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Why are GPU interesting?

March 4, 2024

• Very successful commodity accelerator/co-processor

• GPUs combine two strategies to increase efficiency
– Massive parallelism
– Specialization

• Illustrates tension between performance and 
programmability in accelerators

• Pervasively applied in deep learning applications
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Background Reading
• GPUs

– Computer Architecture: A Quantitative Approach, 
by Hennessy and Patterson

• Edition 6: Ch 4: p310-336
• Edition 5: Ch 4: p288-315

All these books and their online/e-book versions are available through 
MIT libraries.

March 4, 2024
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Input: description of a scene:
3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc. 

Image credit: Henrik Wann Jensen

Output: image of the scene 

Simple definition of rendering task: computing 
how each triangle in 3D mesh contributes to 
appearance of each pixel in the image?

GPUs were originally designed for 3D rendering

Courtesy Kayvon Fatahalian
March 4, 2024
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Unreal Engine Kite Demo (Epic Games 2015)

What GPUs were originally designed to do

March 4, 2024
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Epic Nanite DemoEpic Nanite Demo

Render high complexity 3D scenes, in real time

March 4, 2024
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Graphics Processors Timeline
• Until mid-90s

– Most graphics processing in CPU
– VGA controllers used to accelerate some display functions

• Mid-90s to mid-2000s
– Fixed-function accelerators for 2D and 3D graphics 

• triangle setup & rasterization, 
• texture mapping & shading

– Programming:
• OpenGL and DirectX APIs -> BrookGPU

• Modern GPUs
– Some fixed-function hardware (texture, raster ops, ray tracing…)
– Plus programmable data-parallel multiprocessors
– Programming:

• OpenGL/DirectX
• Plus more general-purpose languages (CUDA, OpenCL, …)

March 4, 2024
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Programmability vs Efficiency

March 4, 2024

More Efficient

More Programmable

CPU GPU FPGA CGRA ASIC

FPGA => Field programmable gate array
CGRA => Coarse-grained reconfigurable array
ASIC => Application-specific integrated circuit
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CPU vs GPU Attribute Summary

March 4, 2024

Source: Stanford CS231n
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CPU vs. GPU Performance

March 4, 2024

Source: Stanford CS231n

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)
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CPU vs. GPU Performance

March 4, 2024

Source: Stanford CS231n

Ratio of unoptimized CUDA vs. CUDA library (cuDNN)
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Single Instruction Multiple Thread

March 4, 2024

SIMT
• Many threads

each with 
private 
architectural 
state or 
context, e.g., 
registers. 
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+1

2 2

Multiple Thread – Single Instruction Multiple Thread
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GPU
SIMT
∙ Many threads, each with private 

architectural state, e.g., registers

∙ Group of threads that issue 
together (same color) called a 
warp (32)

∙ All threads that issue together 
execute same instruction

∙ Entire pipeline is an SM or 
streaming multiprocessor (32-48 
warps)

∙ Many (64-128) SMs in a GPU

.

.

.
32
Lanes

green-> Nvidia terminology
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Function unit optimization

March 4, 2024
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Function unit optimization
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Function unit optimization
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Streaming Multiprocessor Overview

March 4, 2024

• Each SM supports 10s of 
warps (e.g., 64 in Kepler) with 
32 threads/warp

• Fetch 1 instr/cycle

• Issue 1 ready instr/cycle
– Simple scoreboarding (or static 

dependency tracking): all warp 
elements must be ready

• Instruction broadcast to all 
lanes

• Multithreading is the main 
latency-hiding mechanism
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Little’s Law
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Throughput (T) = Number in Flight (N) / Latency (L)

Issue Execution

Example:
64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput) 

 <64 cycle average instruction latency
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Number of Active Warps

March 4, 2024

• SMs support a variable number of active warps based on required 
registers (and shared memory). Fewer warps allows more registers 
per warp, i.e., a larger context.

– Few large contexts  Fewer register spills
– Many small contexts  More latency tolerance
– Choice left to the compiler

• Example: Kepler has 2K registers/SM and supports up to 64 warps
– Max: 64 warps @ <=32 registers/thread
– Min: 8 warps @ 256 registers/thread
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GPU ISA and Compilation

March 4, 2024

• GPU micro-architecture and instruction set change 
very frequently

• To achieve compatibility:
– Compiler produces intermediate pseudo-assembler 

language (e.g., Nvidia PTX)
– GPU driver JITs kernel, tailoring it to specific micro-

architecture

• In practice, little performance portability
– Code is often tuned to specific GPU architecture
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Multiple Thread – Single Instruction Multiple Thread
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Many Memory Types

March 4, 2024

Mem

Thread 0

Thread 1

Thread 2

Per Thread Memory

Scratchpad Shared Memory

Global Memory

…
…

…

Note: Implementation is distinct from semantics.
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Private Per Thread Memory

March 4, 2024

Private memory
• No cross-thread sharing
• Small, fixed size memory 

– Can be used for constants
• Multi-bank implementation (can be in global memory)

…
.

