L10-1

6.5930/1
Hardware Architectures for Deep Learning

GPU Computation (continued)

March 8, 2023

Joel Emer and Vivienne Sze
Acknowledgement: Srini Devadas (MIT)

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

L10-2

Fully-Connected (FC) Layer

* Matrix—Vector Multiply:
« Multiply all inputs in all channels by a weight and sum

Filters Input fmaps Output fmaps

« CHW—> 11—

~— 1 -

March 6, 2024 |I|il- Sze and Emer

L10-3

Fully Connected Computation

int i[C*H*W]; # Input activations o Ho Wol 1[Co Ho Wl...
X) X I[Cq Hy Wo] 1[Co HyW,]...
int f[M*C*H*W]; # Filter Weights I[Co Hy W] 1[Co HyW,] ...
int o[M]; # Output activations -

I[C, HyWq] I[C; HoW,] ...
I[C, H, W] I[Cy H,W,]...
I[C, Hy W] I[Cy HyW,]...

for (m = 0; m < M; m++) {
o[m] = @;
= CHH*W*
b3 . KH K|l ¢
Parallelize G Tt S £ i FIMo Co HoWo] FIM, Co Ho Wyl ..
o[m] += 1[e vl +]; FIM, Co Hy W,] FIMqCo H, W,]...
EIE } F[M, Co Hy W,] F[M, Cy Hy W,]...

}

FIMgC; HoW¢] FIMgCy HyW] ...

7 F[M, C, Hy W,] FIMyC, H,W,] ...
F[My Cy Hy W] FIMyCy Hy W,] ...

F[M, Co HoW,] FIM, Cy HoW,] ...
F[M, Co H, W,] FIM, CoH,W,] ...
F[M, Co Hy W] FIM, Cy HyW,] ...

March 6, 2024 |I|il- Sze and Emer

L10-4

GPU Kernel Execution

Mem I

Mem

A,

e

2

-

——

@ Transfer input data from CPU to GPU memory
@ Launch kernel (grid)
@© Wait for kernel to finish (if synchronous)

@ Transfer results to CPU memory

» Data transfers can dominate execution time
» Integrated GPUs with unified address space - no copies, but...

March 6, 2024

|I|i|- Sze and Emer

FC - CUDA Main Program

L10-5

—

—

int i[C*H*W], *gpu 1i; # Input activations
int f[M*C*H*W], *gpu f; # Filter Weights
int o[M], *gpu 03 # Output activations

Allocate space on GPU References to data
cudaMalloc((void**) &gpu i, sizeof(int)*C*H*W); on GPU
cudaMalloc((void**) &gzpu , sizeof(int)*M*C*H*NW);

Copy data to GPU

cudaMemcpy(gpu i, i, sizeof(int)*C*H*W);
cudaMemcpy(zpu , f, sizeof(int)*M*C*H*W); Num thread blocks
D TR e Thread block size
fc<<<M/256 + 1, 256>>>(gpu_i, gpu f, gpu o, C*H*W, M);

Copy result back and free device memory
cudaMemcpy(o, gpu o, sizeof(int)*M, cudaMemCpyDevicetoHost);

cudaFree(gpu 1i); £;7

March 6, 2024

Sze and Emer

L10-6

FC — CUDA Terminology

 CUDA code launches 256 threads per block

» CUDA vs vector terminology:
— Thread = 1 iteration of scalar loop [1 element in vector loop]

— Block = Body of vectorized loop [VL=256 in this example]

« Warp size = 32 [Number of vector lanes]

— Grid = Vectorizable loop

[vector terminology |

March 6, 2024 UHm Sze and Emer

FC - CUDA Kernel |

__global
L oo it T (Ant "k, Ent &f G0t o, "constSiinta CHWS T consit sisnt M)

Code for int tid=threadIdx.x + blockIdx.x * blockDim.x;
one thread int m = tid
int sum = 0; Calculate “global”
thread id (tid)
if (m < M){ -
for (int chw=@; chw <CHW; chw ++) { tid is “output
sum += i[chw]*f[(m*CHW)+chw]; channel” number
}
E:> o[m] = sum;
) h Can be unrolled

