6.5930/1 Hardware Architectures for Deep Learning

Mapping to Hardware

March 18, 2024

Joel Emer and Vivienne Sze

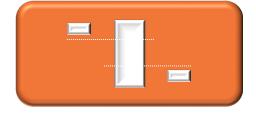
Massachusetts Institute of Technology Electrical Engineering & Computer Science

Data Orchestration

Guiding Principles for Data Orchestration

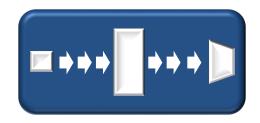
Efficient reuse – small storage physically close to consuming units for reused data

Delivery/use overlap - Next tile should be available when current is done (e.g., doublebuffering)

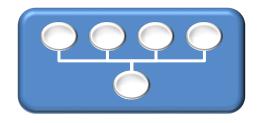


Precise synchronization – Only wait for exactly data you need, respond quickly (e.g., no barriers or remote polling)

Storage usage efficiency – Minimize idle storage waiting for long round trip latency



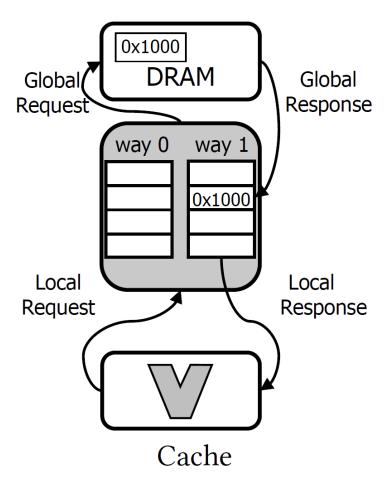
Bandwidth efficiency - Maximize delivery rate by controlling outstanding requests



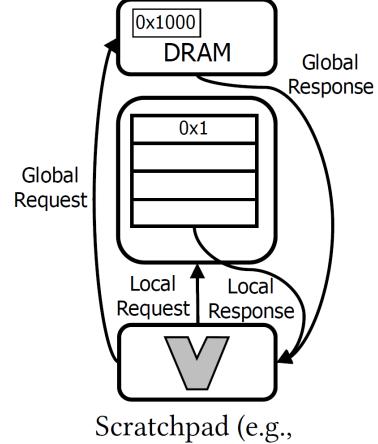
Cross-unit use – amortize data access and communication

Approaches: Implicit versus Explicit

Implicit:



Explicit:



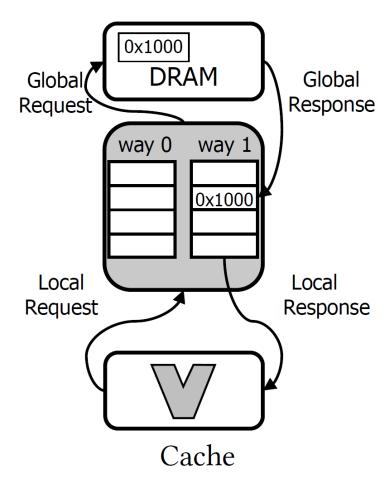
Scratchpad (e.g., GPU shared memory)

