6.5930/1
Hardware Architectures for Deep Learning

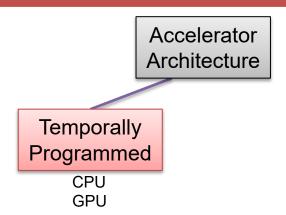
Accelerator Architecture (continued)

March 11, 2024

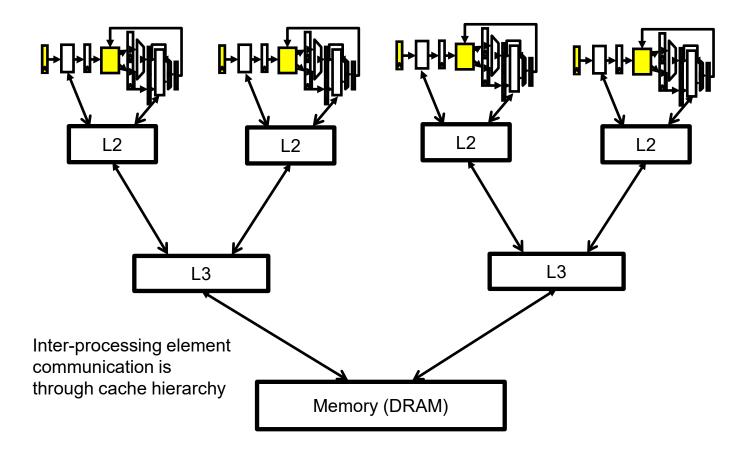
Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Operation Sequencing

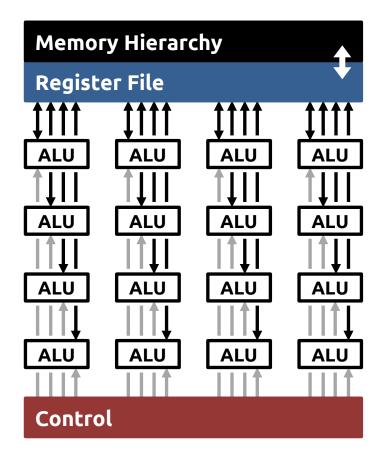


Multiprocessor

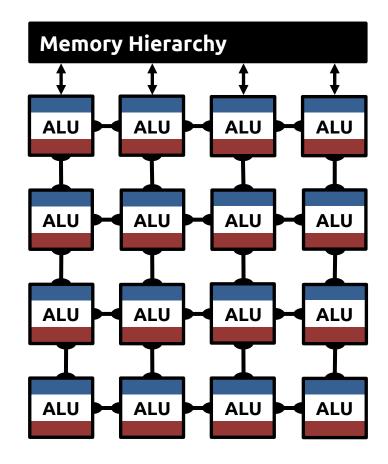


Highly-Parallel Compute Paradigms

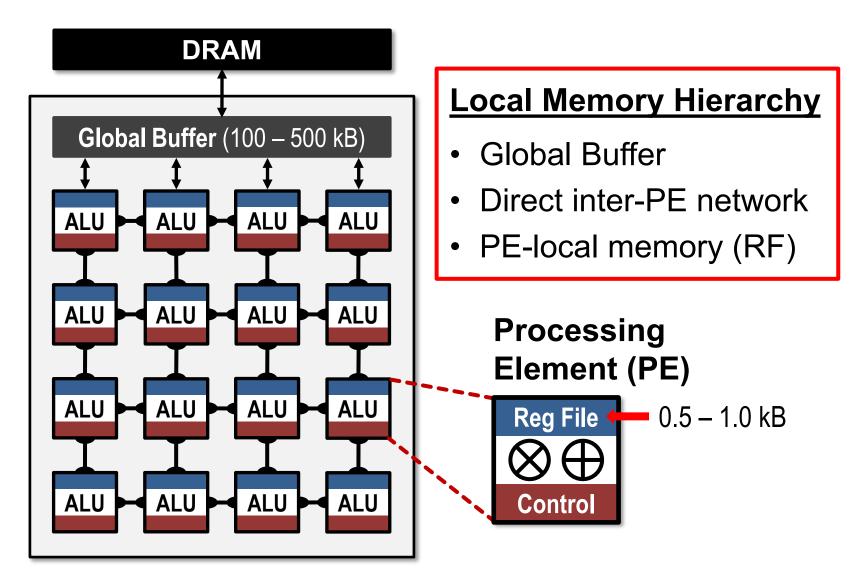
Temporal Architecture (SIMD/SIMT)



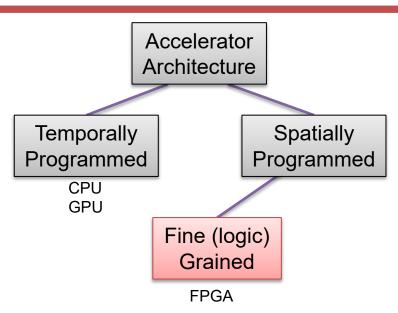
Spatial Architecture (Dataflow Processing)



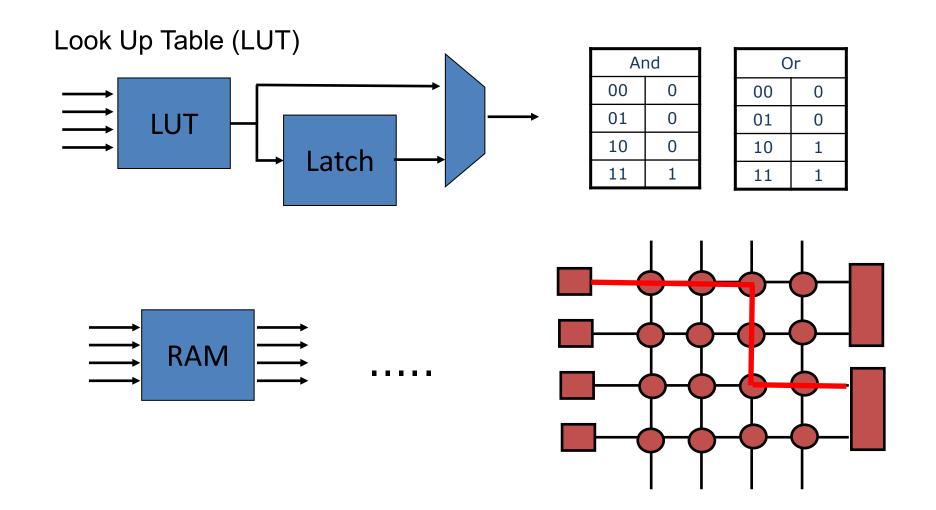
Spatial Architecture for DNN



Accelerator Architecture Temporally Spatially Programmed Programmed CPU **FPGA RAW** GPU AsAP **TRIPS** PicoChip WaveScalar Triggered **DySER** Instructions TTA