Any consequences of [[(m*CHW)+chw]? Yes, strided references

Any consequences of {[(chw*M)+m]? Yes, different data layout

March 6, 2024 UHm Sze and Emer

L10-8

Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters o7 Output fmaps (N)
M ;

c’ =

C.
i & E)
J |1

c’
L- D J

E

March 6, 2024 Mir Batch Size (N) 78 and Emer

L10-9

Convolution (CONV) Layer

Filter Input Fmap as Output Fmap
Toeplitz matrix

Chnl 1 Chnl 2

9 _ Chnl 1
Chnl 2

Chnl 1

Chnl 2

GPU Implementation:

« Keep original input activation matrix in main memory

» Conceptually do tiled matrix-matrix multiplication

« Copy input activations into scratchpad to small Toeplitz matrix tile
* On Volta tile again to use ‘tensor core’

March 6, 2024 |I|il- Sze and Emer

L10-10

GV100 - “Tensor Core”

Al'l,il A!:'I_'l -Ai',l.'.l Al:'-‘.?

A'I.III A1.1 'ﬁ'1.! "\1.1

i \
FP16 or FP32 FP16 FP16 FP16 or FP32

New opcodes — Matrix Multiply Accumulate (HMMA)
How many FP16 operands? Inputs 48 / Outputs 16
How many multiplies? 64

How many adds? 64

Volta tensor Core.... 120 TFLOPS (FP16), 400 GFLOPS/W (FP16)

Toeplitz expansion is essential to exploit hardware

March 6, 2024 UHm Sze and Emer

Tensor Core Integration

L10-11

March 6, 2024

Y

]_ 1]

+1 |

In addition to
normal function

units...

GPR1 ‘ ‘ \

1>

1>

< =030

"2

2

> —

Sze and Emer

Tensor Core Integration

L10-12

March 6, 2024

In

+1 |

A 4

GPR1 ‘ ‘ \

/’X_’

ZaN

Nemwnoov Adiynn xurepy Josue/

Cross thread

"2

> —

2

operands

Sze and Emer

L10-13

Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
«—— CHW — N N

CHW

« After flattening, having a batch size of N turns the
matrix-vector operation into a matrix-matrix multiply

March 6, 2024 |I|il- Sze and Emer

L10-14

Tiled Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
- - cHW lo.o ‘ lo 1 Fo,_c:_'o,ol Fo,_(:_lo,1
0,0 0,1 Jerannnnnannnns I
) 4 lio & Iy — Foiliof Fotli
M i 5 M'--———-g
Fioloo i Fiolos
Fio i Fy; + i F

Fi1l10 Fi1l11

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad

and then in cache.

March 6, 2024 |I|il- Sze and Emer

L10-15

Tiled Fully-Connected (FC) Layer

Filters Input fmaps Output fmaps
«— C|'.|W—> N N

Fooloo | Foolos
+ +

, ’ FO,‘]I‘],O F0,1|1,1

Fioloo i Fiolos

Fio i Faq o
: Fi1l10 Fi1l11

Matrix multiply tiled to fit in tensor core operation
and computation ordered to maximize reuse of data in scratchpad

and then in cache.

March 6, 2024 |I|il- Sze and Emer

Vector vs GPU Terminology

L10-16

March 6, 2024

More descrip- Closest old term Official CUDA/
Type tive name outside of GPUs ~ NVIDIA GPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
- Loop up of one or more Thread Blocks (bodies of
g vostoristid I0op) Bial can exeoule in guallel,
E Body of Body ofa Thread Block A vectorized loop executed on & multithreaded
B Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
a Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
Eu Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
E SIMD Lane a Scalar Loop cormesponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

E A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD

E" SIMD Instructions instructions that are executed on a multithreaded
Instructions SIMD Processor. Results stored depending on a

% per-clement mask.

é SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD

Instruction Lanes,

Multithreaded {Multithreaded) Sireaming A multithreaded SIMD Processor execuies

SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors,

§ ThresdBlock Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of

-E Scheduler Engine vectorized loop) to multithreaded SIMD

B Processors.

g SIMD Thread Thread scheduler Warp Scheduler Hardware unit that schedules and issues threads

'% Scheduler in a Multithreaded of SIMD instructions when they are ready to
CPU execube; includes a scorcboard to track SIMD

E Thread exccution.

SIMD Lane ‘Vector Lane ‘Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instrections on a single clement. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

o SIMD Processors in a GPUL

% Private Stack or Thread Local Memory Portion of DRAM memory private te each SIMD
5 Memory Local Storage (0S) Lane.

= Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD
E Processor, unavailable to other SIMD Processors.
§ SIMD Lanc Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).

[H&P5, Fig 4.25]

Sze and Emer

L10-17

Summary

» GPUs are an intermediate point in the continuum of flexibility
and efficiency

» GPU architecture focuses on throughput (over latency)

— Massive thread-level parallelism, with
+ Single instruction for many threads

— Memory hierarchy specialized for throughput
» Shared scratchpads with private address space
» Caches used primarily to reduce bandwidth not latency

— Specialized compute units, with
« Many computes per input operand

 Little’s Law useful for system analysis
— Shows relationship between throughput, latency and tasks in-flight

March 6, 2024 |I|il- Sze and Emer

L10-18

6.5930/1
Hardware Architectures for Deep Learning

Accelerator Architecture

March 8, 2023

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

L10-19

What is Moore’s Law

 CPU performance will double every two years*

« Chip performance will double every two years*

* The speed of transistors will double every two years*
» Transistors will shrink to half size every two years*

« Gate width will shrink by V2 every two years*

* Transistors per die will double every two years*

« The economic sweet spot for the number of devices on a chip will
double every two years*

*Or 12 or 18 months...

March 6, 2024 |||i|- L24-19 Sze and Emer

Moore’s (Original) Law

L10-20

March 6, 2024

The complexity for
minimum component
costs has increased at
a rate of roughly a
factor of two per
year.

- Gordon Moore

Moore, “Cramming more components onto integrated circuits”, Electronics 1965.]

NGB OO

T T rrTr

—

™~ T T

LOG, OF THE NUMBER OF

COMPONENTS PER INTEGRATED FUNCTION
O—Nubmmﬂmwa

Fig. 2

Number of components per Integrated
function for minimum cost per component
extrapolated ve time,

Sze and Emer

L10-21

Moore’s (Transistor) Law

=
(@)

(o]

0o

log,,(transistors)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Year
[Moore, Progress in digital integrated electronics, IEDM 1975]

Number of transistors has been doubling

March 6, 2024 UHm Sze and Emer

Moore’s (Performance) Law

L10-22

March 6, 2024

100,000
S
10,000
SPECint
2-3 cor
-
Relasive 7000 SPECint= SPECintrate | _u ga
Performance or 1 core re‘!
Relative Clock - 1k
Frequency 100 t o £= - %
I = woge 8
1 %
. “'5 it
ulk oJe
1 L} #. .oo
10 Py
- ° % o3
- o L]
- [] . r ' 3 °® 3
s e ° Dennard-scaling era
- L J
] e
1985 1990 1995 2000

Year

[Leiserson et al., There's Plenty of Room at the Top, Science]

Sze and Emer

L10-23

Energy and Power Consumption

« Energy Consumption (Joules) = a x C x V2

/TN

Switching Capacitance Voltage
activity factor

(between O to 1)

« Power Consumption (Joules/sec or Watts) = axC x V2 x f

\

Frequency

March 6, 2024 |I|il- Sze and Emer

L10-24

Capacitance and Energy Storage

* A bucket of water provides a useful analogy
when thinking about capacitors, as shown in the
figure below.

