
L10-1

6.5930/1
Hardware Architectures for Deep Learning

GPU Computation (continued)

Joel Emer and Vivienne Sze
Acknowledgement: Srini Devadas (MIT)

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

March 8, 2023

L10-2

Sze and Emer

Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M=

• Matrix–Vector Multiply:

• Multiply all inputs in all channels by a weight and sum

March 6, 2024

L10-3

Sze and Emer

Fully Connected Computation

F[M0 C0 H0 W0] F[M0 C0 H0 W1] …
F[M0 C0 H1 W0] F[M0 C0 H1 W1] …
F[M0 C0 H2 W0] F[M0 C0 H2 W1] …
.
.
F[M0 C1 H0 W0] F[M0 C1 H0 W1] …
F[M0 C1 H1 W0] F[M0 C1 H1 W1] …
F[M0 C1 H2 W0] F[M0 C1 H2 W1] …
.
.
.
F[M1 C0 H0 W0] F[M1 C0 H0 W1] …
F[M1 C0 H1 W0] F[M1 C0 H1 W1] …
F[M1 C0 H2 W0] F[M1 C0 H2 W1] …
.
.
.

I[C0 H0 W0] I[C0 H0 W1] …
I[C0 H1 W0] I[C0 H1 W1] …
I[C0 H2 W0] I[C0 H2 W1] …
.
.
I[C1 H0 W0] I[C1 H0 W1] …
I[C1 H1 W0] I[C1 H1 W1] …
I[C1 H2 W0] I[C1 H2 W1] …
.
.
.

March 6, 2024

int i[C*H*W]; # Input activations
int f[M*C*H*W]; # Filter Weights
int o[M]; # Output activations

for (m = 0; m < M; m++) {
o[m] = 0;
CHWm = C*H*W*m;
for (chw = 0; chw < C*H*W; chw++) {

o[m] += i[chw] * f[CHWm + chw];
}

}

Parallelize
here

L10-4

Sze and Emer

GPU Kernel Execution

March 6, 2024

Transfer input data from CPU to GPU memory

Launch kernel (grid)

Wait for kernel to finish (if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

• Data transfers can dominate execution time

• Integrated GPUs with unified address space no copies, but…

L10-5

Sze and Emer

FC - CUDA Main Program
int i[C*H*W], *gpu_i; # Input activations
int f[M*C*H*W], *gpu_f; # Filter Weights
int o[M], *gpu_o; # Output activations

Allocate space on GPU
cudaMalloc((void**) &gpu_i, sizeof(int)*C*H*W);
cudaMalloc((void**) &gpu_f, sizeof(int)*M*C*H*W);

Copy data to GPU
cudaMemcpy(gpu_i, i, sizeof(int)*C*H*W);
cudaMemcpy(gpu_f, f, sizeof(int)*M*C*H*W);

Run kernel
fc<<<M/256 + 1, 256>>>(gpu_i, gpu_f, gpu_o, C*H*W, M);

Copy result back and free device memory
cudaMemcpy(o, gpu_o, sizeof(int)*M, cudaMemCpyDevicetoHost);
cudaFree(gpu_i);
...

Thread block size

Num thread blocks

March 6, 2024

References to data
on GPU

L10-6

Sze and Emer

FC – CUDA Terminology

• CUDA code launches 256 threads per block

• CUDA vs vector terminology:

– Thread = 1 iteration of scalar loop [1 element in vector loop]

– Block = Body of vectorized loop [VL=256 in this example]
• Warp size = 32 [Number of vector lanes]

– Grid = Vectorizable loop

[vector terminology]

March 6, 2024

L10-7

Sze and Emer

FC - CUDA Kernel
__global__
void fc(int *i, int *f, int *o, const int CHW, const int M){

int tid=threadIdx.x + blockIdx.x * blockDim.x;
int m = tid

int sum = 0;

if (m < M){
for (int chw=0; chw <CHW; chw ++) {

sum += i[chw]*f[(m*CHW)+chw];
}

o[m] = sum;
}

}

Any consequences of f[(m*CHW)+chw]? Yes, strided references

Any consequences of f[(chw*M)+m]? Yes, different data layout

tid is “output
channel” number

March 6, 2024

Calculate “global”
thread id (tid)

Code for
one thread

Can be unrolled

L10-8

Sze and Emer

Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

C

C

filters

E

F

H

C

H

W

C

E

1 1

N
N

W F

Batch Size (N)March 6, 2024

L10-9

Sze and Emer

Convolution (CONV) Layer

=1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2 3 4×1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 31 2 4