Sze and Emer

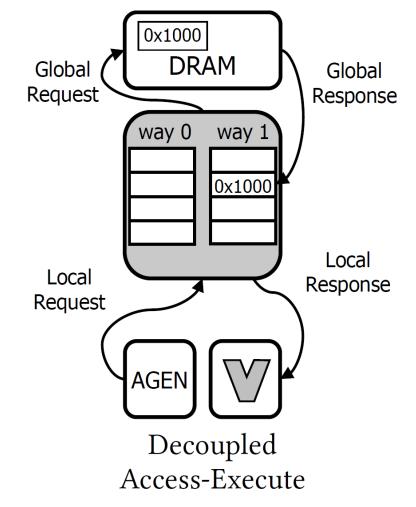
Approaches: Coupled versus Decoupled

Implicit + Coupled

March 18, 2023

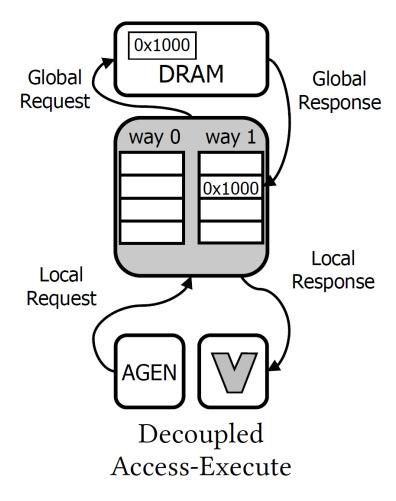


Implicit + Decoupled

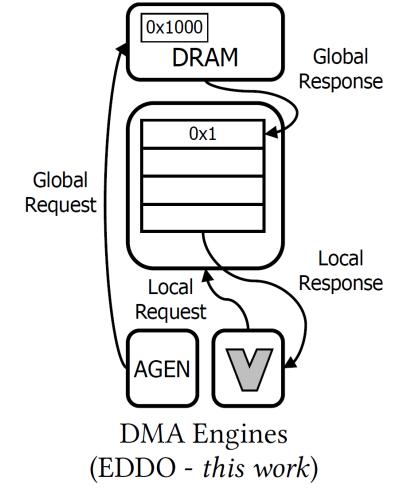


Explicit Decoupled Data Orchestration

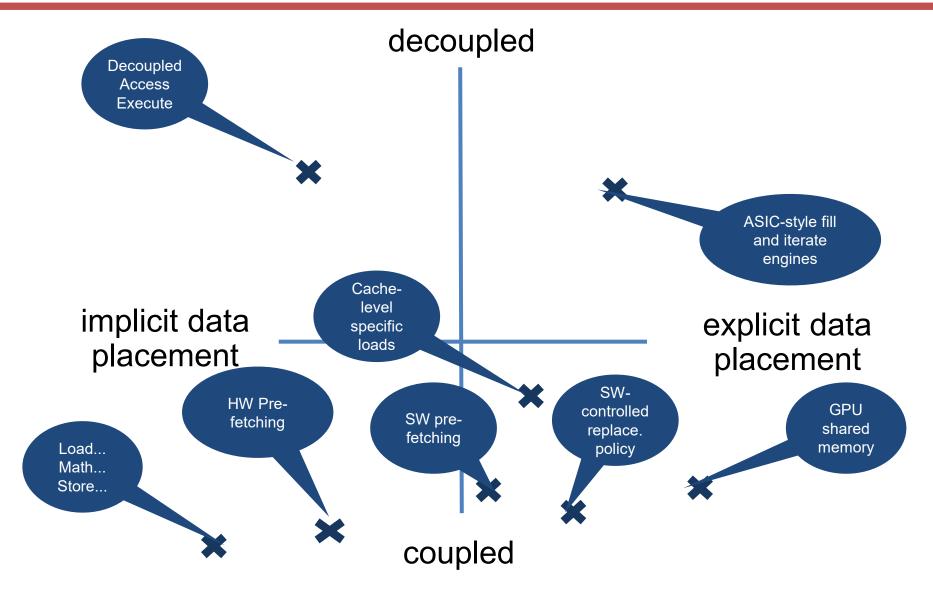
Implicit + Decoupled



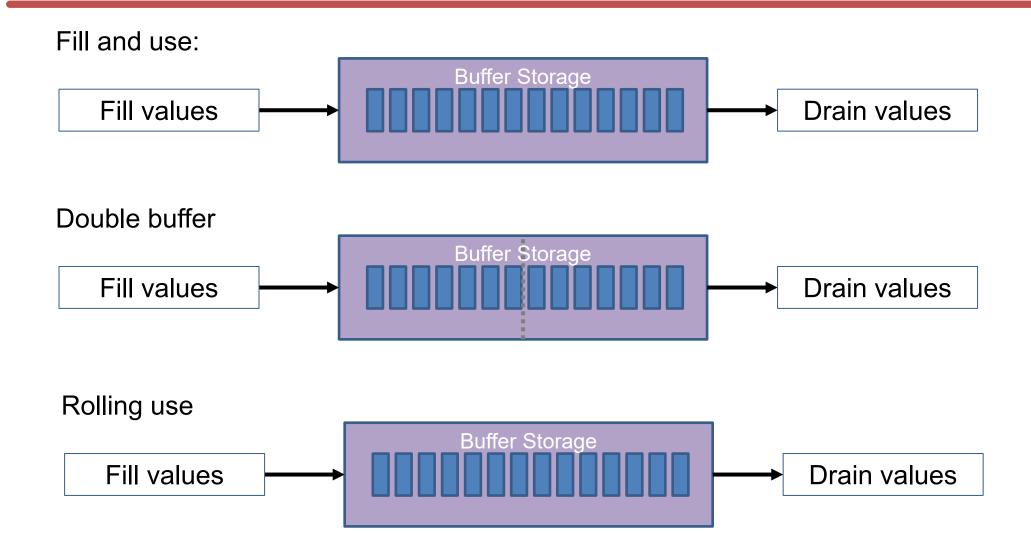
Explicit + Decoupled



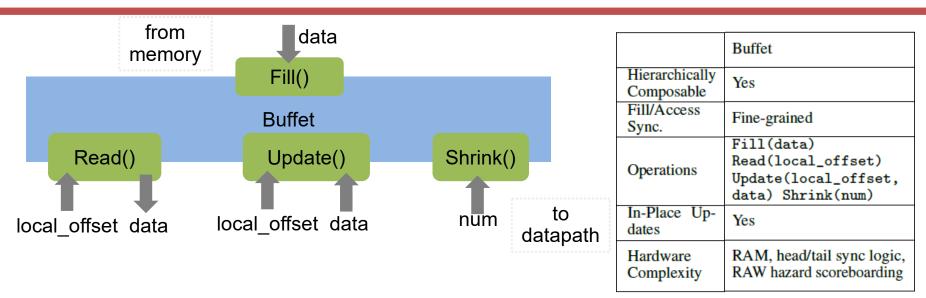
Classifying Orchestration Approaches



EDDO Strategies



Buffets

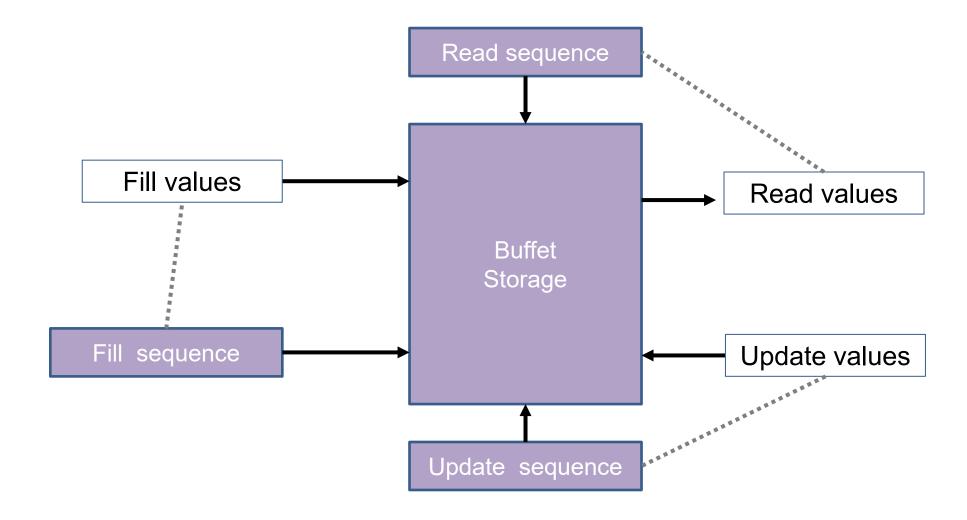


 $Fill \rightarrow (Read \rightarrow Update?)^* \rightarrow Read \rightarrow Shrink$

- Compared to FIFO
 - Allows random access into live window
 - Allows updates of values in live window
- Compared to scratchpad:
 - Adds scoreboarding for synchronization
 - Allows arbitrary degrees of buffering
- Compared to cache
 - Addresses local (therefore fewer bits) and no tag store
