6.5930/1

Hardware Architectures for Deep Learning

Accelerator Architecture (continued)

March 11, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Sze and Emer

L11-1

Operation Sequencing

L11-2

Accelerator Taxonomy

Multiprocessor

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Spatial Architecture for DNN

Accelerator Taxonomy

Accelerator Taxonomy

Field Programmable Gate Arrays

C)r
00	0
01	0
10	1
11	1

.

Microsoft Project Catapult

Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for

- Bing search
- Software defined network
- Encryption and Decryption

Microsoft Brainwave Neural Processor

Source: Microsoft

Heterogeneous Blocks

- Add specific purpose logic on FPGA
 - Efficient if used (better area, speed, power), wasted if not
- Soft fabric
 - LUT, flops, addition, subtraction, carry logic
 - Convert LUT to memories or shift registers
- Memory block (BRAM)
 - Configure word and address size (aspect ratio)
 - Combine memory blocks to large blocks
 - Significant part for FPGA area
 - Dual port memories (FIFO)
- Multipliers /MACs \rightarrow DSP
- CPUs and processing elements

SOFT SOFT	Men Blo	MULT	SOFT LOGIC	SOFT LOGIC
SOFT SOFT	nory ock	MULT	SOFT LOGIC	SOFT LOGIC
SOFT SOFT	Men Blo	MULT	SOFT LOGIC	SOFT LOGIC
SOFT SOFT	nory ock	MULT	SOFT LOGIC	SOFT LOGIC
SOFT SOFT	Men Blo	MULT	SOFT LOGIC	SOFT LOGIC
SOFT SOFT	nory ick	MULT	SOFT LOGIC	SOFT LOGIC

Accelerator Taxonomy

Programmable Accelerators

Many Programmable Accelerators look like an array of PEs, but have dramatically different architectures, programming models and capabilities

Accelerator Taxonomy

Fixed Operation PEs

- Each PE hard-wired to one operation
- Purely pipelined operation
 - no backpressure in pipeline
- Attributes
 - High-concurrency
 - Regular design, but
 - Regular parallelism only!
 - Allows for systolic communication

Configurable Systolic Array - WARP

Source: WARP Architecture and Implementation, ISCA 1986

Fixed Operation - Google TPU

Systolic array does 8-bit 256x256 matrix-multiply accumulate

Source: Google

Accelerator Taxonomy

Single Configured Operation - Dyser

PliT

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11

L11-20

Sze and Emer

Accelerator Taxonomy

PC-based Control – Wave Computing

Source: Wave Computing, Hot Chips '17

Accelerator Taxonomy

Accelerator Taxonomy

- Program consists of **rules** that may perform computations and read/write state
- Each rule specifies conditions (**guard**) under which it is allowed to fire
- Separates description and execution of data (rule body) from control (guards)
- A **scheduler** is generated (or provided by hardware) that evaluates the guards and schedules rule execution
- Sources of Parallelism
 - Intra-Rule parallelism
 - Inter-Rule parallelism
 - Scheduler overlap with Rule execution
 - Parallel access to state

Plit

L11-25

Triggered Instructions (TI)

• Restrict guarded actions down to efficient ISA core:

No program counter or branch instructions

Triggered Instruction Scheduler

- Use combinational logic to evaluate triggers in parallel
- Decide winners if more than one instruction is ready
 - Based on architectural fairness policy
 - Could pick multiple non-conflicting instructions to issue (superscalar)
- Note: no wires toggle unless status changes

6.5930/1

Hardware Architectures for Deep Learning

Dataflow for DNN Accelerator Architectures (Part 1)

March 11, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science L11-28

l'liī

Goals of Today's Lecture

- Impact of data movement and memory hierarchy on energy consumption
- Taxonomy of dataflows for CNNs
 - Output Stationary
 - Weight Stationary
 - Input Stationary

Background Reading

- DNN Accelerators
 - Efficient Processing of Deep Neural Networks
 - Chapter 5 thru 5.7.1
 - Chapter 5 5.8

All these books and their online/e-book versions are available through MIT libraries.