Chnl 1 Chnl 2

Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1

Chnl 2

Input Fmap as
Toeplitz matrix

Output FmapFilter

GPU Implementation:
• Keep original input activation matrix in main memory
• Conceptually do tiled matrix-matrix multiplication
• Copy input activations into scratchpad to small Toeplitz matrix tile
• On Volta tile again to use ‘tensor core’

March 6, 2024

L10-10

Sze and Emer

GV100 – “Tensor Core”

Volta tensor Core…. 120 TFLOPS (FP16), 400 GFLOPS/W (FP16)

New opcodes – Matrix Multiply Accumulate (HMMA)

How many FP16 operands? Inputs 48 / Outputs 16

How many multiplies? 64

How many adds? 64

March 6, 2024

Toeplitz expansion is essential to exploit hardware

L10-11

Sze and Emer

+1

2 2

Tensor Core Integration

PC I$ IR GPR

X

Y

+
 *

GPR

X

Y

+
 *

M
e
m
o
r
y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

In addition to
normal function

units…

March 6, 2024

L10-12

Sze and Emer

+1

2 2

Tensor Core Integration

PC I$ IR GPR

X

Y

Tenso
r M

a
trix M

u
ltip

ly A
ccum

ulateGPR

X

Y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

Cross thread
operands

March 6, 2024

L10-13

Sze and Emer

Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the

matrix-vector operation into a matrix-matrix multiply

March 6, 2024

L10-14

Sze and Emer

Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0

+
F0,1I1,0

F1,0I0,0

+
F1,1I1,0

F0,0I0,1

+
F0,1I1,1

F1,0I0,1

+
F1,1I1,1

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 6, 2024

L10-15

Sze and Emer

Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0

+
F0,1I1,0

F1,0I0,0

+
F1,1I1,0

F0,0I0,1

+
F0,1I1,1

F1,0I0,1

+
F1,1I1,1

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 6, 2024

L10-16

Sze and Emer

Vector vs GPU Terminology

March 6, 2024

[H&P5, Fig 4.25]

L10-17

Sze and Emer

Summary
• GPUs are an intermediate point in the continuum of flexibility

and efficiency

• GPU architecture focuses on throughput (over latency)
– Massive thread-level parallelism, with

• Single instruction for many threads

– Memory hierarchy specialized for throughput
• Shared scratchpads with private address space

• Caches used primarily to reduce bandwidth not latency

– Specialized compute units, with
• Many computes per input operand

• Little’s Law useful for system analysis
– Shows relationship between throughput, latency and tasks in-flight

March 6, 2024

L10-18

6.5930/1
Hardware Architectures for Deep Learning

Accelerator Architecture

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

March 8, 2023

L10-19

Sze and Emer

What is Moore’s Law

• CPU performance will double every two years*

• Chip performance will double every two years*

• The speed of transistors will double every two years*

• Transistors will shrink to half size every two years*

• Gate width will shrink by every two years*

• Transistors per die will double every two years*

• The economic sweet spot for the number of devices on a chip will
double every two years*

* Or 12 or 18 months…

March 6, 2024
L24-19

L10-20

Sze and Emer

Moore’s (Original) Law

The complexity for
minimum component
costs has increased at
a rate of roughly a
factor of two per
year.

- Gordon Moore

Moore, “Cramming more components onto integrated circuits”, Electronics 1965.]

March 6, 2024

L10-21

Sze and Emer

Moore’s (Transistor) Law

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1970 1975 1980 1985 1990 1995 2000 2005 2010
3

4

5

6

7

8

9

1O
lo
g 1

O(
tr

an
si
st

or
s) Intel processor chips

Year
[Moore, Progress in digital integrated electronics, IEDM 1975]

Number of transistors has been doubling

March 6, 2024

L10-22

Sze and Emer

Moore’s (Performance) Law

[Leiserson et al., There's Plenty of Room at the Top, Science]

March 6, 2024

L10-23

Sze and Emer

Energy and Power Consumption

• Energy Consumption (Joules) = α x C x V2

• Power Consumption (Joules/sec or Watts) = α x C x V2 x f

Switching
activity factor

(between 0 to 1)

Capacitance Voltage

Frequency

March 6, 2024

L10-24

Sze and Emer

Capacitance and Energy Storage

Energy Consumption = α x C x V2

March 6, 2024

L10-25

Sze and Emer

Analogy: Water = Charge

SOURCE DRAIN

GATE

Full Bucket =
‘1’