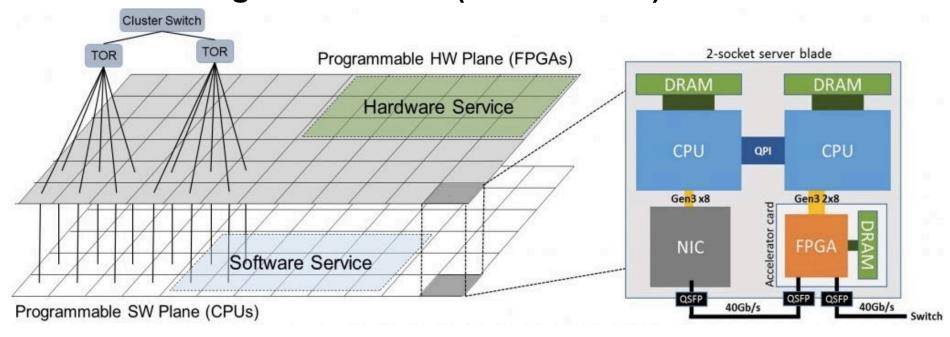


Field Programmable Gate Arrays



Microsoft Project Catapult

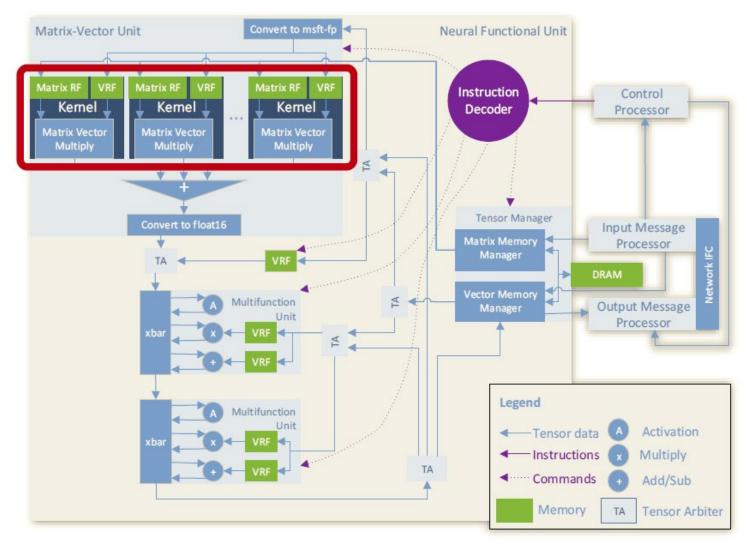
Configurable Cloud (MICRO 2016) for Azure



Accelerate and reduce latency for

- Bing search
- Software defined network
- Encryption and Decryption

Microsoft Brainwave Neural Processor

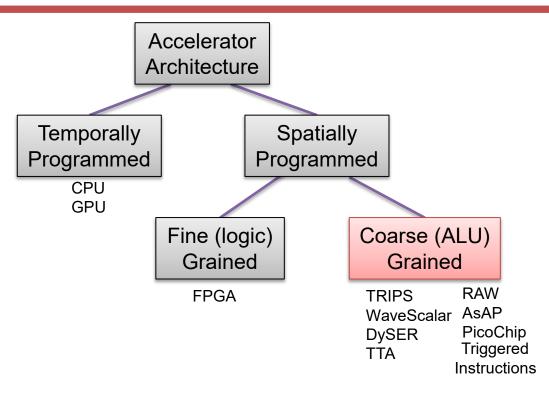


Source: Microsoft

Heterogeneous Blocks

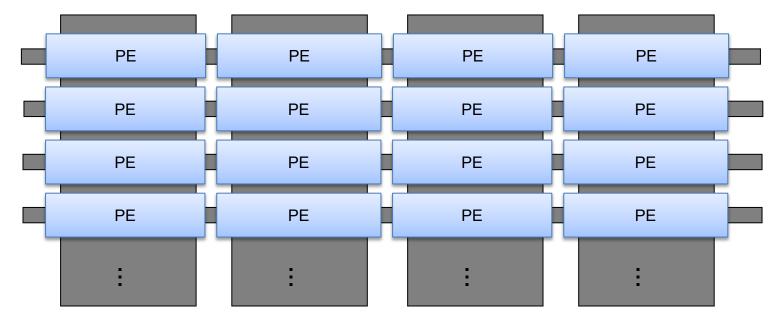
- Add specific purpose logic on FPGA
 - Efficient if used (better area, speed, power), wasted if not
- Soft fabric
 - LUT, flops, addition, subtraction, carry logic
 - Convert LUT to memories or shift registers
- Memory block (BRAM)
 - Configure word and address size (aspect ratio)
 - Combine memory blocks to large blocks
 - Significant part for FPGA area
 - Dual port memories (FIFO)
- Multipliers /MACs → DSP
- CPUs and processing elements

SOFT LOGIC	SOFT LOGIC	Memory Block	MULT	SOFT LOGIC	SOFT LOGIC
SOFT LOGIC	SOFT LOGIC		MULT	SOFT LOGIC	SOFT LOGIC
SOFT LOGIC	SOFT LOGIC	Memory Block	MULT	SOFT LOGIC	SOFT LOGIC
SOFT LOGIC	SOFT LOGIC		MULT	SOFT LOGIC	SOFT LOGIC
SOFT LOGIC	SOFT LOGIC	Memory Block	MULT	SOFT LOGIC	SOFT LOGIC
SOFT LOGIC	SOFT LOGIC		MULT	SOFT LOGIC	SOFT LOGIC

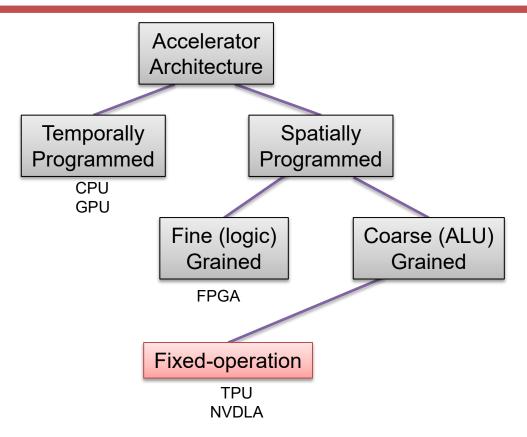


Programmable Accelerators

Processing Element



Many Programmable Accelerators look like an array of PEs, but have dramatically different architectures, programming models and capabilities

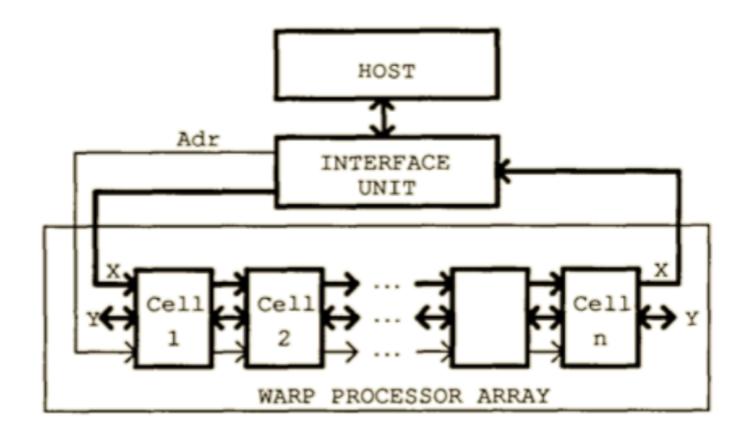


Fixed Operation PEs

- Each PE hard-wired to one operation
- Purely pipelined operation
 - no backpressure in pipeline

- Attributes
 - High-concurrency
 - Regular design, but
 - Regular parallelism only!
 - Allows for systolic communication