Cross-sectional area = capacitance, C

§
s Amount _ stored
= of water Cimrgt*, Q
Depth _ potential
of water difference, V
@ 2014 Pearson Education, Inc. Energy Consumption = G x C X V2

March 6, 2024 |I|il- Sze and Emer

L10-25

Analogy: Water = Charge

Source

GATE (i;llul Hi (—

I

SOURCE—] L ——DRAIN [
1

Drain

Size of bucket
proportional to
Full Bucket = load
v capacitance

What affects the rate of flow of the water (i.e. current)?

March 6, 2024 |I|il- Sze and Emer

L10-26

Analogy: Water = Charge

Transistor has multiple states

Transistor OFF
Low Flow, High Resistance

.« GATE .
Ves | -
A"
SOURCE —J L —| DRAIN Flow Control

ﬂ._

Transistor ON
i High Flow, Low Resistance

—

March 6, 2024 UHm Sze and Emer

& SO Buiseauou

L10-27

Dennard Scaling (idealized)

Gen X Gen X+1

Gate Width [1] [1]

1.0 0.7
Device Area/
Capacitance

1.0 0.7 0.7
Voltage 1.0 0.7
Energy ~1.0x1.02=1.0 ~2x0.7x0.72=0.65
Delay
Frequency 1/7.0=1.0 1/0.7 =14
Power ~1.0x1.02x1.0=1.0 ~2x0.7x0.72x1.4=1.0

[Dennard et al., "Design of ion-implanted MOSFET's with very small physical dimensions®, JSSC 1974]

March 6, 2024 UHm Sze and Emer

L10-28

The End of Historic Scaling

100,000
SPECint rate
8+ cores I
L}
SPECint rate
10,000 4—7 cores o
SPECint rate
2—3 cores
1,000 AL
] — o 5 — —
Relative SPECint = SPECint rate §g= * s SPECint
Performance or 1 core ra" 2+ cores
Relative Clock - [I a5 ¥
Frequency s = X3 : om "
100 *
[]]
I H woge 8
1 ot Clock frequency
r ‘ L [] ‘o. °
ﬁ.' f = .oo
-
- o L]
- " o« & ¢ 3 EAN
C 5 B e ° Dennard-scaling era Multicore era
e
1 e
1985 1990 1995 2000 2005 2010 2015
Year

[Leiserson et al., There's Plenty of Room at the Top, Science]

Voltage scaling slowed down - Power density increasing!

March 6, 2024 UHm Sze and Emer

March 6, 2024

L10-29

During the Moore + Dennard’s Law Era

Instruction-level parallelism (ILP) was
largely mined out by early 2000s

Voltage (Dennard) scaling ended in 2005
Hit the power limit wall in 2005

Performance is coming from parallelism
using more transistors since ~2007

But....

|I|i|- Sze and Emer

L10-30

Moore’s Law in DRAMs

1000

=2 100
=
(=]
g .
i_-“
$
= .
1.5x/year 1.4x/year 1l.1x/year
2xin<2years 2xin2years 2xin 7 years
‘_“_,1. _;\‘ (.L .b:)

Image source: John Hennessy

After multi-core, specialization (i.e., accelerators) seems to be

the most attractive architectural option to cope with the end of Moore’s Law
March 6, 2024 Illil—

Sze and Emer

L10-31

The High Cost of Data Movement

Fetching operands more expensive than computing on them

64-bit DP ' 2. DRAM
20p — 1 | ' | Rd/Wr
256-bit)I __ Efficient
buses ! | I off-chip

O ~ link

e

T-'~ o H |

8 kB SRAM

Image source: Bill Dally

Now the key is how we use our transistors most effectively.

March 6, 2024 |I|il- Sze and Emer

L10-32

Accelerator Design Attributes

 Integration into system
— How is the accelerator integrated into the system?

« QOperation specification/sequencing
— How is activity managed within the accelerator?

« Data management
— How is data movement orchestrated in the accelerator?