Size of bucket
proportional to

load
capacitance

What affects the rate of flow of the water (i.e. current)?
March 6, 2024

L10-26

Sze and Emer

Analogy: Water = Charge

Transistor has multiple states

Transistor ON
High Flow, Low Resistance

Transistor OFF
Low Flow, High Resistance

Flow ControlSOURCE DRAIN

GATE

VGS

VDS

Increa
sin

g V
G

S

March 6, 2024

L10-27

Sze and Emer

Dennard Scaling (idealized)
Gen X Gen X+1

1.0
Gate Width

1.0

Device Area/
Capacitance

1.0

Voltage 1.0

Energy ~ 1.0 x 1.02 = 1.0

Delay 1.0

Frequency 1/1.0 = 1.0

Power ~ 1.0 x 1.02 x 1.0 = 1.0

0.7

0.7

~ 2 x 0.7 x 0.72 = 0.65

0.7

1/0.7 = 1.4

~ 2 x 0.7 x 0.72 x 1.4 = 1.0

0.5

0.7

0.5

0.7

[Dennard et al., "Design of ion-implanted MOSFET's with very small physical dimensions“, JSSC 1974]

March 6, 2024

L10-28

Sze and Emer

The End of Historic Scaling

[Leiserson et al., There's Plenty of Room at the Top, Science]

Voltage scaling slowed down Power density increasing!

March 6, 2024

L10-29

Sze and Emer

During the Moore + Dennard’s Law Era

• Instruction-level parallelism (ILP) was
largely mined out by early 2000s

• Voltage (Dennard) scaling ended in 2005

• Hit the power limit wall in 2005

• Performance is coming from parallelism
using more transistors since ~2007

• But….

March 6, 2024

L10-30

Sze and Emer

Moore’s Law in DRAMs

Image source: John Hennessy

After multi-core, specialization (i.e., accelerators) seems to be
the most attractive architectural option to cope with the end of Moore’s Law

March 6, 2024

L10-31

Sze and Emer

The High Cost of Data Movement

Fetching operands more expensive than computing on them

Image source: Bill Dally

Now the key is how we use our transistors most effectively.
March 6, 2024

L10-32

Sze and Emer

Accelerator Design Attributes

• Integration into system
– How is the accelerator integrated into the system?

• Operation specification/sequencing
– How is activity managed within the accelerator?

• Data management
– How is data movement orchestrated in the accelerator?

Remember, however, the world is ‘fractal’!

March 6, 2024
Image: Wikipedia

L10-33

Sze and Emer

System Integration

March 6, 2024

L10-34

Sze and Emer

Accelerator Integration Taxonomy

FU FU
Accel

Inst cache

Decode

Core
Core

Core CoreCore Core

Accel

Chip

Accel

Credit: Angshuman Parashar
March 6, 2024

L10-35

Sze and Emer

Accelerator Architectural Choices

• State
– Local state – Is there local state? (i.e. context)
– Global state – e.g., main memory shared with CPU

• Data Operations
– Custom data operations in the accelerator

• Memory Access Operations
– Operations to access shared global memory – Do they exist?

• Control Flow Operations
– How is accelerator sequenced relative to CPU?

March 6, 2024

L10-36

Sze and Emer

How to Sequence Accelerator Logic?

• Synchronous
– Accelerated operations inside processor pipeline

• E.g., as a separate function unit

– Control handled by standard control instructions

• Asynchronous
– A standalone logical machine

• Accelerator started by processor that continues running

What factors mitigate for one form
or the other?

Existence of concurrent activity

Latency of operation

Size of logic

Size of operands
March 6, 2024

L10-37

Sze and Emer

Eight Alternatives

Architectural semantics

Has contextAccesses
memoryAsynchronous

000
100
010
110
001
101
011
111

Characteristics of “no
memory access” choice?

Good for smaller operands

Simpler, e.g., no virtual memory

No ‘Little’s Law’ storage requirement
March 6, 2024

L10-38

Sze and Emer

Eight Alternatives

Architectural semantics

Has contextAccesses
memoryAsynchronous

000
100
010
110
001
101
011
111

Characteristics of “no
context” choice?