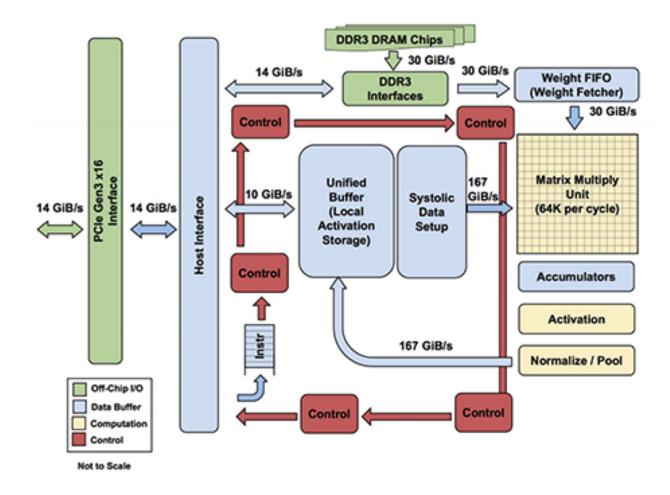
Configurable Systolic Array - WARP



March 11, 2024

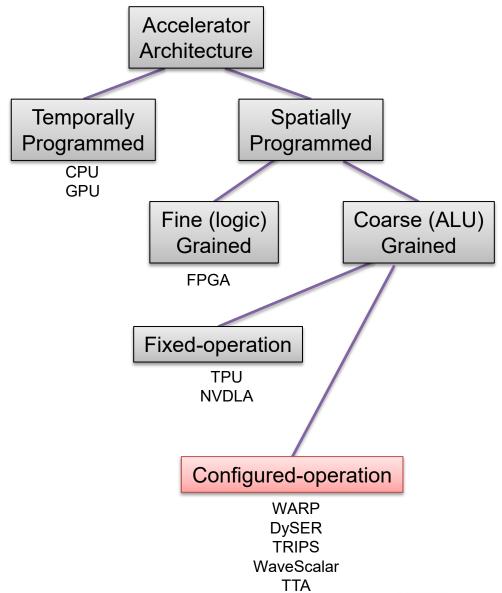
Source: WARP Architecture and Implementation, ISCA 1986

