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Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M=

• Matrix–Vector Multiply: 

• Multiply all inputs in all channels by a weight and sum
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Fully Connected Computation

F[M0 C0 H0 W0]  F[M0 C0 H0 W1] …
F[M0 C0 H1 W0]  F[M0 C0 H1 W1] …
F[M0 C0 H2 W0]  F[M0 C0 H2 W1] …
.
.
F[M0 C1 H0 W0]  F[M0 C1 H0 W1] …
F[M0 C1 H1 W0]  F[M0 C1 H1 W1] …
F[M0 C1 H2 W0]  F[M0 C1 H2 W1] …
.
.
.
F[M1 C0 H0 W0]  F[M1 C0 H0 W1] …
F[M1 C0 H1 W0]  F[M1 C0 H1 W1] …
F[M1 C0 H2 W0]  F[M1 C0 H2 W1] …
.
.
.

I[C0 H0 W0]  I[C0 H0 W1] …
I[C0 H1 W0]  I[C0 H1 W1] …
I[C0 H2 W0]  I[C0 H2 W1] …
.
.
I[C1 H0 W0]  I[C1 H0 W1] …
I[C1 H1 W0]  I[C1 H1 W1] …
I[C1 H2 W0]  I[C1 H2 W1] …
.
.
.
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int i[C*H*W];    # Input activations
int f[M*C*H*W];  # Filter Weights
int o[M];        # Output activations

for (m = 0; m < M; m++) {
o[m] = 0;
CHWm = C*H*W*m;
for (chw = 0; chw < C*H*W; chw++) {

o[m] += i[chw] * f[CHWm + chw];
}

}

Parallelize 
here
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GPU Kernel Execution

March 6, 2024

Transfer input data from CPU to GPU memory

Launch kernel (grid)

Wait for kernel to finish (if synchronous)

Transfer results to CPU memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

• Data transfers can dominate execution time

• Integrated GPUs with unified address space  no copies, but…
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FC - CUDA Main Program
int i[C*H*W],   *gpu_i;    # Input activations
int f[M*C*H*W], *gpu_f;    # Filter Weights
int o[M],       *gpu_o;    # Output activations

# Allocate space on GPU
cudaMalloc((void**) &gpu_i, sizeof(int)*C*H*W);
cudaMalloc((void**) &gpu_f, sizeof(int)*M*C*H*W);

# Copy data to GPU
cudaMemcpy(gpu_i, i, sizeof(int)*C*H*W);
cudaMemcpy(gpu_f, f, sizeof(int)*M*C*H*W);

# Run kernel
fc<<<M/256 + 1, 256>>>(gpu_i, gpu_f, gpu_o, C*H*W, M);

# Copy result back and free device memory
cudaMemcpy(o, gpu_o, sizeof(int)*M, cudaMemCpyDevicetoHost);
cudaFree(gpu_i); 
...

Thread block size

Num thread blocks

March 6, 2024

References to data 
on GPU
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FC – CUDA Terminology

• CUDA code launches 256 threads per block

• CUDA vs vector terminology:

– Thread = 1 iteration of scalar loop [1 element in vector loop]

– Block = Body of vectorized loop [VL=256 in this example]
• Warp size = 32 [Number of vector lanes]

– Grid = Vectorizable loop

[ vector terminology ]

March 6, 2024
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FC - CUDA Kernel
__global__
void fc(int *i, int *f, int *o, const int CHW, const int M){

int tid=threadIdx.x + blockIdx.x * blockDim.x;
int m = tid

int sum = 0;

if (m < M){
for (int chw=0; chw <CHW; chw ++) {

sum += i[chw]*f[(m*CHW)+chw];
}

o[m] = sum;
}

}

Any consequences of f[(m*CHW)+chw]? Yes, strided references

Any consequences of f[(chw*M)+m]? Yes, different data layout

tid is “output 
channel” number

March 6, 2024

Calculate “global” 
thread id (tid)

Code for 
one thread

Can be unrolled 
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Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…
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Batch Size (N)March 6, 2024
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Convolution (CONV) Layer
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1 2 3 4×1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 31 2 4

Chnl 1 Chnl 2

Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1

Chnl 2

Input Fmap as
Toeplitz matrix

Output FmapFilter

GPU Implementation: 
• Keep original input activation matrix in main memory
• Conceptually do tiled matrix-matrix multiplication
• Copy input activations into scratchpad to small Toeplitz matrix tile
• On Volta tile again to use ‘tensor core’

March 6, 2024
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GV100 – “Tensor Core”

Volta tensor Core…. 120 TFLOPS (FP16),  400 GFLOPS/W (FP16)

New opcodes – Matrix Multiply Accumulate (HMMA)