Simpler, no context switch mechanism

Long operations run to completion

More limited reuse opportunities
March 6, 2024

L10-39

Sze and Emer

Accelerator Architectural Alternatives

Example
Architectural semantics

Has
context

Accesses
memory

Asynchr
onous

New function unit,
like tensor core in GPU000

Accumulating data reduction
instruction100

Memory-to-memory vector unit010

Register-based vector unit
including load store ops110

Complex function calculator?001

Security co-processor (TPM)101

Network adapter011

GPU with virtual memory111

March 6, 2024

L10-40

Sze and Emer

Example
Architectural semantics

Has
context

Accesses
memory

Asynchr
onous

New function unit,
like tensor core in GPU000

Accumulating data reduction
instruction100

Memory-to-memory vector unit010

Register-based vector unit
including load store ops110

Complex function calculator?001

Security co-processor (TPM)101

Network adapter011

GPU with virtual memory111

Accelerator Architectural Alternatives

March 6, 2024

L10-41

Sze and Emer

Operation Sequencing

March 6, 2024

L10-42

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

CPU
GPU

March 6, 2024

L10-43

Sze and Emer

Multiprocessor

L2 L2 L2 L2

L3 L3

Memory (DRAM)

Inter-processing element
communication is
through cache hierarchy

March 6, 2024

L10-44

Sze and Emer

Highly-Parallel Compute Paradigms

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

March 6, 2024

L10-45

Sze and Emer

Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy

• Global Buffer

• Direct inter-PE network

• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB

March 6, 2024

L10-46

Sze and Emer

Parallel Control: Temporal vs Spatial

• Style dictates many later hardware choices
• Temporal: Dynamic instruction stream, shared memory

• Spatial: Tiny processing elements (PEs), direct communication

Iteration:

Program:

Temporal Spatial

March 6, 2024

L10-47

Sze and Emer

Memory Access: Spatial vs Temporal

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000

1x12x23x34x45x56x67x78x8

N
um

 L
oa

ds
 a

nd
 S

to
re

s

Num ALUs

Edit Distance

Temporal

Spatial

Algorithmic Min

0

1,000,000

2,000,000

3,000,000

4,000,000

1x12x23x34x45x56x67x78x8

N
um

 L
oa

ds
 a

nd
 S

to
re

s

Num ALUs

Gaussian Blur

Temporal

Spatial

Algorithmic Min
0

500,000

1,000,000

1,500,000

1x12x23x34x45x56x67x78x8

N
um

 L
oa

ds
 a

nd
 S

to
re

s

Num ALUs

Desaturate

Temporal

Spatial

Algorithmic Min

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

1x12x23x34x45x56x67x78x8

N
um

 L
oa

ds
 a

nd
 S

to
re

s

Num ALUs

Malvar Demosaic

Temporal

Spatial

Algorithmic Min

Large benefits with even small array sizes

March 6, 2024

L10-48

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU FPGA

Triggered
Instructions

RAW
AsAP
PicoChip

TRIPS
WaveScalar
DySER
TTA

March 6, 2024

L10-49

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

FPGA

March 6, 2024

L10-50

Sze and Emer

Field Programmable Gate Arrays

LUT
Latch

RAM

And

000

001

010

111

Or

000

001

110

111

March 6, 2024

Look Up Table (LUT)

L10-51

Sze and Emer

Configurable Logic Blocks (CLB)

• CLB used to implement sequential and combinational logic
• CLB are comprised of several Basic Logic Elements (BLE)
• Each BLE contains:

– Look up tables (LUT) are used to implement logic function
– Registers to store data
– Multiplexer to select desired output

As number of inputs grow (k), increase size of LUT by 2^k and routing

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic
Design Automation 2.2 (2008): 135-253.

March 6, 2024

L10-52

Sze and Emer

Area Trade-off (Size of LUT)

LUT Size (inputs)

A
re

a/
B

L
E

N
u

m
b

er
 o

f
B

L
E

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic
Design Automation 2.2 (2008): 135-253.

As functionality increases, fewer
blocks are required, but block size
increases and fewer blocks per area

March 6, 2024

L10-53

Sze and Emer

Size of LUT (Speed Trade-off)

LUT Size (inputs)

B
L

E
 i

n
 c

ri
ti

c
al

 p
a

th

D
el

a
y

o
f

B
L

E

Kuon, Ian, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic
Design Automation 2.2 (2008): 135-253.