Fixed Operation - Google TPU

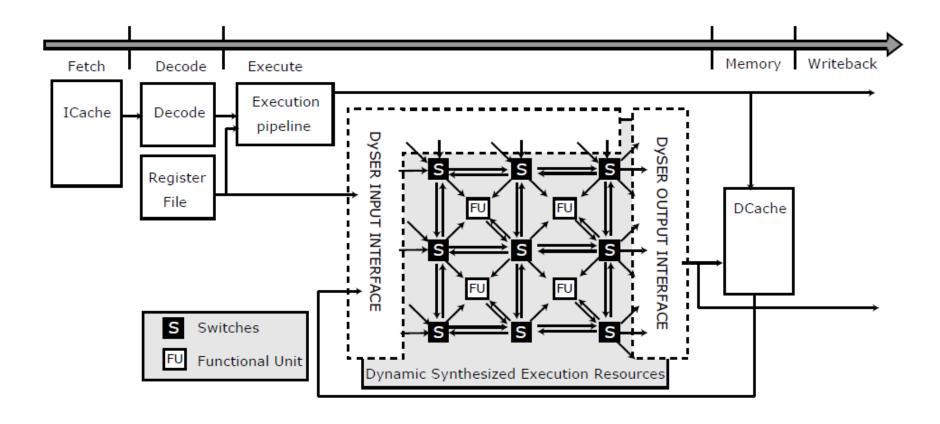


Systolic array does 8-bit 256x256 matrix-multiply accumulate

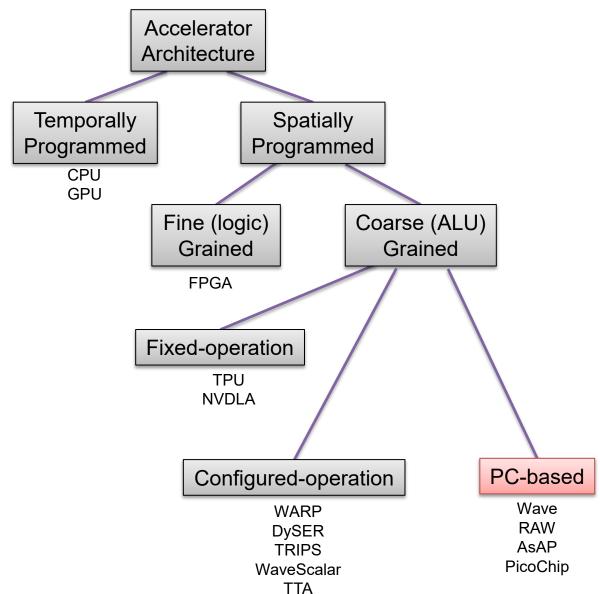
Source: Google



Single Configured Operation - Dyser

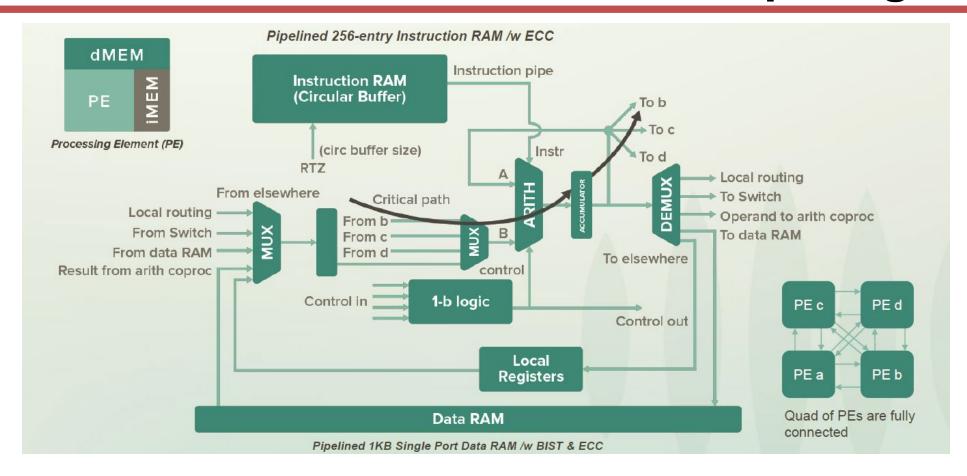


Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11

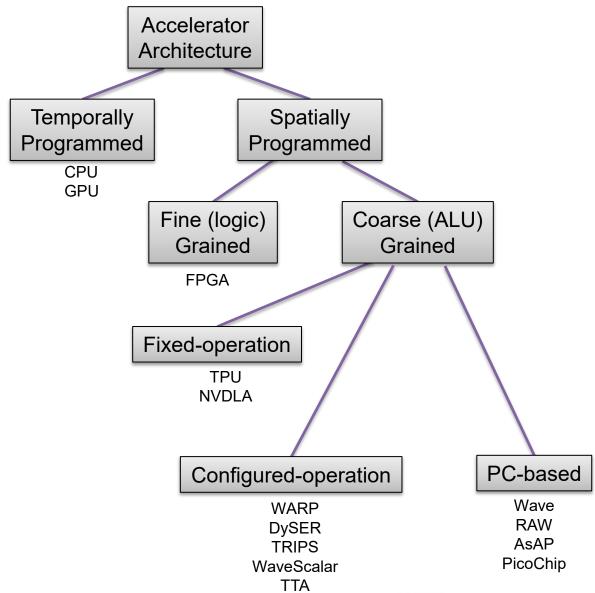


March 11, 2024

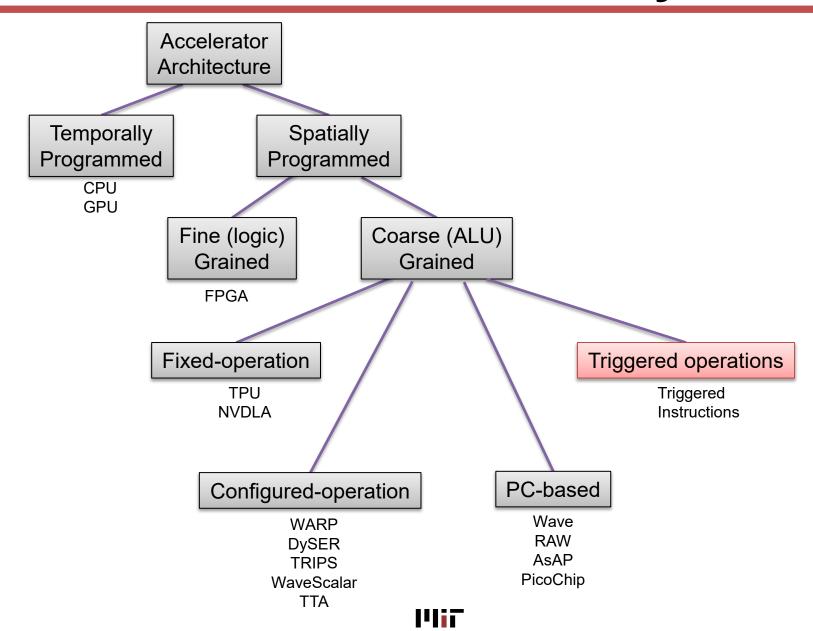
PC-based Control – Wave Computing



Source: Wave Computing, Hot Chips '17

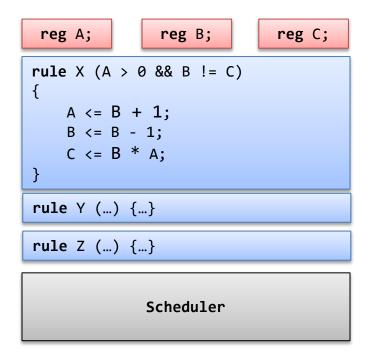


March 11, 2024



March 11, 2024

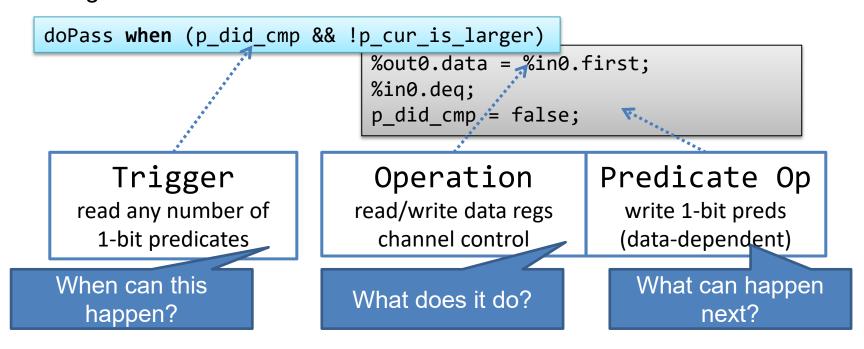
Guarded Actions



- Program consists of rules that may perform computations and read/write state
- Each rule specifies conditions (guard) under which it is allowed to fire
- Separates description and execution of data (rule body) from control (guards)
- A scheduler is generated (or provided by hardware) that evaluates the guards and schedules rule execution
- Sources of Parallelism
 - Intra-Rule parallelism
 - Inter-Rule parallelism
 - Scheduler overlap with Rule execution
 - Parallel access to state

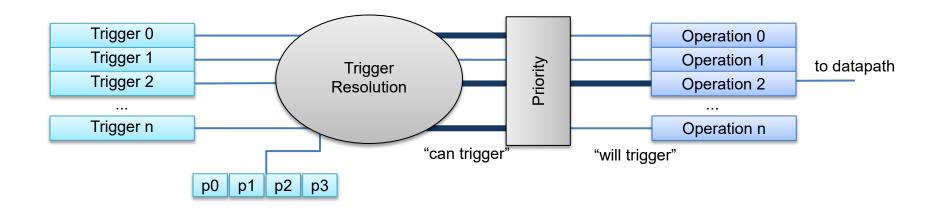
Triggered Instructions (TI)

Restrict guarded actions down to efficient ISA core:



No program counter or branch instructions

Triggered Instruction Scheduler



- Use combinational logic to evaluate triggers in parallel
- Decide winners if more than one instruction is ready
 - Based on architectural fairness policy
 - Could pick multiple non-conflicting instructions to issue (superscalar)
- Note: no wires toggle unless status changes

6.5930/1
Hardware Architectures for Deep Learning

Dataflow for DNN Accelerator Architectures (Part 1)

March 11, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Goals of Today's Lecture

- Impact of data movement and memory hierarchy on energy consumption
- Taxonomy of dataflows for CNNs
 - Output Stationary
 - Weight Stationary
 - Input Stationary

Background Reading

DNN Accelerators

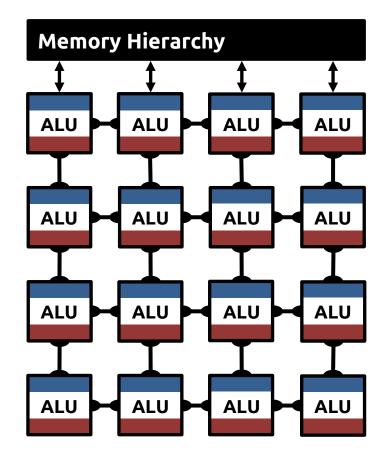
- Efficient Processing of Deep Neural Networks
 - Chapter 5 thru 5.7.1
 - Chapter 5 5.8

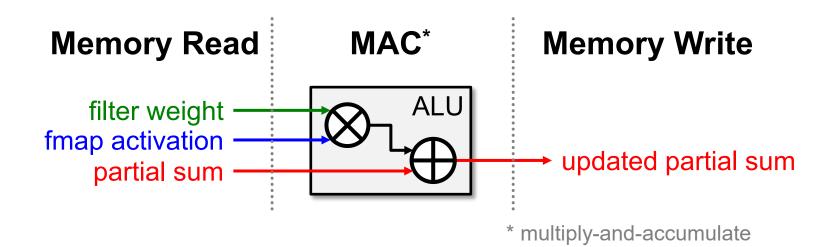
All these books and their online/e-book versions are available through MIT libraries.

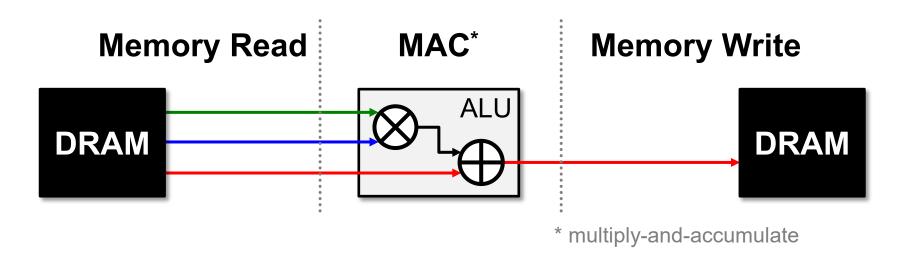
Dataflow and Memory Hierarchy

Spatial Compute Paradigm

Spatial Architecture (Dataflow Processing)



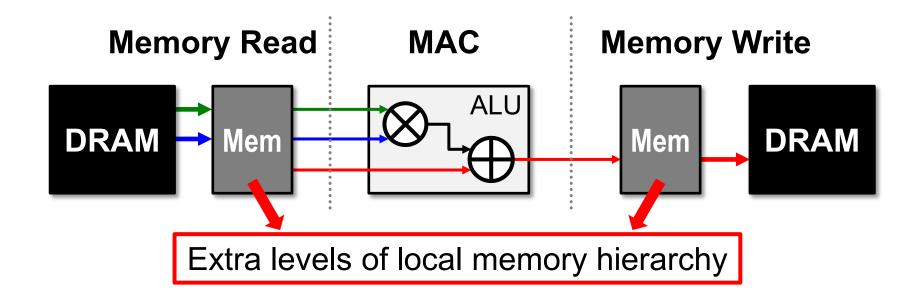




Worst Case: all memory R/W are **DRAM** accesses

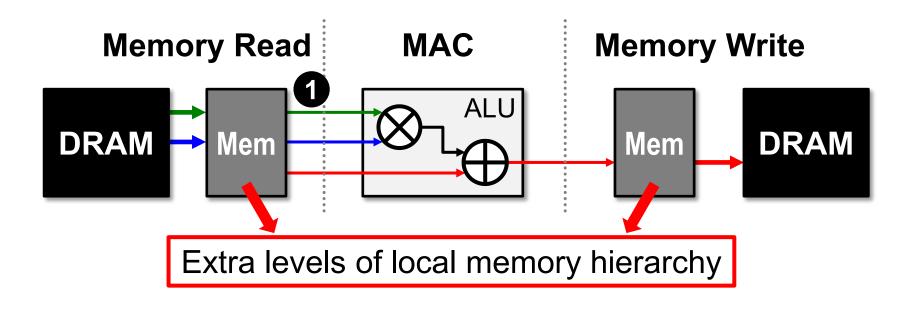
Example: AlexNet [NeurIPS 2012] has 724M MACs

→ 2896M DRAM accesses required



Under what circumstances will these extra levels help?