How many FP16 operands? Inputs 48 / Outputs 16

How many multiplies? 64

How many adds? 64

March 6, 2024

Toeplitz expansion is essential to exploit hardware
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Tensor Core Integration
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In addition to 
normal function 

units…
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Tensor Core Integration

PC I$ IR GPR

X

Y

Tenso
r M

a
trix M

u
ltip

ly A
ccum

ulateGPR

X

Y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

Cross thread 
operands
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Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

• After flattening, having a batch size of N turns the 

matrix-vector operation into a matrix-matrix multiply

March 6, 2024
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Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0

+
F0,1I1,0

F1,0I0,0

+
F1,1I1,0

F0,0I0,1

+
F0,1I1,1

F1,0I0,1

+
F1,1I1,1

Matrix multiply tiled to fit in tensor core operation 
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 6, 2024
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Tiled Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0

+
F0,1I1,0

F1,0I0,0

+
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+
F0,1I1,1
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+
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Matrix multiply tiled to fit in tensor core operation 
and computation ordered to maximize reuse of data in scratchpad
and then in cache.

March 6, 2024
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Vector vs GPU Terminology

March 6, 2024

[H&P5, Fig 4.25]
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Summary
• GPUs are an intermediate point in the continuum of flexibility 

and efficiency

• GPU architecture focuses on throughput (over latency)
– Massive thread-level parallelism, with

• Single instruction for many threads

– Memory hierarchy specialized for throughput
• Shared scratchpads with private address space

• Caches used primarily to reduce bandwidth not latency

– Specialized compute units, with
• Many computes per input operand

• Little’s Law useful for system analysis
– Shows relationship between throughput, latency and tasks in-flight

March 6, 2024
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What is Moore’s Law

• CPU performance will double every two years*

• Chip performance will double every two years*

• The speed of transistors will double every two years*

• Transistors will shrink to half size every two years*

• Gate width will shrink by every two years*

• Transistors per die will double every two years*

• The economic sweet spot for the number of devices on a chip will 
double every two years*

* Or 12 or 18 months…

March 6, 2024
L24-19
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Moore’s (Original) Law

The complexity for 
minimum component 
costs has increased at 
a rate of roughly a 
factor of two per 
year.

- Gordon Moore

Moore, “Cramming more components onto integrated circuits”, Electronics 1965.]

March 6, 2024



L10-21

Sze and Emer

Moore’s (Transistor) Law
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[Moore, Progress in digital integrated electronics, IEDM 1975]

Number of transistors has been doubling

March 6, 2024
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Moore’s (Performance) Law

[Leiserson et al., There's Plenty of Room at the Top, Science]

March 6, 2024
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Energy and Power Consumption

• Energy Consumption (Joules) = α x C x V2

• Power Consumption (Joules/sec or Watts) =  α x C x V2 x f

Switching 
activity factor

(between 0 to 1)

Capacitance Voltage

Frequency

March 6, 2024
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Capacitance and Energy Storage

Energy Consumption = α x C x V2

March 6, 2024
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Analogy: Water = Charge

SOURCE DRAIN

GATE

Full Bucket = 
‘1’

Size of bucket 
proportional to 

load 
capacitance

What affects the rate of flow of the water (i.e. current)?
March 6, 2024
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Analogy: Water = Charge

Transistor has multiple states

Transistor ON
High Flow, Low Resistance

Transistor OFF
Low Flow, High Resistance

Flow ControlSOURCE DRAIN

GATE

VGS

VDS

Increa
sin

g V
G

S
 

March 6, 2024



L10-27

Sze and Emer

Dennard Scaling (idealized)
Gen X Gen X+1

1.0
Gate Width

1.0

Device Area/
Capacitance

1.0

Voltage 1.0

Energy ~ 1.0 x 1.02 = 1.0

Delay 1.0

Frequency 1/1.0 = 1.0

Power ~ 1.0 x 1.02 x 1.0 = 1.0

0.7

0.7

~ 2 x 0.7 x 0.72 = 0.65

0.7

1/0.7 = 1.4

~ 2 x 0.7 x 0.72 x 1.4 = 1.0

0.5

0.7

0.5

0.7

[ Dennard et al.,  "Design of ion-implanted MOSFET's with very small physical dimensions“, JSSC 1974 ]

March 6, 2024
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The End of Historic Scaling

[Leiserson et al., There's Plenty of Room at the Top, Science]

Voltage scaling slowed down  Power density increasing!

March 6, 2024
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During the Moore + Dennard’s Law Era

• Instruction-level parallelism (ILP) was 
largely mined out by early 2000s

• Voltage (Dennard) scaling ended in 2005

• Hit the power limit wall in 2005

• Performance is coming from parallelism 
using more transistors since ~2007

• But….