Remember, however, the world is ‘fractal’l

Image: Wikipedia
March 6, 2024 |I|il- Sze and Emer

L10-33

System Integration

March 6, 2024 |||i|- Sze and Emer

L10-34

Accelerator Integration Taxonomy

-

Core Core Core Core ~
O O O
(. WO
O O
|
Core w g 4 4
.
|
lHnmnmpy
|
)) 1
. e
Credit: Angshuman Parashar

March 6, 2024 UHm Sze and Emer

L10-35

Accelerator Architectural Choices

State

— Local state —|Is there local state? (i.e. context
— Global state — e.g., main memory shared with CPU

Data Operations
— Custom data operations in the accelerator

Memory Access Operations
— Operations to access shared global memory —|Do they exist?

Control Flow Operations
— |How is accelerator sequenced relative to CPU?

March 6, 2024 |I|il- Sze and Emer

L10-36

How to Sequence Accelerator Logic?

« Synchronous
— Accelerated operations inside processor pipeline
* E.g., as a separate function unit
— Control handled by standard control instructions

* Asynchronous

— A standalone logical machine
« Accelerator started by processor that continues running

What factors mitigate for one form Latency of operation
or the other? Size of logic

Existence of concurrent activity

Size of operands

March 6, 2024 |I|il- Sze and Emer

L10-37

Eight Alternatives

Architectural semantics

Accesses
Asynchronous memory Has context

0 0

HIRrRRRR,OOO|IO
PR, OOIHR(HL|O
R O, O Ok

Characteristics of “no Good for smaller operands

”» H 2 i .
memory access” choice Simpler, e.g., no virtual memory

No ‘Little’s Law’ storage requirement

March 6, 2024 |I|il- Sze and Emer

L10-38

Eight Alternatives

March 6, 2024

Architectural semantics

Asynchronous

Accesses

memory Has context

0 0

PR, RPLPRLROIOIO|IO

PR, OOIRIHL|O
R IO, O O|F

Characteristics of “no
context” choice?

Simpler, no context switch mechanism
Long operations run to completion

More limited reuse opportunities
L Sze and Emer

Accelerator Architectural Alternatives

L10-39

March 6, 2024

Architectural semantics
Asynchr | Accesses| Has Example
onous memory | context
0 0 0 New function unit,
like tensor core in GPU
Accumulating data reduction
0 0 1 : .
Instruction
0 1 0 Memory-to-memory vector unit
0 1 1 Register-based vector unit
including load store ops
1 0 0 Complex function calculator?
1 0 1 Security co-processor (TPM)
1 1 0 Network adapter
1 1 1 GPU with virtual memory

Sze and Emer

Accelerator Architectural Alternatives

L10-40

March 6, 2024

Architectural semantics

Asynchr | Accesses| Has Example
onous memory | context
0 0 0 New function unit,

like tensor core in GPU

Sze and Emer

L10-41

Operation Sequencing

March 6, 2024 |||i|- Sze and Emer

Accelerator Taxonomy

L10-42

March 6, 2024

Accelerator
Architecture

/

Temporally

Programmed

CPU
GPU

Sze and Emer

Multiprocessor

Inter-processing element
communication is

through cache hierarchy

March 6, 2024

Memory (DRAM)

L10-43

Sze and Emer

L10-44

Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy

Memory Hierarchy

Register File

March 6, 2024 |I|il- Sze and Emer

L10-45

Spatial Architecture for DNN

Local Memory Hierarchy

* Global Buffer
e Direct inter-PE network
* PE-local memory (RF)

Processing
Element (PE)

0.5-1.0kB

March 6, 2024 |I|il- Sze and Emer

L10-46

Parallel Control: Temporal vs Spatial

4 N [N\
Program: @ I @

A\ I L I J

4 N [N\

Iteration: EEN \e/_\e/

Temporal Spatial

« Style dictates many later hardware choices
* Temporal: Dynamic instruction stream, shared memory
« Spatial: Tiny processing elements (PEs), direct communication