Computational intensity > 1

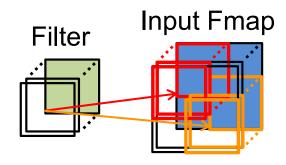


Opportunities: 1 data reuse

Types of Data Reuse in DNN

Convolutional Reuse

CONV layers only (sliding window)



Reuse: Activations
Filter weights

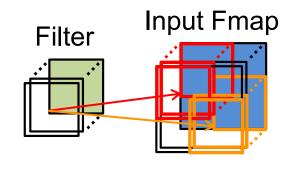
Types of Data Reuse in DNN

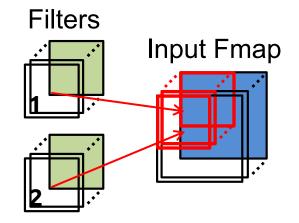
Convolutional Reuse

CONV layers only (sliding window)

Fmap Reuse

CONV and FC layers





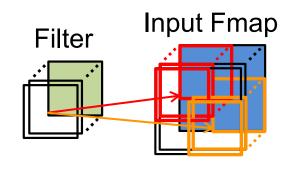
Reuse: Activations
Filter weights

Reuse: Activations

Types of Data Reuse in DNN

Convolutional Reuse

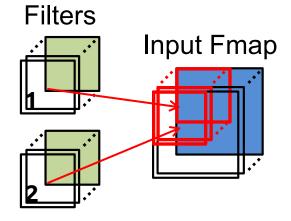
CONV layers only (sliding window)



Reuse: Activations
Filter weights

Fmap Reuse

CONV and FC layers



Reuse: Activations

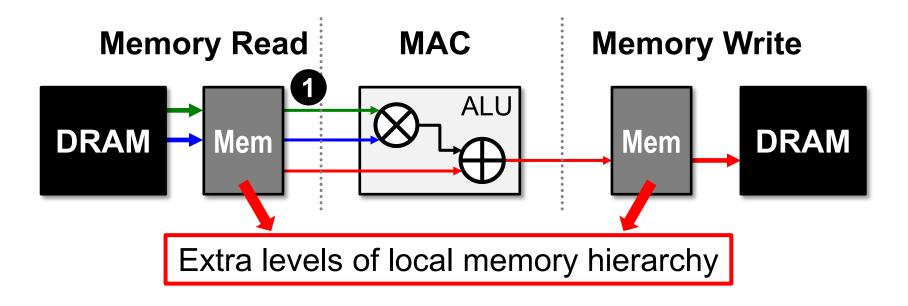
Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps
Filter

Reuse: Filter weights

Memory Access is the Bottleneck

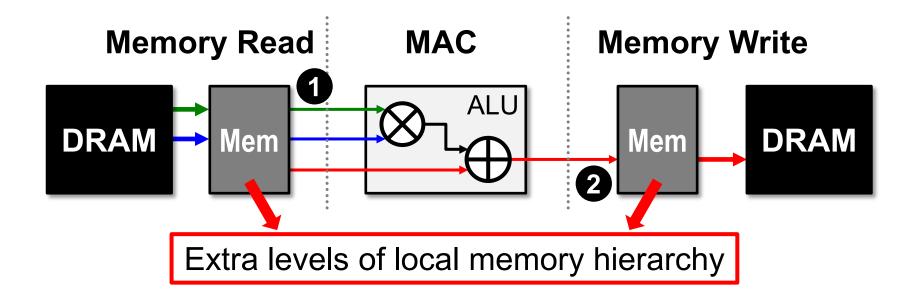


Opportunities: 1 data reuse

1 Can reduce DRAM reads of filter/fmap by up to 500×**

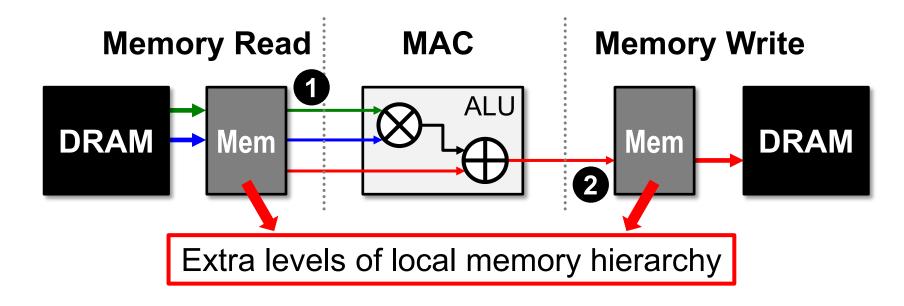
** AlexNet CONV layers

Memory Access is the Bottleneck



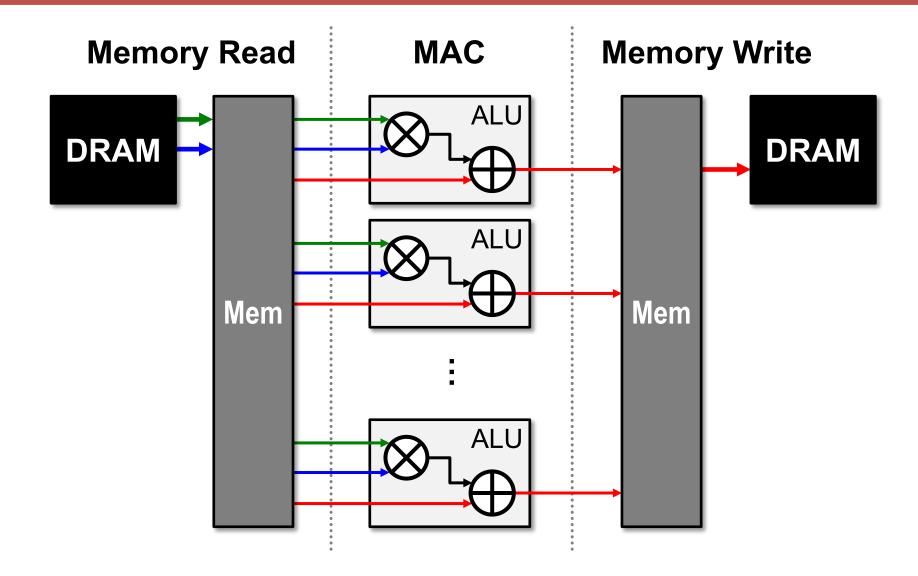
- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/fmap by up to 500×
 - Partial sum accumulation does NOT have to access DRAM