March 6, 2024
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Moore’s Law in DRAMs

Image source: John Hennessy

After multi-core, specialization (i.e., accelerators) seems to be 
the most attractive architectural option to cope with the end of Moore’s Law

March 6, 2024
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The High Cost of Data Movement

Fetching operands more expensive than computing on them

Image source: Bill Dally

Now the key is how we use our transistors most effectively. 
March 6, 2024



L10-32

Sze and Emer

Accelerator Design Attributes

• Integration into system
– How is the accelerator integrated into the system?

• Operation specification/sequencing
– How is activity managed within the accelerator?

• Data management
– How is data movement orchestrated in the accelerator?

Remember, however, the world is ‘fractal’!

March 6, 2024
Image: Wikipedia
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System Integration

March 6, 2024
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Accelerator Integration Taxonomy

FU FU
Accel

Inst cache

Decode

Core
Core

Core CoreCore Core

Accel

Chip

Accel

Credit: Angshuman Parashar
March 6, 2024
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Accelerator Architectural Choices

• State
– Local state – Is there local state? (i.e. context)
– Global state – e.g., main memory shared with CPU

• Data Operations
– Custom data operations in the accelerator

• Memory Access Operations
– Operations to access shared global memory – Do they exist?

• Control Flow Operations
– How is accelerator sequenced relative to CPU?

March 6, 2024
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How to Sequence Accelerator Logic?

• Synchronous
– Accelerated operations inside processor pipeline

• E.g., as a separate function unit

– Control handled by standard control instructions

• Asynchronous
– A standalone logical machine

• Accelerator started by processor that continues running

What factors mitigate for one form 
or the other?

Existence of concurrent activity

Latency of operation

Size of logic

Size of operands
March 6, 2024
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Eight Alternatives

Architectural semantics

Has contextAccesses 
memoryAsynchronous

000
100
010
110
001
101
011
111

Characteristics of “no
memory access” choice?

Good for smaller operands

Simpler, e.g., no virtual memory

No ‘Little’s Law’ storage requirement
March 6, 2024
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Eight Alternatives

Architectural semantics

Has contextAccesses 
memoryAsynchronous

000
100
010
110
001
101
011
111

Characteristics of “no
context” choice?

Simpler, no context switch mechanism

Long operations run to completion

More limited reuse opportunities
March 6, 2024
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Accelerator Architectural Alternatives

Example
Architectural semantics

Has 
context

Accesses 
memory

Asynchr
onous

New function unit, 
like tensor core in GPU000

Accumulating data reduction 
instruction100

Memory-to-memory vector unit010

Register-based vector unit 
including load store ops110

Complex function calculator?001

Security co-processor (TPM)101

Network adapter011

GPU with virtual memory111

March 6, 2024
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Example
Architectural semantics

Has 
context

Accesses 
memory

Asynchr
onous

New function unit, 
like tensor core in GPU000

Accumulating data reduction 
instruction100

Memory-to-memory vector unit010

Register-based vector unit 
including load store ops110

Complex function calculator?001

Security co-processor (TPM)101

Network adapter011

GPU with virtual memory111

Accelerator Architectural Alternatives

March 6, 2024
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Operation Sequencing

March 6, 2024
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

CPU
GPU

March 6, 2024
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Multiprocessor

L2 L2 L2 L2

L3 L3

Memory (DRAM)

Inter-processing element 
communication is 
through cache hierarchy

March 6, 2024
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Highly-Parallel Compute Paradigms

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

March 6, 2024
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Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy

• Global Buffer

• Direct inter-PE network

• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB

March 6, 2024



L10-46

Sze and Emer

Parallel Control: Temporal vs Spatial

• Style dictates many later hardware choices
• Temporal: Dynamic instruction stream, shared memory

• Spatial: Tiny processing elements (PEs), direct communication

Iteration:

Program:

Temporal Spatial

March 6, 2024
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Memory Access: Spatial vs Temporal
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Large benefits with even small array sizes
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU FPGA

Triggered 
Instructions

RAW
AsAP
PicoChip

TRIPS
WaveScalar
DySER
TTA
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

FPGA
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Field Programmable Gate Arrays

LUT
Latch

RAM .....

And

000

001

010

111

Or

000

001

110

111

March 6, 2024

Look Up Table (LUT)
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Configurable Logic Blocks (CLB)

• CLB used to implement sequential and combinational logic
• CLB are comprised of several Basic Logic Elements (BLE)
• Each BLE contains:

– Look up tables (LUT) are used to implement logic function
– Registers to store data
– Multiplexer to select desired output

As number of inputs grow (k), increase size of LUT by 2^k and routing

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic 
Design Automation 2.2 (2008): 135-253.