Dataflow and Memory Hierarchy

Spatial Compute Paradigm

Spatial Architecture (Dataflow Processing)

Worst Case: all memory R/W are DRAM accesses

• Example: AlexNet [NeurIPS 2012] has **724M** MACs → **2896M** DRAM accesses required

Under what circumstances will these extra levels help?

Opportunities: **1** data reuse

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations Filter weights

Types of Data Reuse in DNN

Types of Data Reuse in DNN

Opportunities: **1** data reuse

** AlexNet CONV layers

Opportunities: 1 data reuse 2 local accumulation

Can reduce DRAM reads of filter/fmap by up to 500× Partial sum accumulation does NOT have to access DRAM

Opportunities: 1 data reuse 2 local accumulation

Can reduce DRAM reads of filter/fmap by up to 500× Partial sum accumulation does NOT have to access DRAM

Example: DRAM access in AlexNet can be reduced from **2896M** to **61M** (best case)

Leverage Parallelism for Higher Performance

Leverage Parallelism for Spatial Data Reuse

Spatial Architecture for DNN

Low-Cost Local Data Access

March 11, 2024

Sze and Emer

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

Low-Cost Local Data Access

How to exploit **1** data reuse and **2** local accumulation with *limited* low-cost local storage?

specialized **processing dataflow** required!

How to Map the Dataflow?

Spatial Architecture (Dataflow Processing)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Dataflow Taxonomy

- Output Stationary (OS)
- Weight Stationary (WS)
- Input Stationary (IS)

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

• Partial sums accumulated in PE and streamed out

[Du et al., ISCA 2015]

l'liiī

OS Example: KU Leuven

16x16b / 1x16b

[Moons et al., VLSI 2016, ISSCC 2017]

1-D Convolution Einsum

$$O_q = I_{q+s} \times F_s$$

Operational definition of Einsum says traverse all valid values of "q" and "s"... but in what order....

Traversal order (fastest to slowest): S, Q

Which "for" loop is outermost?

L11-54

1-D Convolution

What dataflow is this?

Is it easy to tell dataflow from the loop nest?

[†] Assuming: 'valid' style convolution

Plii

Output Stationary - Movie

		Т	enso	or:	F [S]	
		Ra	ank:	s			
			0	1	2		
		8	5	2			
Ter	sor	: I([W]				
Ran	nk: I	N					
0	1	2	3	4	5	6	7
1	1	2	3	3	2	7	6
	Ten	sor	: 01	[Q]			
	Ran	k: (Q				
	0	1	2	3	4	5	
	0	0	0	0	0	0	

Output Stationary – Spacetime View

Tensor: I[W, T]																			
	Rank: T																		
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Rank: W	0	1				1			1				1				1		1
	1	1	1		1	1	1	1	1	1	1	1	1		1	1	1	1	1
	2	2	2	2	2	2		2	2	2									
	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3	3	3	3
	4	3		3	3	3	3	3	3	3	3	3	3	-3	3	3	3	3	
	5 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	6	7									7	7	7	7	7	7	7	7	7
	7	6		6										6	6	6	6	б	6

CONV-layer Einsum

$$O_{m,p,q} = I_{c,p+r,q+s} \times F_{m,c,r,s}$$

Traversal order (fastest to slowest): S, R, Q, P

Parallel Ranks: C, M

Can you write the loop nest? I hope so

CONV Layer OS Loop Nest

```
int i[C,H,W];  # Input activations
int f[M,C,R,S]; # Filter weights
int o[M,P,Q]; # Output activations
for p in [0, P):
 for q in [0, Q):
   for r in [0, R):
      for s in [0, S):
        parallel-for c in [0, C):
          parallel-for m in [0, M):
            o[m,p,q] += i[c,p+r,q+s]*f[m,c,r,s]
```


L11-70

Next: More dataflows