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Multiprocessor

L2 L2 L2 L2

L3 L3

Memory (DRAM)

Inter-processing element 
communication is 
through cache hierarchy
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Highly-Parallel Compute Paradigms
Temporal Architecture

(SIMD/SIMT)
Spatial Architecture

(Dataflow Processing)

Register File

Memory Hierarchy
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ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

March 11, 2024



L11-6

Sze and Emer

Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy
• Global Buffer
• Direct inter-PE network
• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB
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Field Programmable Gate Arrays

LUT
Latch

RAM .....

And

00 0

01 0

10 0

11 1

Or

00 0

01 0

10 1

11 1
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Look Up Table (LUT)
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Microsoft Project Catapult
Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for
• Bing search
• Software defined network
• Encryption and Decryption
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Microsoft Brainwave Neural Processor
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Source: Microsoft
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Heterogeneous Blocks 
• Add specific purpose logic on FPGA 

– Efficient if used (better area, speed, power), 
wasted if not

• Soft fabric
– LUT, flops, addition, subtraction, carry logic
– Convert LUT to memories or shift registers

• Memory block (BRAM)
– Configure word and address size (aspect ratio)
– Combine memory blocks to large blocks
– Significant part for FPGA area
– Dual port memories (FIFO)

• Multipliers /MACs  DSP

• CPUs and processing elements

March 11, 2024
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Programmable Accelerators

Many Programmable Accelerators look like an array of PEs, but have dramatically 
different architectures, programming models and capabilities

PE PEPE PE

PE PEPE PE

PE PEPE PE

PE PEPE PE

Processing
Element

... ... ... ...
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Fixed Operation PEs

• Each PE hard-wired to one operation
• Purely pipelined operation

– no backpressure in pipeline

• Attributes
– High-concurrency
– Regular design, but
– Regular parallelism only!
– Allows for systolic communication

March 11, 2024



L11-17

Sze and Emer

Configurable Systolic Array - WARP
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Source: WARP Architecture and Implementation, ISCA 1986
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Fixed Operation - Google TPU

March 11, 2024

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google
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Single Configured Operation - Dyser
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Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11
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PC-based Control – Wave Computing
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Source: Wave Computing, Hot Chips ‘17
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Guarded Actions
• Program consists of rules that may perform 

computations and read/write state
• Each rule specifies conditions (guard) under 

which it is allowed to fire
• Separates description and execution of data 

(rule body) from control (guards)
• A scheduler is generated (or provided by 

hardware) that evaluates the guards and 
schedules rule execution

• Sources of Parallelism
– Intra-Rule parallelism
– Inter-Rule parallelism
– Scheduler overlap with Rule execution
– Parallel access to state

rule X (A > 0 && B != C)
{
    A <= B + 1;
    B <= B - 1;
    C <= B * A;
}

Scheduler

reg A; reg B; reg C;

rule Y (…) {…}

rule Z (…) {…}

March 11, 2024
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Triggered Instructions (TI)

• Restrict guarded actions down to efficient ISA core:

%out0.data = %in0.first;
%in0.deq;
p_did_cmp = false;

doPass when (p_did_cmp && !p_cur_is_larger)

Trigger
read any number of 

1-bit predicates

Operation
read/write data regs 

channel control

Predicate Op
write 1-bit preds
(data-dependent)

When can this 
happen? What does it do? What can happen 

next?

No program counter or branch instructions

March 11, 2024
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Triggered Instruction Scheduler

• Use combinational logic  to evaluate triggers in parallel
• Decide winners if more than one instruction is ready 

• Based on architectural fairness policy
• Could pick multiple non-conflicting instructions to issue (superscalar)

• Note: no wires toggle unless status changes

Trigger 0
Trigger 1
Trigger 2

“can trigger” “will trigger”

to datapath

p0 p1 p2 p3

Trigger n
...

Operation 0
Operation 1
Operation 2

Operation n
...