Memory Access is the Bottleneck

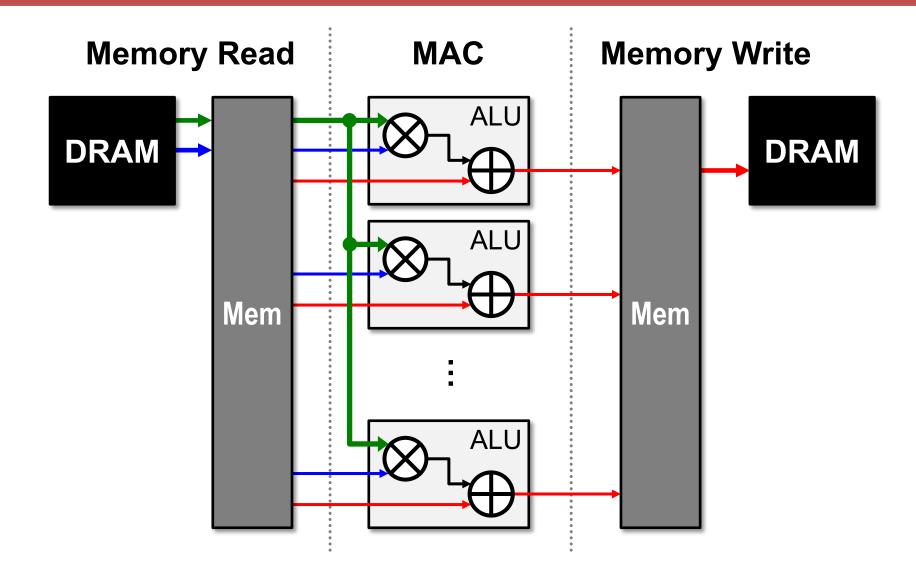


- Opportunities: 1 data reuse 2 local accumulation
 - 1 Can reduce DRAM reads of filter/fmap by up to 500×
 - Partial sum accumulation does NOT have to access DRAM
 - Example: DRAM access in AlexNet can be reduced from **2896M** to **61M** (best case)

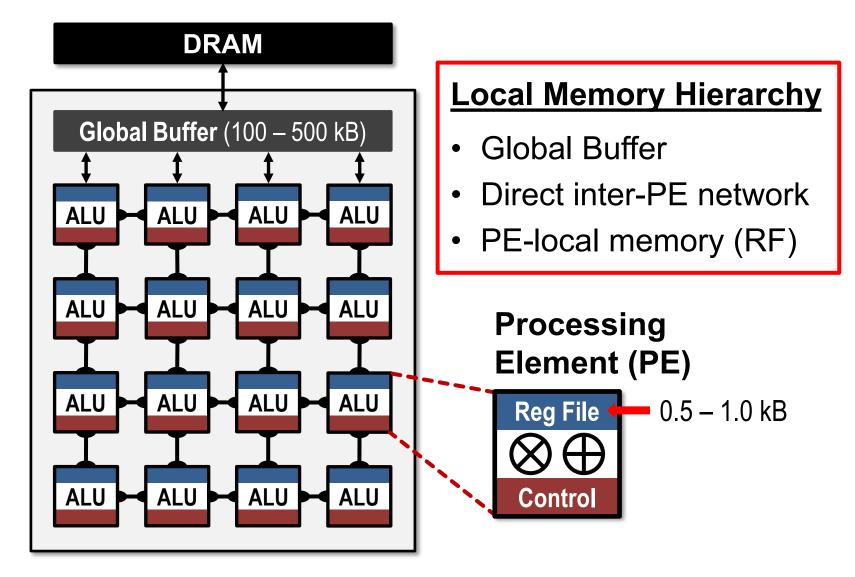
Leverage Parallelism for Higher Performance



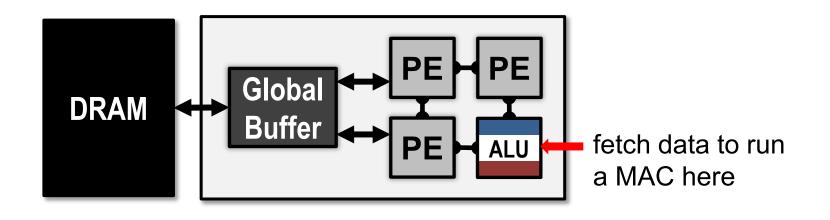
Leverage Parallelism for Spatial Data Reuse

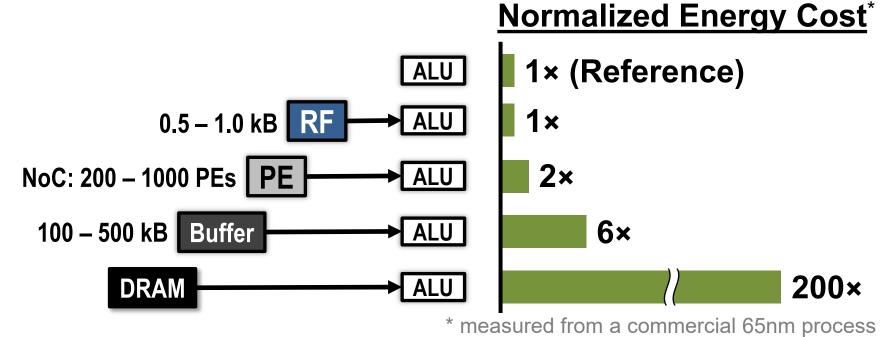


Spatial Architecture for DNN



Low-Cost Local Data Access

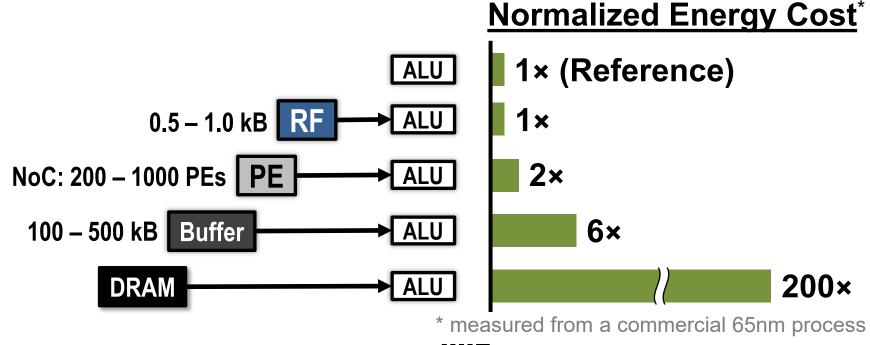




Sze and Emer

Low-Cost Local Data Access

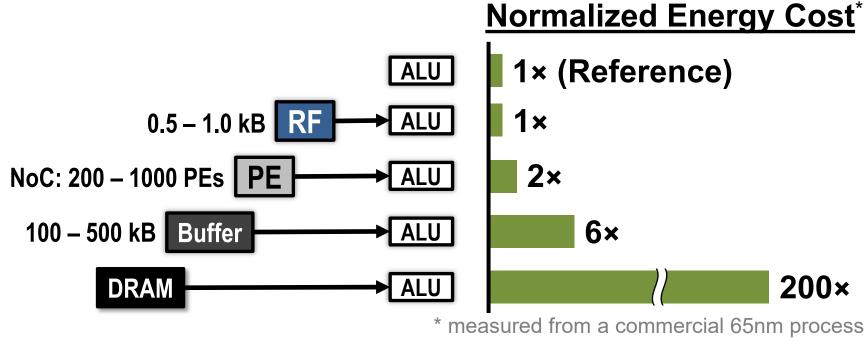
How to exploit 1 data reuse and 2 local accumulation with *limited* low-cost local storage?



Low-Cost Local Data Access

How to exploit 1 data reuse and 2 local accumulation with *limited* low-cost local storage?