March 6, 2024 |||il- Sze and Emer

L10-47

Memory Access: Spatial vs Temporal

1,500,000

1,000,000

500,000

Num Loads and Stores

10,000,000
8,000,000
6,000,000
4,000,000
2,000,000

0

Num Loads and Stores

March 6, 2024

Desaturate

4,000,000

Gaussian Blur

3,000,000

—&—Temporal 2,000,000

—&Spatial 1,000,000

—>— Algorithmic Min

T T T T T

T

0

T 1

Num Loads and Stores

1x12x23x34x45x56x6 7x7 8x8

Num ALUs

Malvar Demosaic

1,200,000

T T T T T T T T

1x12x23x34x45x56X67x78x8
Num ALUs

—6—Temporal
—&—Spatial
—>— Algorithmic Min

Edit Distance

1,000,000

©

800,000

&
\

—o&—Temporal 600,000

.

—H—Spatial 400,000

% = Algorithmic Min

]
\

\

!

200,000

1x12x23x34x45x56x67x78x8

Num ALUs

0 -

Num Loads and Stores

Large benefits with even small

1x12x23x34x45x56x67x7 8x8
Num ALUs

array sizes

—6—Temporal
—&—Spatial

SRRy, T Meorithmic Min

Sze and Emer

Accelerator Taxonomy

L10-48

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
P
iy FPGA RAW
GPU
TRIPS ASAP
WaveScalar PicoChip
DySER Triggered
Instructions

TTA

March 6, 2024

Sze and Emer

Accelerator Taxonomy

L10-49

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
CPU /
GPU
Fine (logic)
Grained
FPGA

March 6, 2024 Illil—

Sze and Emer

Field Programmable Gate Arrays

Look Up Table (LUT)

]

March 6, 2024

And Or
00 0 00 0
01 0 01 0
10 0 10 1
11 1 11 1

L10-50

Sze and Emer

Configurable Logic Blocks (CLB)

L10-51

March 6, 2024

» CLB used to implement sequential and combinational logic
» CLB are comprised of several Basic Logic Elements (BLE)

« Each BLE contains:

— Look up tables (LUT) are used to implement logic function

— Regqisters to store data

— Multiplexer to select desired output

K-input

Inputs LUT

b

As number of inputs grow (k), increase size of LUT by 2~k and routing

Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic

Design Automation 2.2 (2008): 135-253.

Clock —»>

DFF

Out

Sze and Emer

Area Trade-off (Size of LUT)

L10-52

March 6, 2024

1600
(\

1400

1200

1000

800

Area/BLE

600

400

200

Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic
Design Automation 2.2 (2008): 135-253.

As functionatity-increases, fewer
blocks are required, but block size

" increases and fewer blocks per are

5 6

4
LUT Size (inputs)

4500

4000

3500

3000

2500

2000

1500

1000
7

Number of BLE

Sze and Emer

L10-53

Size of LUT (Speed Trade-off)

30 1

As functionality increases, fewer
blocks are in critical path, fewer logic .-~ 709
levels and inter-block routing, but '
internal delay increases o {os

=

25

20

BLE in critical path
Delay of BLE
{28 benchmark geometric avg

5 ' : : 0.3

¥
L
2 3 4 5] 7

LUT Size (inputs)

Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic
Design Automation 2.2 (2008): 135-253.

March 6, 2024 |I|il- Sze and Emer

L10-54

Microsoft Project Catapulit

Configurable Cloud (MICRO 2016) for Azure

Programmable HW Plane (FPGAs) R SUCH SarerLs

| Software Service

Programmable SW Plane (CPUs)