Trigger 
Resolution

Pr
io

rit
y

March 11, 2024
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Goals of Today’s Lecture

• Impact of data movement and memory hierarchy on energy 
consumption

• Taxonomy of dataflows for CNNs
– Output Stationary
– Weight Stationary
– Input Stationary

March 11, 2024
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Background Reading
• DNN Accelerators

– Efficient Processing of Deep Neural Networks
• Chapter 5 – thru 5.7.1
• Chapter 5 – 5.8 

All these books and their online/e-book versions are available through 
MIT libraries. 

March 11, 2024
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Dataflow and Memory 
Hierarchy
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Spatial Compute Paradigm
Spatial Architecture

(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

March 11, 2024
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Memory Access is the Bottleneck

ALUfilter weight
fmap activation

partial sum updated partial sum

Memory Read Memory WriteMAC*

* multiply-and-accumulate

March 11, 2024
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Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

DRAM DRAM

• Example: AlexNet [NeurIPS 2012]  has 724M MACs 
   2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

March 11, 2024
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Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

Extra levels of local memory hierarchy

MemDRAM DRAMMem

March 11, 2024

Under what circumstances will these extra levels help?
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Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

1

Opportunities:      data reuse local accumulation1

MemDRAM DRAMMem

MAC*

March 11, 2024
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Types of Data Reuse in DNN
Convolutional Reuse

CONV layers only
(sliding window)

Filter Input Fmap

Activations
Filter weights

Reuse:

March 11, 2024
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Types of Data Reuse in DNN
Convolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers

Filter Input Fmap
Filters

2

1

Input Fmap

Activations
Filter weights

Reuse: ActivationsReuse:

March 11, 2024
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Types of Data Reuse in DNN
Filter ReuseConvolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap
Filters

2

1

Input Fmap Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: ActivationsReuse: Filter weightsReuse:

March 11, 2024
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Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

** AlexNet CONV layers
1) Can reduce DRAM reads of filter/fmap by up to 500×**

1

Opportunities:      data reuse local accumulation1

MemDRAM DRAMMem

1

MAC*

March 11, 2024
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Memory Access is the Bottleneck

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM
1
2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

Opportunities:      data reuse local accumulation1 2

MemDRAM DRAMMem

MAC*

March 11, 2024



L11-42

Sze and Emer

Memory Access is the Bottleneck

Opportunities:      data reuse local accumulation

• Example: DRAM access in AlexNet can be reduced
  from 2896M to 61M (best case)

1) Can reduce DRAM reads of filter/fmap by up to 500×
2) Partial sum accumulation does NOT have to access DRAM

1 2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

MemDRAM DRAMMem

1
2

MAC*

March 11, 2024
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Leverage Parallelism for Higher Performance

Memory WriteMAC

DRAM DRAM
ALU

Memory Read

ALU

ALU

…

MemMem

March 11, 2024
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Leverage Parallelism for Spatial Data Reuse

Memory WriteMAC

DRAM DRAM
ALU

Memory Read

ALU

ALU

…

MemMem

March 11, 2024
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Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy
• Global Buffer
• Direct inter-PE network
• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB
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Low-Cost Local Data Access

DRAM Global
Buffer PE

PE PE

ALU fetch data to run 
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process
March 11, 2024
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Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit     data reuse and     local accumulation 
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

March 11, 2024
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Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit     data reuse and     local accumulation 
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

specialized processing dataflow required!

March 11, 2024



L11-49

Sze and Emer

How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)
Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN Convolution

?
iacts

weights

partial
sums

Goal: Increase reuse of input data 
(input activations and weights) 

and local partial sums 
accumulationMarch 11, 2024
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Dataflow Taxonomy

• Output Stationary (OS)

• Weight Stationary (WS)

• Input Stationary (IS)

[Chen et al., ISCA 2016]
March 11, 2024
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• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse 
activations spatially across the PE array 

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activation Weight

PE
Psum

March 11, 2024
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OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]

weights activations

psums

March 11, 2024

• Inputs streamed through array
• Weights broadcast
• Partial sums accumulated in PE and streamed out
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OS Example: KU Leuven

March 11, 2024
[Moons et al., VLSI 2016, ISSCC 2017]

weights

activations



L11-54

Sze and Emer

1-D Convolution Einsum 

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 ×  𝐹𝐹𝑠𝑠 

Operational definition of Einsum says traverse all 
valid values of “q” and “s”… but in what order….