 - Push model versus pull model for smaller landing zone
 - Raises level of abstraction beyond single value transfers

Can be specialized, for example: "read-only" buffets that have fills but not updates

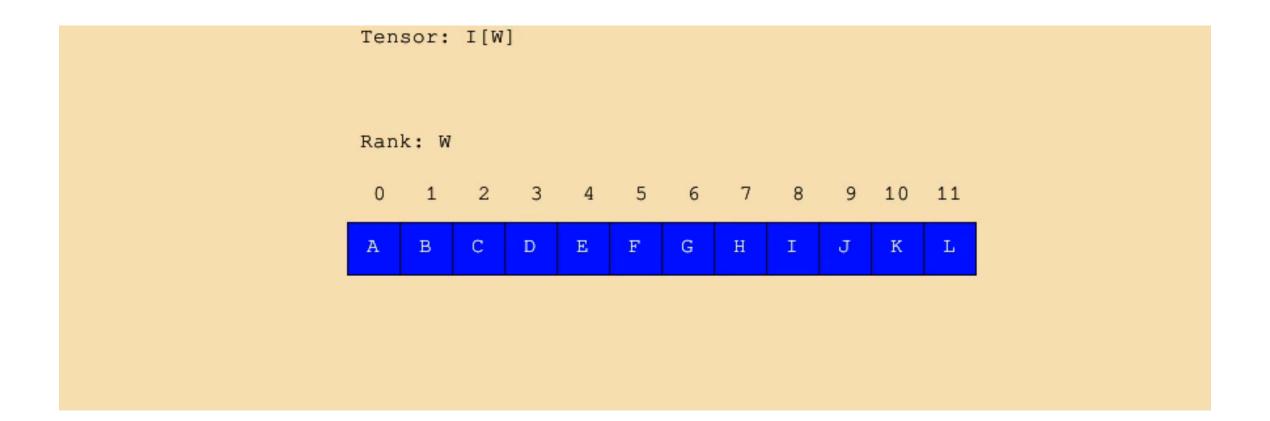
Buffet Usage Model



Buffet Behavioral Attributes

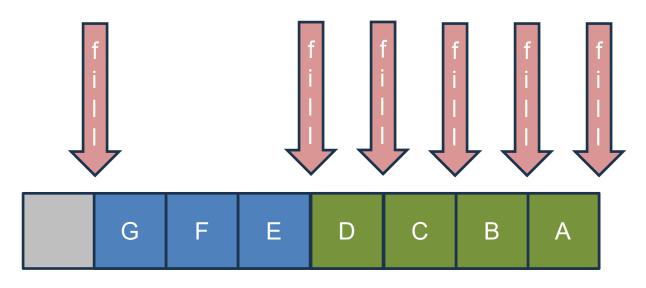
- Based on 'fill' address sequence, the buffet will pop values from 'fill' channel until buffer is full.
- Based on 'read' address sequence the buffet will try to push values down 'read' LI channel, but only if the value has been 'filled'.
- 'Read' address sequence can also inform buffet that a value can be dropped, i.e., space freed. This is routed to the shrink control port.
- Based on 'update' address sequence the buffet will try to pop values from the 'update' channel
- Implementation may include multiple logical buffers inside a single physical buffer.