Accelerate and reduce latency for
» Bing search

« Software defined network

* Encryption and Decryption

March 6, 2024 UHm Sze and Emer

Microsoft Brainwave Neural Processor

L10-55

March 6, 2024

Matrix-Vector Unit

Convert to msft-fp S

Neural Functional Unit

—
Matrix RF VRF || Matrix RF

Kemel

VRF Matrix R VRF
Kemel

Matrix Vector
Multiply

m Multifunction
Unit

Instruction

Decoder

v
Tensor Manager

Matrix Me Processor
Manage ;]
§ Output Message

Control
Processor

Input Message

Processor

Legend

<+—Tensor data ° Activation
<“— |nstructions o Multiply

- Commands o Add/Sub

- Memory Tensor Arbiter

Source: Microsoft

Sze and Emer

Heterogeneous Blocks

L10-56

March 6, 2024

Add specific purpose logic on FPGA

— Efficient if used (better area, speed, power),
wasted if not

Soft fabric
— LUT, flops, addition, subtraction, carry logic
— Convert LUT to memories or shift registers

Memory block (BRAM)
— Configure word and address size (aspect ratio)
— Combine memory blocks to large blocks
— Significant part for FPGA area
— Dual port memories (FIFO)

Multipliers /IMACs - DSP

CPUs and processing elements

SOFT | soFT | SOFT | sOFT
Locic |Locic | e = MY 06ic |LoGIc
o 3
SOFT | soFT | = S MuLT | SOFT | soFT
LoGIc |LoGIC S5 ocic [Locic
SOFT | soFT | SOFT | soFT
Locic [Locic | e = MY o6ic |Losic
o3
SOFT | soFT | = § MuLT | SOFT | soFT
LocIc |LoGIc S ocic [Locic
SOFT | soFT - | SOFT | soFT
LoGic |Locic | w = MUEEY o cic [Locic
ga
o
SOFT | soFT | = - | SOFT | soFT
Locic |toaic| = [MUEH ocic|loaic

Sze and Emer

Accelerator Taxonomy

L10-57

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
CPU
GPU / \

March 6, 2024

Fine (logic)
Grained

FPGA

Coarse (ALU)
Grained

TRIPS RAW
WaveScalar AsAP
DySER PicoChip
TTA Triggered
Instructions

Sze and Emer

L10-58

Programmable Accelerators

Processing
Element

Many Programmable Accelerators look like an array of PEs, but have dramatically
different architectures, programming models and capabilities

March 6, 2024 UHm Sze and Emer

Accelerator Taxonomy

L10-59

March 6, 2024

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
CPU / \
GPU
Fine (logic) Coarse (ALU)
Grained Grained

FPGA/

Fixed-operation

TPU
NVDLA

Sze and Emer

L10-60

Fixed Operation - Systolic Array

« Each PE hard-wired to one operation

* Purely pipelined operation

— no backpressure in pipeline

o Attributes

— High-concurrency
— Regular design, but

— Regular parallelism only!

March 6, 2024 |I|il- Sze and Emer

L10-61

Configurable Systolic Array - WARP

Adr

IN;ERFACF

WARP PROCESSOR ARRAY

Source: WARP Architecture and Implementation, ISCA 1986

March 6, 2024 UHm Sze and Emer

L10-62

Fixed Operation - Google TPU

— —— DDR3 DRAM
14 Gigls NGBS 1 ciess -
) Weight FIFO
Interfaces => (Weight Fetcher) |
(o] e o] 7
N
o
X Unified 167 Matrix Multiply
3 10GI8s | Buffer Systolic |Gi Unit
14 GiBls 14 GiBls g (Local o (64K por cycle)
= § — Storage)
‘&) | G
3 k 167 GiBls
[] onchipro J
[[] osta Butter
Oe] e
B contrat
Not 1o Scale

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google

March 6, 2024 UHm Sze and Emer

Accelerator Taxonomy

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
CPU / \
GPU
Fine (logic) Coarse (ALU)
Grained Grained

FPéi’////,/’////r

Fixed-operation

TPU
NVDLA

Configured-operation

WARP

DySER

TRIPS
WaveScalar

TTA
March 6, 2024 |I|il- Sze and Emer

Single Configured Operation - Dyser

L10-64

March 6, 2024

N

Decode I Execute

L
I Memory I Writeback

Fetch
Execution
ICache L DE’COdE’ = LR T R .:_l ----- 1
pipeline P !
!
Ao sss I YEE
Register - - %‘%
File L