Thread 0 Thread 0 Memory

Thread 1 Thread 1 Memory

Thread 2 Thread 2 Memory
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Shared Scratchpad Memory

March 4, 2024

Shared scratchpad memory (threads share data)
• Small, fixed size memory (16K-64K / ‘core’)
• Banked for high bandwidth
• Fed with address coalescing unit (ACU) + crossbar

– ACU can buffer/coalesce requests

…
.
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Memory Access Divergence
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• All loads are gathers, all stores are scatters

• Address coalescing unit (ACU) detects sequential and 
strided patterns, coalesces memory requests

• Complex patterns can result in multiple lower bandwidth 
requests – this is called memory divergence, which hurts 
performance

• Writing efficient GPU code requires most accesses to 
not conflict, even though programming model allows 
arbitrary patterns!

Why isn’t address coalescing as serious 
problem as in vector machines? Latency tolerance!
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Global Memory Bank

Global Memory Bank

Global Memory Bank
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Shared Global Memory (off-chip)

March 4, 2024

Shared global memory
• Large shared memory
• Different requests going to different banks is good
• Will suffer also from memory divergence
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Shared Global Memory (off-chip)
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Need all requests to come back at the same time!
If hits take the same time as misses, what’s the point of caches?
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Shared Global Memory (off-chip)

March 4, 2024

Memory hierarchy with caches
– Cache to save memory bandwidth
– Caches also enable compression/decompression of data
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Serialized cache access

March 4, 2024

Trade latency for power/flexibility
– Only access data bank that contains data
– Facilitate more sophisticated cache organizations

• e.g., greater associatively
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GPU Programming Environments

Hard to generate efficient GPU code directly from 
C/C++, so new languages (or language variants) 
have been introduced:

• CUDA (Nvidia-only)
– C-like language that runs on GPU
– Libraries: cuDNN, cuBLAS, cuFFT

• OpenCL (open standard)
– C-like language that runs on GPU, CPU or FPGA
– usually less optimized than CUDA

March 4, 2024
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CUDA GPU Thread Model
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Single-program multiple data (SPMD) model 

Each context is a thread
• Threads have registers
• Threads have local memory

Parallel threads packed in blocks
• Blocks have shared memory
• Threads synchronize with barrier
• Blocks run to completion (or abort)

Grids include independent blocks
• May execute concurrently
• Share global memory, but
• Have limited inter-block synchronization
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Hardware Scheduling

March 4, 2024

• Grids can be launched by CPU or GPU
– Work from multiple CPU threads and processes

• HW unit schedules grids on SMs (labeled 
SMX in diagram)
– Priority-based scheduling

• 32 active grids
– More queued/paused
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GPU Kernel Execution

March 4, 2024

Transfer input data from CPU to GPU memory

Launch kernel (grid)

Wait for kernel to finish (if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

• Data transfers can dominate execution time
• Integrated GPUs with unified address space  no copies, but…



L09-35

Sze and Emer

Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M=

• Matrix–Vector Multiply: 
• Multiply all inputs in all channels by a weight and sum

March 4, 2024
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Fully Connected Computation

F[M0 C0 H0 W0]  F[M0 C0 H0 W1] …
F[M0 C0 H1 W0]  F[M0 C0 H1 W1] …
F[M0 C0 H2 W0]  F[M0 C0 H2 W1] …
.
.
F[M0 C1 H0 W0]  F[M0 C1 H0 W1] …
F[M0 C1 H1 W0]  F[M0 C1 H1 W1] …
F[M0 C1 H2 W0]  F[M0 C1 H2 W1] …
.
.
.
F[M1 C0 H0 W0]  F[M1 C0 H0 W1] …
F[M1 C0 H1 W0]  F[M1 C0 H1 W1] …
F[M1 C0 H2 W0]  F[M1 C0 H2 W1] …
.
.
.

I[C0 H0 W0]  I[C0 H0 W1] …
I[C0 H1 W0]  I[C0 H1 W1] …
I[C0 H2 W0]  I[C0 H2 W1] …
.
.
I[C1 H0 W0]  I[C1 H0 W1] …
I[C1 H1 W0]  I[C1 H1 W1] …
I[C1 H2 W0]  I[C1 H2 W1] …
.
.
.