As functionality increases, fewer
blocks are in critical path, fewer logic
levels and inter-block routing, but
internal delay increases

March 6, 2024

L10-54

Sze and Emer

Microsoft Project Catapult

Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for
• Bing search
• Software defined network
• Encryption and Decryption

March 6, 2024

L10-55

Sze and Emer

Microsoft Brainwave Neural Processor

March 6, 2024

Source: Microsoft

L10-56

Sze and Emer

Heterogeneous Blocks

• Add specific purpose logic on FPGA
– Efficient if used (better area, speed, power),

wasted if not

• Soft fabric
– LUT, flops, addition, subtraction, carry logic
– Convert LUT to memories or shift registers

• Memory block (BRAM)
– Configure word and address size (aspect ratio)
– Combine memory blocks to large blocks
– Significant part for FPGA area
– Dual port memories (FIFO)

• Multipliers /MACs DSP

• CPUs and processing elements

March 6, 2024

L10-57

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Triggered
Instructions

RAW
AsAP
PicoChip

TRIPS
WaveScalar
DySER
TTA

March 6, 2024

L10-58

Sze and Emer

Programmable Accelerators

Many Programmable Accelerators look like an array of PEs, but have dramatically
different architectures, programming models and capabilities

PE PEPE PE

PE PEPE PE

PE PEPE PE

PE PEPE PE

Processing
Element

...

March 6, 2024

L10-59

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Fixed-operation

TPU
NVDLA

March 6, 2024

L10-60

Sze and Emer

Fixed Operation - Systolic Array

• Each PE hard-wired to one operation

• Purely pipelined operation

– no backpressure in pipeline

• Attributes

– High-concurrency

– Regular design, but

– Regular parallelism only!

March 6, 2024

L10-61

Sze and Emer

Configurable Systolic Array - WARP

March 6, 2024

Source: WARP Architecture and Implementation, ISCA 1986

L10-62

Sze and Emer

Fixed Operation - Google TPU

March 6, 2024

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google

L10-63

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Fixed-operation

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

TPU
NVDLA

March 6, 2024

L10-64

Sze and Emer

Single Configured Operation - Dyser

March 6, 2024

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11

L10-65

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Wave
RAW
AsAP

PicoChip

Fixed-operation

PC-based

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

TPU
NVDLA

March 6, 2024

L10-66

Sze and Emer

PC-based Control – Wave Computing

March 6, 2024

Source: Wave Computing, Hot Chips ‘17

L10-67

Sze and Emer

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Triggered
Instructions

Wave
RAW
AsAP

PicoChip

Fixed-operation

PC-based

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

Triggered operations

TPU
NVDLA

March 6, 2024

L10-68

Sze and Emer

Guarded Actions

• Program consists of rules that may perform
computations and read/write state

• Each rule specifies conditions (guard) under
which it is allowed to fire

• Separates description and execution of data
(rule body) from control (guards)

• A scheduler is generated (or provided by
hardware) that evaluates the guards and
schedules rule execution

• Sources of Parallelism

– Intra-Rule parallelism

– Inter-Rule parallelism

– Scheduler overlap with Rule execution

– Parallel access to state

rule X (A > 0 && B != C)
{

A <= B + 1;
B <= B - 1;
C <= B * A;

}

Scheduler

reg A; reg B; reg C;

rule Y (…) {…}

rule Z (…) {…}

March 6, 2024

L10-69

Sze and Emer

Triggered Instructions (TI)

• Restrict guarded actions down to efficient ISA core:

%out0.data = %in0.first;
%in0.deq;
p_did_cmp = false;

doPass when (p_did_cmp && !p_cur_is_larger)

Trigger
read any number of

1-bit predicates

Operation
read/write data regs

channel control

Predicate Op
write 1-bit preds
(data-dependent)

When can this
happen?

What does it do?
What can happen

next?

No program counter or branch instructions

March 6, 2024

L10-70

Sze and Emer

Triggered Instruction Scheduler

• Use combinational logic to evaluate triggers in parallel
• Decide winners if more than one instruction is ready

• Based on architectural fairness policy
• Could pick multiple non-conflicting instructions to issue (superscalar)

• Note: no wires toggle unless status changes

Trigger 0

Trigger 1

Trigger 2

“can trigger” “will trigger”

to datapath

p0 p1 p2 p3

Trigger n

...

Operation 0

Operation 1

Operation 2

Operation n

...

Trigger
Resolution

P
ri

or
ity

March 6, 2024

L10-71

Sze and Emer

Next Lecture: Dataflows

Thank you!

March 6, 2024