Traversal order (fastest to slowest):  S, Q

Which “for” loop is outermost?
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1-D Convolution

March 11, 2024

S

Weights

W

Inputs

Q = W-ceil(R/2)†

Outputs

* =

int i[W];     # Input activations
int f[S];     # Filter weights
int o[Q];     # Output activations

for q in [0, Q):
       for s in [0, S):
          o[q] += i[q+s]*f[s]

What dataflow is this?

† Assuming: ‘valid’ style convolution

Is it easy to tell dataflow from 
the loop nest?
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Output Stationary - Movie

March 11, 2024



L11-57

Sze and Emer

Output Stationary – Spacetime View

March 11, 2024
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CONV-layer Einsum

March 11, 2024

𝑂𝑂𝑚𝑚,𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 ×  𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠 

Traversal order (fastest to slowest):  S, R, Q, P

Can you write the loop nest? I hope so  

Parallel Ranks:  C, M
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CONV Layer OS Loop Nest

March 11, 2024

int i[C,H,W];       # Input activations
int f[M,C,R,S];     # Filter weights
int o[M,P,Q];       # Output activations

for p in [0, P):
  for q in [0, Q):
    for r in [0, R):
       for s in [0, S):
         parallel-for c in [0, C):
           parallel-for m in [0, M):
             o[m,p,q] += i[c,p+r,q+s]*f[m,c,r,s]
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CONV Layer OS Dataflow

March 11, 2024

P

output fmap
filters

M
…

R

S
0

R

M

M-1

H

input fmap

W Q

C

C

S

Filter overlay

Incomplete partial sum

M=8
C=3
R=2
S=2
H=3
W=3
P=2
Q=2
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CONV Layer OS Dataflow

March 11, 2024

2

output fmap
filters

8
…

2

2
0

2

3

7

3

input fmap

3 2

3

3

2

Filter overlay

Incomplete partial sum
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CONV Layer OS Dataflow

March 11, 2024

2

output fmap

…
2

2
1

2 8

3

3 2

input fmap
3

3

3

2

8

filters

0

7

Cycle through input fmap and weights (hold psum of output fmap)

Incomplete partial sum

Filter overlay
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CONV Layer OS Dataflow

March 11, 2024

input fmap
Cycle through input fmap and weights (hold psum of output fmap)

3

3

3

2

output fmap

2

8

2

…
2

2
1

2 8

3

3

2

filters

0

7

Filter overlay

Incomplete partial sum
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CONV Layer OS Dataflow

March 11, 2024
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2

2
1

2
8

input fmap

3

3

2

3

3

3
filters

0

7

2

output fmap

2

8

Cycle through input fmap and weights (hold psum of output fmap)

Filter overlay

Incomplete partial sum



L11-65

Sze and Emer

CONV Layer OS Dataflow

March 11, 2024

input fmap

3

3

3

2

…
2

2
1

2 8

3

3

2

filters

0

7

2

output fmap

2

8

Cycle through input fmap and weights (hold psum of output fmap)

Filter overlay

Incomplete partial sum
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CONV Layer OS Dataflow

March 11, 2024

2

output fmap

…
2

2
1

2 8

3

3 2

input fmap
3

3

3

2

8

filters

0

7

Start processing next output feature activations

Filter overlay

Incomplete partial sum
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CONV Layer OS Dataflow

March 11, 2024

input fmap
Cycle through input fmap and weights (hold psum of output fmap)

3

3

3

2

…
2

2
1

2 8

3

3

2

filters

0

7

2

output fmap

2

8

Filter overlay

Incomplete partial sum
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CONV Layer OS Dataflow

March 11, 2024
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8
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filters
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Cycle through input fmap and weights (hold psum of output fmap)
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CONV Layer OS Dataflow

March 11, 2024

input fmap

3

3

3

2

…
2

2
1

2 8

3

3

2

filters

0

7

2

output fmap

2

8

Cycle through input fmap and weights (hold psum of output fmap)

Filter overlay

Incomplete partial sum
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Next: 
  More dataflows
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