March 4, 2024

int i[C*H*W];    # Input activations
int f[M*C*H*W];  # Filter Weights
int o[M];        # Output activations

for (m = 0; m < M; m++) {
o[m] = 0;
CHWm = C*H*W*m;
for (chw = 0; chw < C*H*W; chw++) {

o[m] += i[chw] * f[CHWm + chw];
}

}

Parallelize 
here
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GPU Kernel Execution

March 4, 2024

Transfer input data from CPU to GPU memory

Launch kernel (grid)

Wait for kernel to finish (if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem
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• Data transfers can dominate execution time
• Integrated GPUs with unified address space  no copies, but…
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FC - CUDA Main Program
int i[C*H*W],   *gpu_i;    # Input activations
int f[M*C*H*W], *gpu_f;    # Filter Weights
int o[M],       *gpu_o;    # Output activations

# Allocate space on GPU
cudaMalloc((void**) &gpu_i, sizeof(int)*C*H*W);
cudaMalloc((void**) &gpu_f, sizeof(int)*M*C*H*W);

# Copy data to GPU
cudaMemcpy(gpu_i, i, sizeof(int)*C*H*W);
cudaMemcpy(gpu_f, f, sizeof(int)*M*C*H*W);

# Run kernel
fc<<<M/256 + 1, 256>>>(gpu_i, gpu_f, gpu_o, C*H*W, M);

# Copy result back and free device memory
cudaMemcpy(o, gpu_o, sizeof(int)*M, cudaMemCpyDevicetoHost);
cudaFree(gpu_i); 
...

Thread block size

Num thread blocks

March 4, 2024

References to data 
on GPU
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FC – CUDA Terminology

• CUDA code launches 256 threads per block

• CUDA vs vector terminology:
– Thread = 1 iteration of scalar loop [1 element in vector loop]

– Block = Body of vectorized loop [VL=256 in this example]
• Warp size = 32 [Number of vector lanes]

– Grid = Vectorizable loop

[ vector terminology ]

March 4, 2024
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FC - CUDA Kernel
__global__
void fc(int *i, int *f, int *o, const int CHW, const int M){

int tid=threadIdx.x + blockIdx.x * blockDim.x;
int m = tid

int sum = 0;

if (m < M){
for (int chw=0; chw <CHW; chw ++) {

sum += i[chw]*f[(m*CHW)+chw];
}

o[m] = sum;
}

}

Any consequences of f[(m*CHW)+chw]? Yes, strided references
Any consequences of f[(chw*M)+m]? Yes, different data layout

tid is “output 
channel” number

March 4, 2024

Calculate “global” 
thread id (tid)

Code for 
one thread

Can be unrolled 
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Convolution (CONV) Layer

…
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…
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Input fmaps (N) Many
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Convolution (CONV) Layer
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1 2 3 4×1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 31 2 4

Chnl 1 Chnl 2
Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1
Chnl 2

Input Fmap as
Toeplitz matrix

Output FmapFilter

GPU Implementation: 
• Keep original input activation matrix in main memory
• Conceptually do tiled matrix-matrix multiplication
• Copy input activations into scratchpad to small Toeplitz matrix tile
• On Volta tile again to use ‘tensor core’

March 4, 2024
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GV100 – “Tensor Core”

Volta tensor Core…. 120 TFLOPS (FP16),  400 GFLOPS/W (FP16)

New opcodes – Matrix Multiply Accumulate (HMMA)
How many FP16 operands? Inputs 48 / Outputs 16

How many multiplies? 64

How many adds? 64

March 4, 2024

Toeplitz expansion is essential to exploit hardware
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Tensor Core Integration
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In addition to 
normal function 

units…

March 4, 2024
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Tensor Core Integration

PC I$ IR GPR
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Cross thread 
operands
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Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the 
matrix-vector operation into a matrix-matrix multiply

March 4, 2024
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Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in tensor core operation 
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 4, 2024
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Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Matrix multiply tiled to fit in tensor core operation 
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 4, 2024
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Vector vs GPU Terminology

March 4, 2024

[H&P5, Fig 4.25]
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Summary
• GPUs are an intermediate point in the continuum of flexibility 

and efficiency

• GPU architecture focuses on throughput (over latency)
– Massive thread-level parallelism, with

• Single instruction for many threads
– Memory hierarchy specialized for throughput

• Shared scratchpads with private address space
• Caches used primarily to reduce bandwidth not latency

– Specialized compute units, with
• Many computes per input operand

• Little’s Law useful for system analysis
– Shows relationship between throughput, latency and tasks in-flight

March 4, 2024
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Next Lecture: Spatial Architectures

Thank you!

March 4, 2024


