolos
Fio Fy; + 1
: Fialio Fi4l14

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 4, 2024 |||i|- Sze and Emer

L09-48

Tiled Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
«—— CHW — N N
Fooloo | Foolo,s
Foo | For CHW + *
’ ’ x — I:o,1|1,o I:0,1|1 1
- M

Fioloo i F1olo 1

Fio i Faq o
: Fi1l10 Fi1l14

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad

and then in cache.

March 4, 2024 |||i|- Sze and Emer

Vector vs GPU Terminology

L09-49

March 4, 2024

More descrip- Closest old term Official CUDAS
Type tive name outside of GPUs ~ NVIDIA GPU term Book definition
Vectorizable Vectorizable Loop Gnid A vectorizable loop, executed on the GPU, made
- Loop up of one or more Thread Blocks (bodies of
E vectorized loop) that can execute in parallel.
E Body of Body of a Thread Block A vectorized loop exccuted on a multithreaded
€ Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
8 Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
E Sequence of One fteration of CUDA Thread A vertical eut of a thread of SIMD instructions
f': SIMD Lane a Scalar Loop corresponding 10 one element executed by one
Operations SIMD Lane. Result is stored depending on mask
and predicate register.
E A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD
'_E‘ SIMD Instructions instructions that are executed on a multithreaded
Instructions SIMD Processor. Results stored depending on a
g per-clement mask.
] SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.
Multithreaded {(Multithreaded) Streaming A multithreaded SIMD Processor executes
SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of
Processor other SIMD Processors.
E Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of
-E Scheduler Engine vectorized loop) to multithreaded SIMD
E Procesaors.
& SIMD Thread Thread scheduler Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to
g CPU execute; includes a scoreboard to track SIMD
E Thread execution
SIMD Lane Vector Lane ‘Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.
GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded
@ SIMD Processors in a GPLL
g Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
E Memaory Local Storage (05) Lane.
E Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD»
E Processer, unavailable to other SIMD Processors.
£ SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectorized loop).

[H&P5, Fig 4.25]

Sze and Emer

L09-50

Summary

 GPUs are an intermediate point in the continuum of flexibility
and efficiency

* GPU architecture focuses on throughput (over latency)
— Massive thread-level parallelism, with
» Single instruction for many threads

— Memory hierarchy specialized for throughput
» Shared scratchpads with private address space
+ Caches used primarily to reduce bandwidth not latency

— Specialized compute units, with
« Many computes per input operand

» Little’'s Law useful for system analysis
— Shows relationship between throughput, latency and tasks in-flight

March 4, 2024 |||i|- Sze and Emer

L09-51

Next Lecture: Spatial Architectures

Thank you!

March 4, 2024 |||i|- Sze and Emer