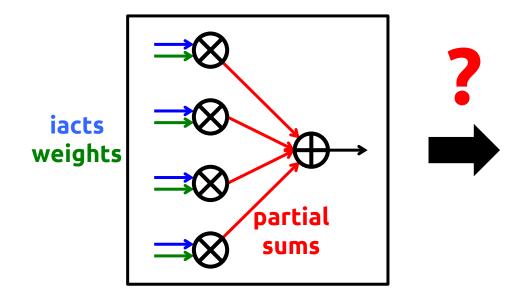
specialized processing dataflow required!



ШiТ

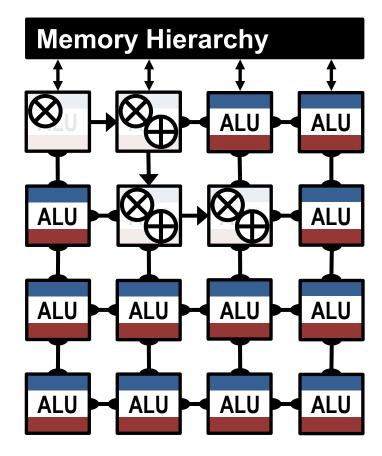
How to Map the Dataflow?

CNN Convolution



Goal: Increase reuse of input data (input activations and weights) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

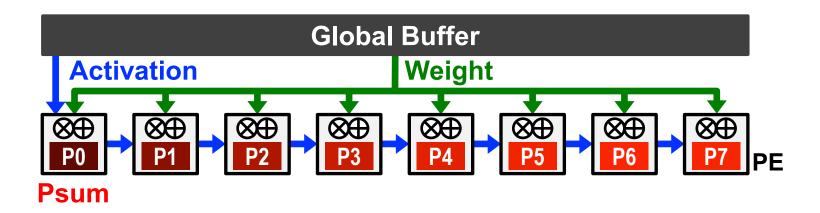


Dataflow Taxonomy

- Output Stationary (OS)
- Weight Stationary (WS)
- Input Stationary (IS)

[Chen et al., ISCA 2016]

Output Stationary (OS)



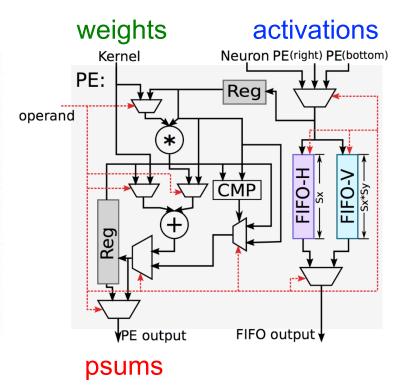
- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

OS Example: ShiDianNao

Top-Level Architecture

ShiDianNao: IB: Decoder Inst. NBin: Bank #0 NFU: Py Input **Buffer Controller** Bank #2Py-1 (Column) **NBout:** Px Bank #0 Px*Py Input Bank #2Py-1 (Row) SB: Bank #0 Kernel Bank #Py-1 Px*Py ALU Output

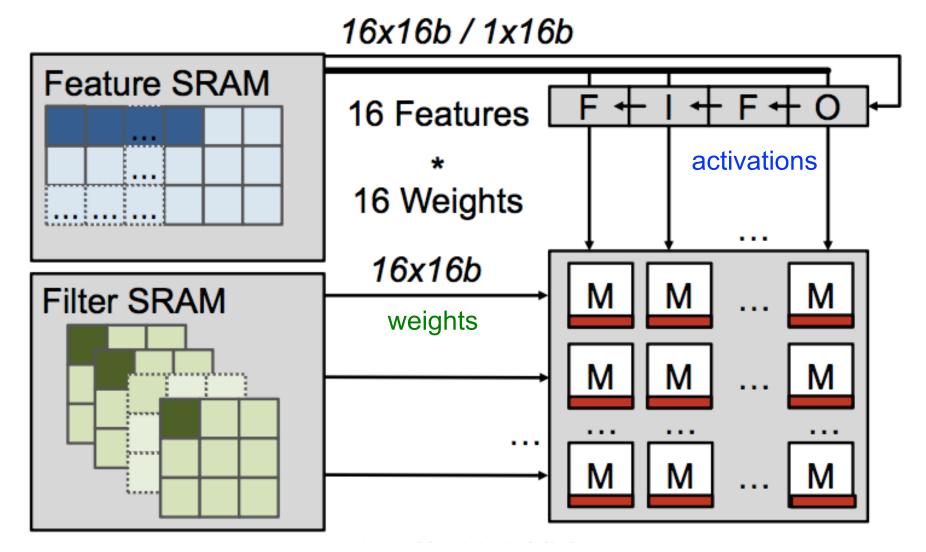
PE Architecture



- Inputs streamed through array
- Weights broadcast
- Partial sums accumulated in PE and streamed out

[Du et al., ISCA 2015]

OS Example: KU Leuven



[Moons et al., VLSI 2016, ISSCC 2017]

1-D Convolution Einsum

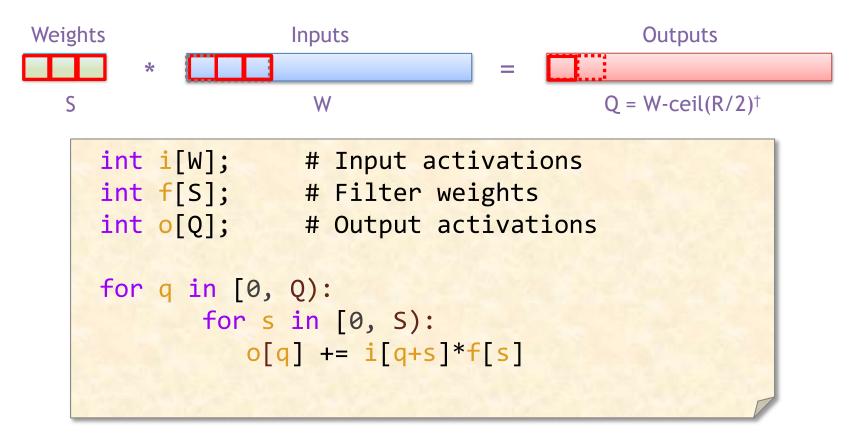
$$O_q = I_{q+s} \times F_s$$

Operational definition of Einsum says traverse all valid values of "q" and "s"... but in what order....

Traversal order (fastest to slowest): S, Q

Which "for" loop is outermost?

1-D Convolution



What dataflow is this?

Is it easy to tell dataflow from the loop nest?

Output stationary

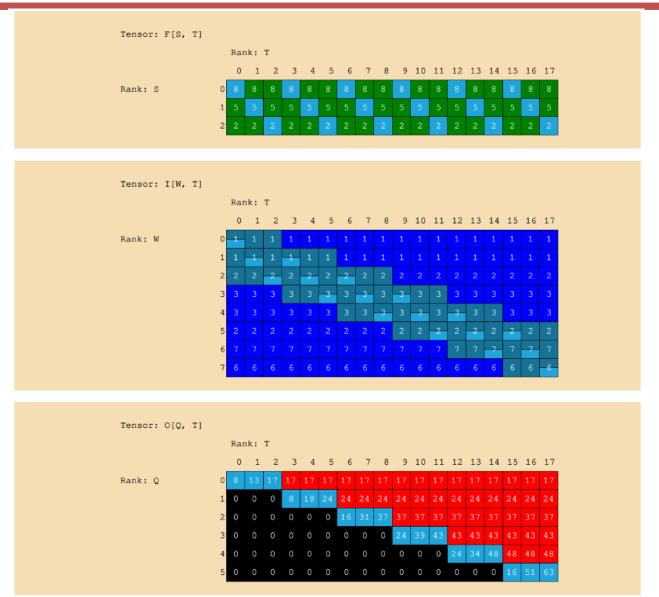
Yes, from outermost loop index

† Assuming: 'valid' style convolution

Output Stationary - Movie

```
Tensor: F[S]
        Rank: S
Tensor: I[W]
Rank: W
   Tensor: O[Q]
   Rank: Q
```

Output Stationary – Spacetime View



CONV-layer Einsum

$$O_{m,p,q} = I_{c,p+r,q+s} \times F_{m,c,r,s}$$

Traversal order (fastest to slowest): S, R, Q, P

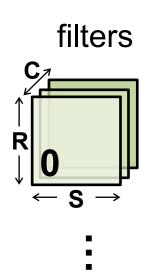
Parallel Ranks: C, M

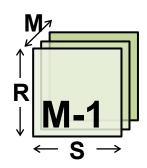
Can you write the loop nest?