Sliding Window – 4



Buffet Control Example

Four-wide sliding window



What offset do we use to access A? 0

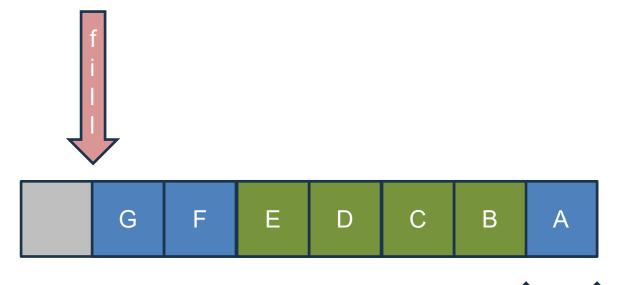
Now where do we reference?

B, again

But do we need A anymore?

Buffet Control Example

Four-wide sliding window



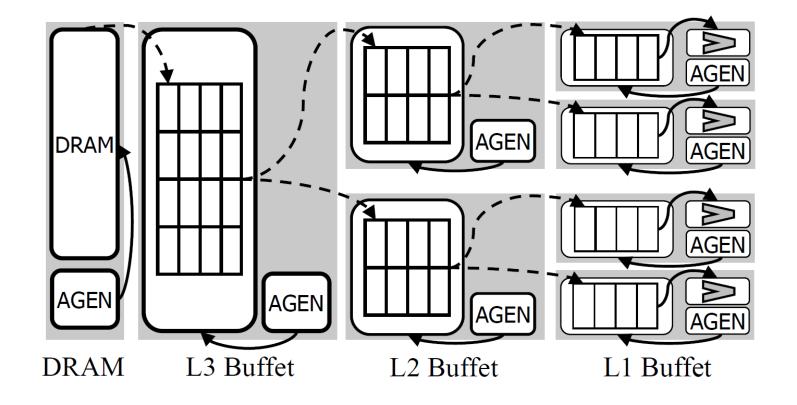
What offset do we use to access B?

What element is the end of this window?

What do we do now?

Shrink by 1 and start reading at C

Buffets: Composable Idiom for E.D.D.O.



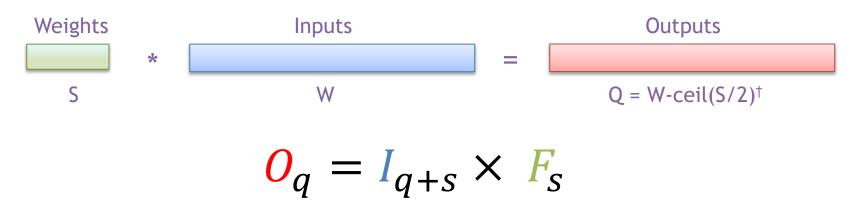
Transfers between levels only depend on a credit flow from the adjacent level.

This Lecture

- Continue understanding representation of a convolution using loop nests, including mapping
- See how costs of a mapping can be determined from the loop nest representation.
- See how loop nest can guide configuration of an accelerator.
- Consider a loop nest representation for a full CNN layer and how to search for an optimal mapping
- Reading: Efficient Processing of Deep Neural Networks Chap 5/6