SH—K

=

Switches
Functional Unit

30V4Y3LNI LNdNI ¥3SAQ

<

S=:
ﬂ
(=
3DV443INI LNd1NO ¥3SAQ

-\Il{ \Bé

Dynamic Synthesized Execution Resourcesl

DCache

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11

Sze and Emer

Accelerator Taxonomy

L10-65

Accelerator
Architecture

/\

Temporally Spatially
Programmed

Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA/

Fixed-operation

TPU
NVDLA

Configured-operation

PC-based

WARP

DySER

TRIPS
WaveScalar

March 6, 2024 TTA

Wave

RAW

AsAP
PicoChip

Sze and Emer

L10-66

PC-based Control — Wave Computing

Pipelined 256-entry Instruction RAM /w ECC

Instruction pipe
Instruction RAM L2

(Circular Buffer)

Processing Element (PE)

(circ buffer size)
RTZ

From elsewhere Critical path
Local routing
From Switch
From data RAM

Result from arith coproc

ACCUMULATOR

From b
From ¢
From d

control

To elsewhere

Data RAM

Pipelined 1KB Single Port Data RAM /w BIST & ECC

March 6, 2024 Illil-

Control out

Local
Registers

Local routing

To Switch

Operand to arith coproc
To data RAM

Quad of PEs are fully
connected

Source: Wave Computing, Hot Chips ‘17

Sze and Emer

Accelerator Taxonomy

L10-67

Accelerator
Architecture

/\

Temporally Spatially
Programmed Programmed
CPU
GPU / \

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA/

Fixed-operation

March 6, 2024

TPU
NVDLA

\

Triggered operations

Triggered
Instructions

Configured-operation

PC-based

WARP
DySER
TRIPS
WaveScalar
TTA

Wave

RAW

AsAP
PicoChip

Sze and Emer

L10-68

Guarded Actions

reg A;

reg B;

reg C;

{

N W >
A A A

}

n u n
U © @
* 14
= i

e

rule X (A > 0 && B != (C)

=
e

rule Y (..) {.}

rule Z (..) {..}

Scheduler

March 6, 2024

* Program consists of rules that may perform
computations and read/write state

» Each rule specifies conditions (guard) under
which it is allowed to fire

* Separates description and execution of data
(rule body) from control (guards)

* Ascheduler is generated (or provided by
hardware) that evaluates the guards and
schedules rule execution

* Sources of Parallelism
— Intra-Rule parallelism
— Inter-Rule parallelism
— Scheduler overlap with Rule execution
— Parallel access to state

|I|i|- Sze and Emer

L10-69

Triggered Instructions (Tl)

Restrict guarded actions down to efficient ISA core:

doPass when (p_dig_cmp & & !p_cur_is larger)

%out@.data =_%in@.first;
%in@.deq; .

p_did_cmp.= false; W

-
'..
L3
L 29

T
‘.,
2

Trigger Operation Predicate Op
read any number of read/write data regs write 1-bit preds
1-bit predicates channel control (data-dependent)

When can this

What can happen

it do?
happen? What does it do” next?

No program counter or branch instructions

March 6, 2024

L Sze and Emer

L10-70

Triggered Instruction Scheduler

| Trigger 0

‘ Tr!gger ! Trigger

| Trigger 2 Resolution
| Trigger n |

“can trigger”

00 | p1 | p2] p3

Priority

Operation 0

Operation 1

— Operation 2

4| Operation n
“will trigger”

* Use combinational logic to evaluate triggers in parallel
» Decide winners if more than one instruction is ready

« Based on architectural fairness policy

« Could pick multiple non-conflicting instructions to issue (superscalar)

* Note: no wires toggle unless status changes

March 6, 2024 Illil-

to datapath

Sze and Emer

L10-71

Next Lecture: Dataflows

Thank you!

March 6, 2024 |I|il- Sze and Emer