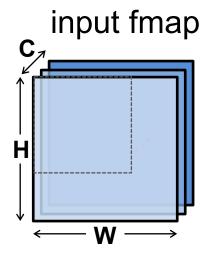
I hope so 😊

CONV Layer OS Loop Nest

```
int i[C,H,W]; # Input activations
int f[M,C,R,S]; # Filter weights
int o[M,P,Q]; # Output activations
for p in [0, P):
 for q in [0, Q):
   for r in [0, R):
      for s in [0, S):
        parallel-for c in [0, C):
          parallel-for m in [0, M):
            o[m,p,q] += i[c,p+r,q+s]*f[m,c,r,s]
```



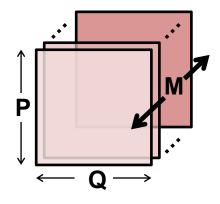




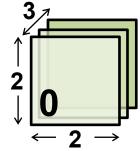
M=8 C=3 R=2 S=2 H=3 W=3 P=2

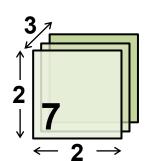
Q=2

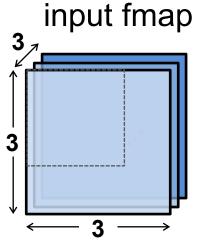
output fmap



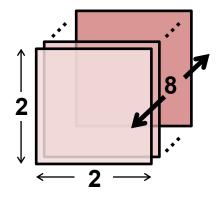
Filter overlay

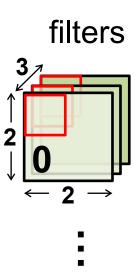


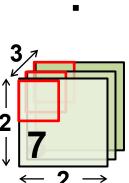


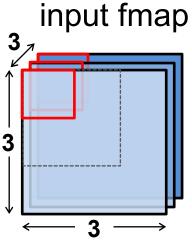


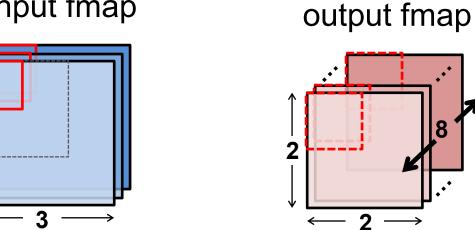
output fmap

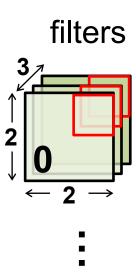


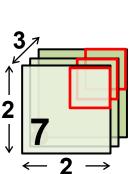


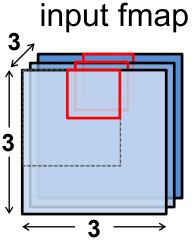


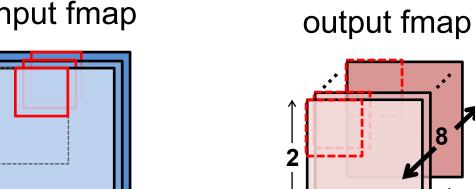


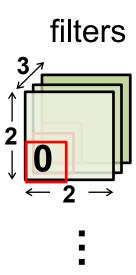


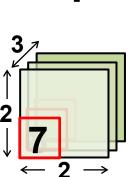


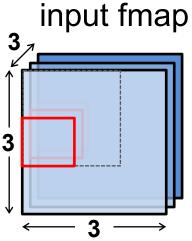


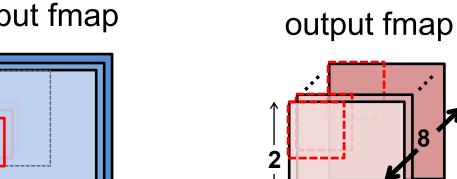


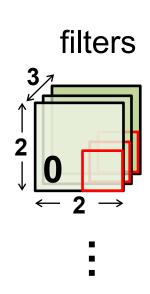


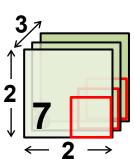


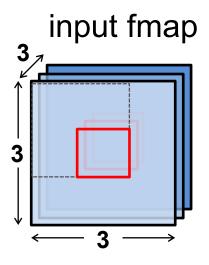


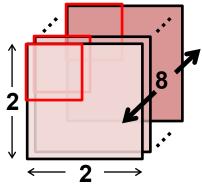




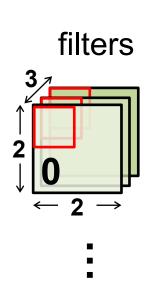


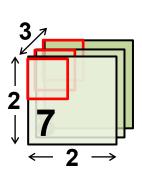


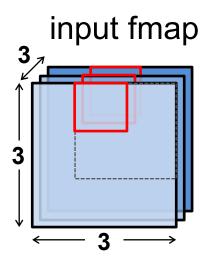




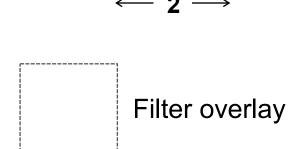
Start processing next output feature activations

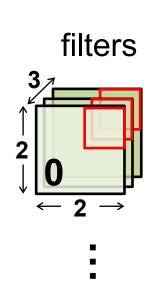


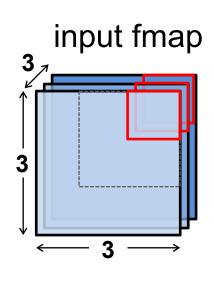


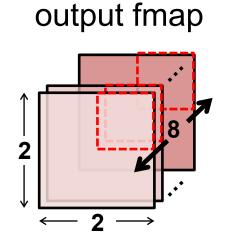


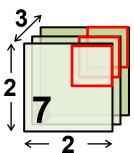


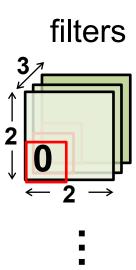


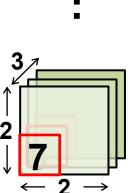


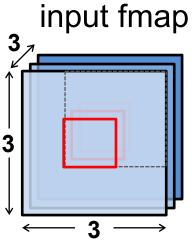


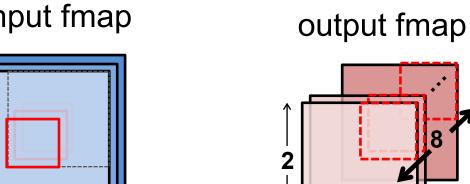


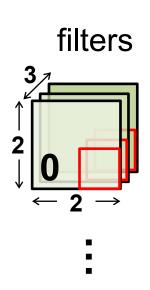


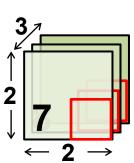


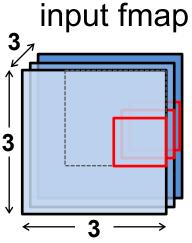


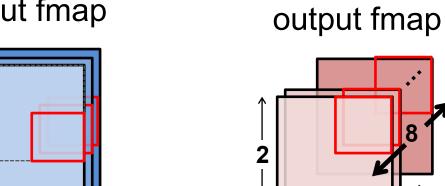












Next:

More dataflows