Mapping Output Stationary to Hardware

1-D Convolution – Output Stationary

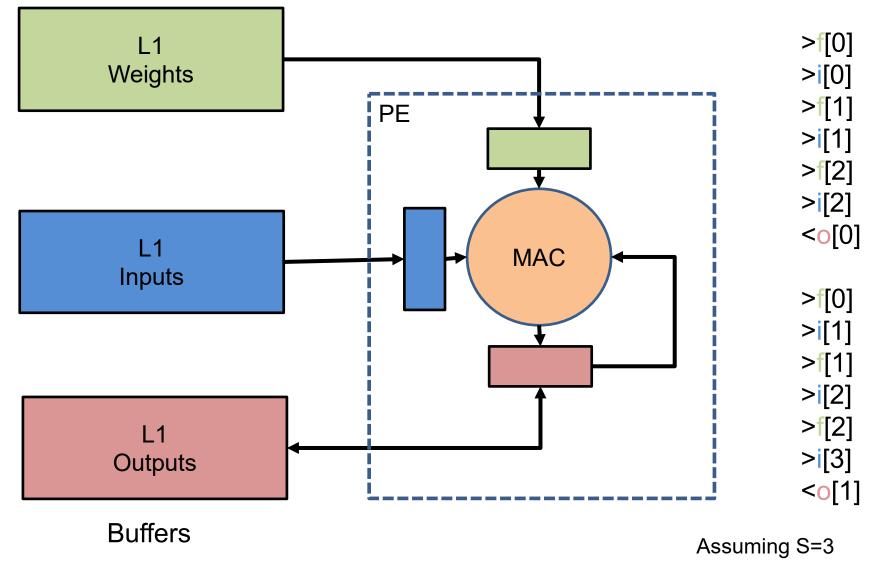


Traversal order (fastest to slowest): S, Q

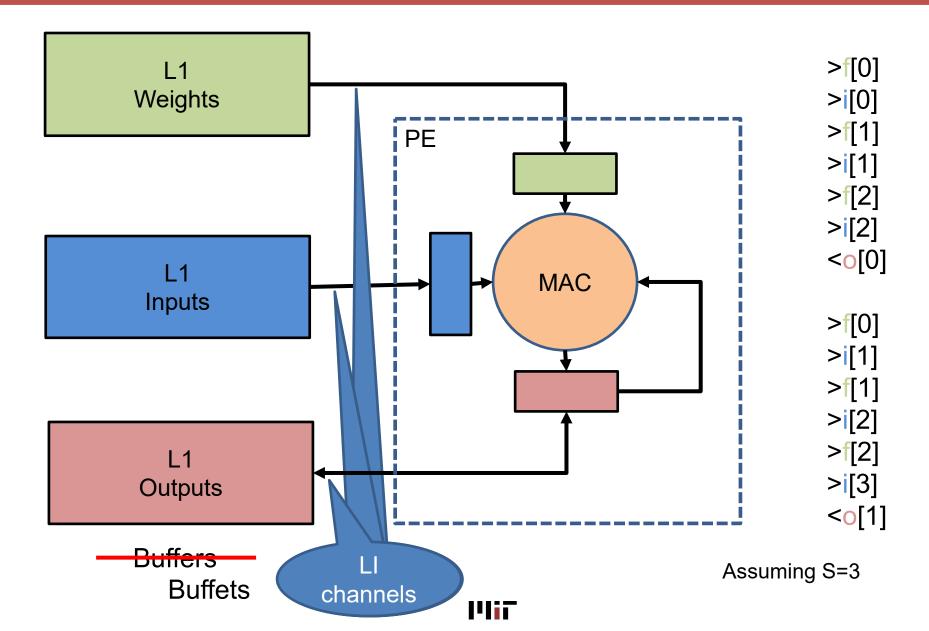
```
int i[W];  # Input activations
int f[S];  # Filter weights
int o[Q];  # Output activations

for q in [0, Q):
    for s in (0, S):
    o[q] += i[q+s]*f[s]
```