March 6, 2024
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Area Trade-off (Size of LUT)

LUT Size (inputs)

A
re

a/
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L
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L
E

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic 
Design Automation 2.2 (2008): 135-253.

As functionality increases, fewer 
blocks are required, but block size 
increases and fewer blocks per area

March 6, 2024
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Size of LUT (Speed Trade-off)

LUT Size (inputs)
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Kuon, Ian, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic 
Design Automation 2.2 (2008): 135-253.

As functionality increases, fewer 
blocks are in critical path, fewer logic 
levels and inter-block routing, but 
internal delay increases

March 6, 2024
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Microsoft Project Catapult

Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for
• Bing search
• Software defined network
• Encryption and Decryption

March 6, 2024
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Microsoft Brainwave Neural Processor

March 6, 2024

Source: Microsoft
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Heterogeneous Blocks 

• Add specific purpose logic on FPGA 
– Efficient if used (better area, speed, power), 

wasted if not

• Soft fabric
– LUT, flops, addition, subtraction, carry logic
– Convert LUT to memories or shift registers

• Memory block (BRAM)
– Configure word and address size (aspect ratio)
– Combine memory blocks to large blocks
– Significant part for FPGA area
– Dual port memories (FIFO)

• Multipliers /MACs  DSP

• CPUs and processing elements

March 6, 2024
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Triggered 
Instructions

RAW
AsAP
PicoChip

TRIPS
WaveScalar
DySER
TTA
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Programmable Accelerators

Many Programmable Accelerators look like an array of PEs, but have dramatically 
different architectures, programming models and capabilities

PE PEPE PE

PE PEPE PE

PE PEPE PE

PE PEPE PE

Processing
Element

... ... ... ...

March 6, 2024
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Fixed-operation

TPU
NVDLA
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Fixed Operation - Systolic Array

• Each PE hard-wired to one operation

• Purely pipelined operation

– no backpressure in pipeline

• Attributes

– High-concurrency

– Regular design, but

– Regular parallelism only!

March 6, 2024
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Configurable Systolic Array - WARP

March 6, 2024

Source: WARP Architecture and Implementation, ISCA 1986



L10-62

Sze and Emer

Fixed Operation - Google TPU

March 6, 2024

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Fixed-operation

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

TPU
NVDLA
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Single Configured Operation - Dyser

March 6, 2024

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Wave
RAW
AsAP

PicoChip

Fixed-operation

PC-based

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

TPU
NVDLA
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PC-based Control – Wave Computing

March 6, 2024

Source: Wave Computing, Hot Chips ‘17
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Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Triggered
Instructions

Wave
RAW
AsAP

PicoChip

Fixed-operation

PC-based

WARP
DySER
TRIPS

WaveScalar
TTA

Configured-operation

Triggered operations

TPU
NVDLA
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Guarded Actions

• Program consists of rules that may perform 
computations and read/write state

• Each rule specifies conditions (guard) under 
which it is allowed to fire

• Separates description and execution of data 
(rule body) from control (guards)

• A scheduler is generated (or provided by 
hardware) that evaluates the guards and 
schedules rule execution

• Sources of Parallelism

– Intra-Rule parallelism

– Inter-Rule parallelism

– Scheduler overlap with Rule execution

– Parallel access to state

rule X (A > 0 && B != C)
{

A <= B + 1;
B <= B - 1;
C <= B * A;

}

Scheduler

reg A; reg B; reg C;

rule Y (…) {…}

rule Z (…) {…}
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Triggered Instructions (TI)

• Restrict guarded actions down to efficient ISA core:

%out0.data = %in0.first;
%in0.deq;
p_did_cmp = false;

doPass when (p_did_cmp && !p_cur_is_larger)

Trigger
read any number of 

1-bit predicates

Operation
read/write data regs

channel control

Predicate Op
write 1-bit preds
(data-dependent)

When can this 
happen?

What does it do?
What can happen 

next?

No program counter or branch instructions
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Triggered Instruction Scheduler

• Use combinational logic  to evaluate triggers in parallel
• Decide winners if more than one instruction is ready 

• Based on architectural fairness policy
• Could pick multiple non-conflicting instructions to issue (superscalar)

• Note: no wires toggle unless status changes

Trigger 0

Trigger 1

Trigger 2

“can trigger” “will trigger”

to datapath

p0 p1 p2 p3

Trigger n

...

Operation 0

Operation 1

Operation 2

Operation n

...

Trigger 
Resolution

P
ri

or
ity
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Next Lecture: Dataflows

Thank you!
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