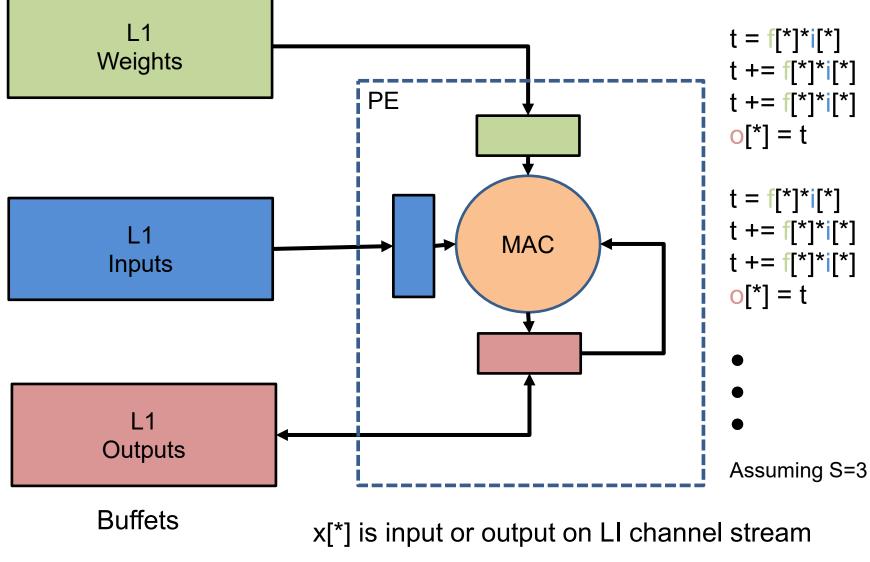
Single PE Output Stationary Flow



Single PE Output Stationary Flow



Single PE Output Stationary Flow

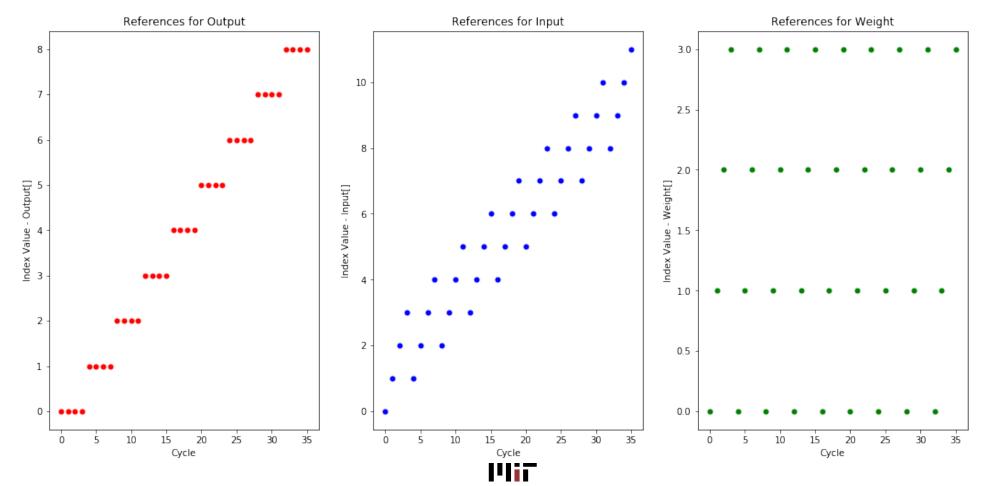


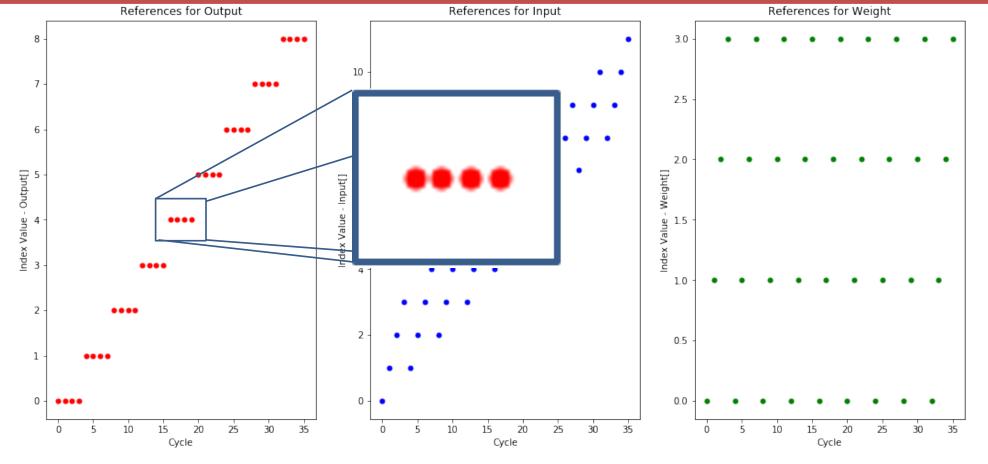
LI Channel-based Buffer vs Scratchpads

- PE does not generate addresses, i.e., no load or store address calculations
- Address generation is not serialized with arithmetic operations,
 e.g., as loads or stores
- PE does not need register target for each scratchpad request in flight
- If the channel operations are guaranteed never to block then the channel logic can be optimized away and the reads/writes can happen systolically.

```
for q in [0, Q):
   for s in [0, S):
    o[q] += i[q+s]*f[s]
```

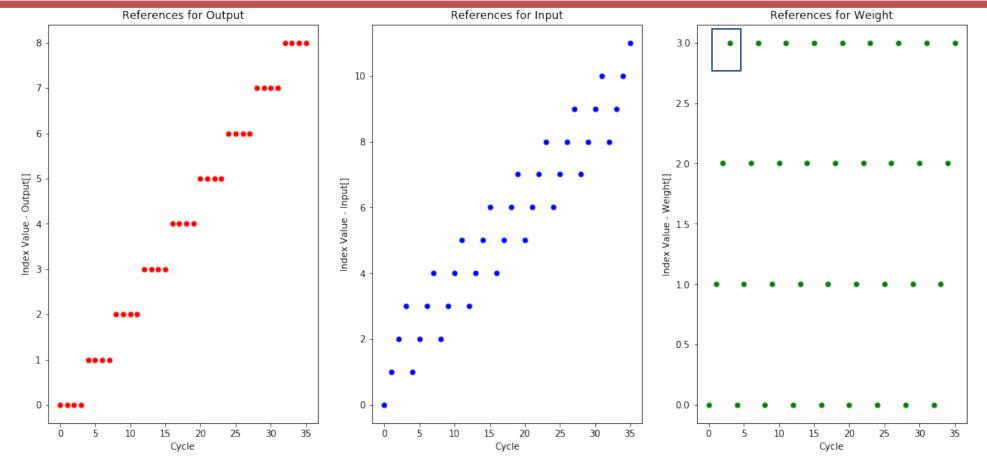
Layer Shape: -S = 4-Q = 9-W = 12





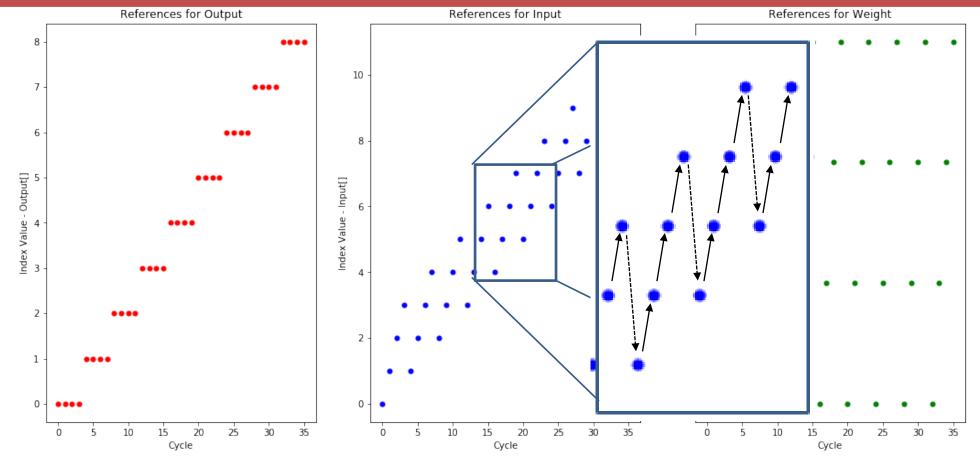
Observations:

- Single output is reused many times (S)



Observations:

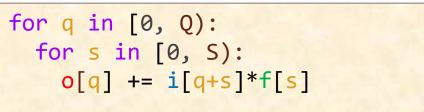
- Single output is reused many times (S)
- All weights reused repeatedly



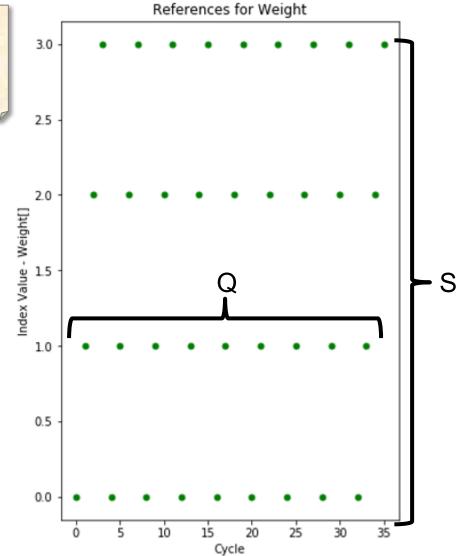
Observations:

- Single output is reused many times (S)
- All weights reused repeatedly
- Sliding window of inputs (size = S)

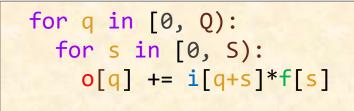
L1 Data Accesses - Weights



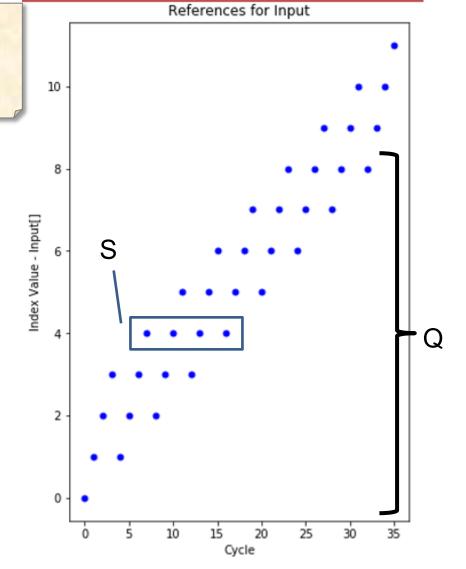
	os
MACs	Q*S
Weight Reads	Q*S
Input Reads	
Output Reads	
Output Writes	



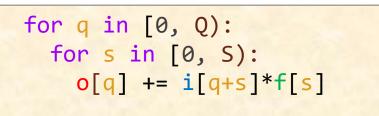
L1 Data Accesses - Inputs



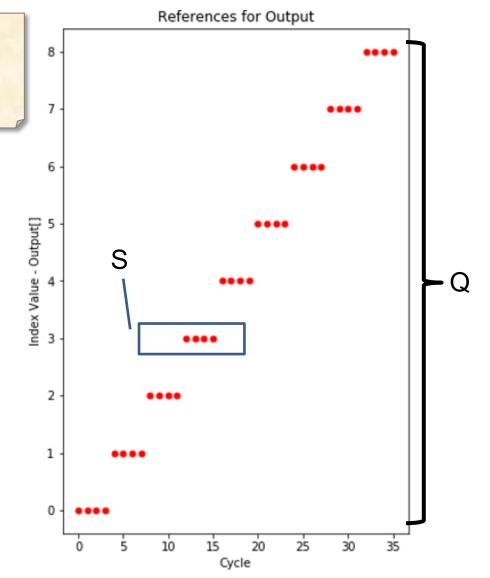
	os
MACs	Q*S
Weight Reads	Q*S
Input Reads	Q*S
Output Reads	
Output Writes	



L1 Data Accesses - Outputs

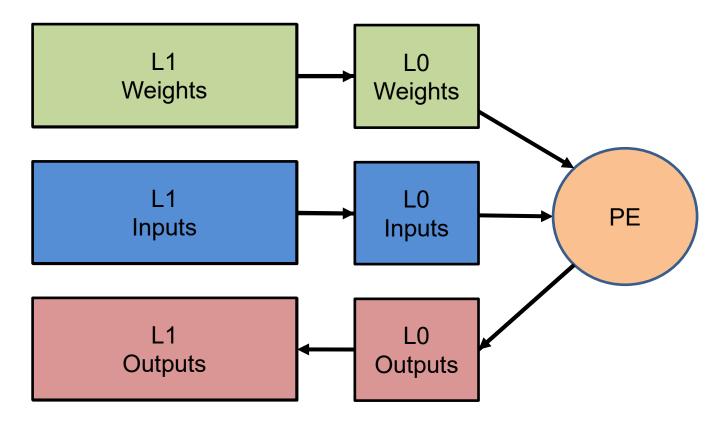


	os
MACs	Q*S
Weight Reads	Q*S
Input Reads	Q*S
Output Reads	0
Output Writes	Q



Intermediate Buffering

Intermediate Buffering



How will this be reflected in the loop nest?

New 'level' of loops

1-D Convolution – Buffered

```
Outputs
Weights
                   Inputs
        *
                                   W
  S
                                          Q = W-ceil(S/2)^{\dagger}
 int i[W];  # Input activations
 int f[S]; # Filter Weights
                                            Note Q and S are
 int o[Q]; # Output activations
                                               factored so:
                                               Q0*Q1 = Q
                                               S0*S1 = S
 // Level 1
 for q1 in [0, Q1):
   for s1 in 0, S1):
      // Level 0
      for q0 in [0, Q0):
        for s0 in [0, S0):
            o[q1*Q0+q0] += i[q1*Q0+q0 + s1*S0+s0]
                          * f[s1*S0+s0]
```

Buffer sizes

- Level 0 buffer size is volume needed in each Level 1 iteration.
- Level 1 buffer size is volume needed to be preserved and redelivered in future (usually successive) Level 1 iterations.
- A legal assignment of loop limits will fit into the hardware's buffer sizes

Buffered – 1D Convolution Einsum

$$O_q = I_{q+s} \times F_s$$

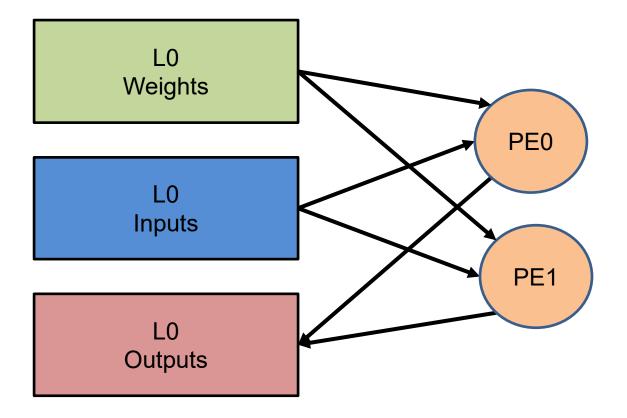
Split: S by S0 and Q by Q0

$$O_{q1*Q0+q0} = I_{q1*Q0+q0+s1*S0+s0} \times F_{s*S0+s0}$$

Traversal order (fastest to slowest): S0, Q0, S1, Q1

Spatial Mapping

Spatial PEs



How will this be reflected in the loop nest?

New 'level' of loops

1-D Convolution – Spatial

```
Weights
                   Inputs
                                             Outputs
        *
                                   S
                     W
                                           Q = W-ceil(S/2)^{\dagger}
  int i[W];  # Input activations
                                                      Note:
  int f[S]; # Filter Weights
                                                    Q0*Q1 = Q
  int o[Q];  # Output activations
                                                    S0*S1 = S
  // Level 1
                                                 Q1 = 1 => q1 = 0
  parallel for q1 in [0, Q1):
     parallel-for s1 in [0, S1):
                                                  S0 = 1, S1 = 2
       // Level 0
       for s0 in S0):
         for q0 in 0, Q0):
             o[q1*Q0+q0] += i[q1*Q0+q0 + s1*S0+s0]
                            * f[s1*S0+s0];
```

1-D Convolution – Spatial

```
Weights
                   Inputs
                                             Outputs
        *
                                  S
                                          Q = W-ceil(S/2)^{\dagger}
                    W
  int i[W];  # Input activations
                                                     Note:
  int f[S]; # Filter Weights
                                                   Q0*Q1 = Q
  int o[Q];  # Output activations
                                                   S0*S1 = S
  // Level 1
  parallel-for s1 in [0, S1):
    // Level 0
    for s0 in [0, S0):
       for q in [0, Q):
           o[q] += i[q+s1*S0+s0] * f[s1*S0+s0]
```

Spatial – 1D Convolution Einsum

$$O_q = I_{q+s} \times F_s$$

Split: S by S0

$$O_q = I_{q+s1*S1+s0} \times F_{s*S0+s0}$$

Traversal order (fastest to slowest): S0, Q

Parallel: S1

Spatial Weight Stationary References

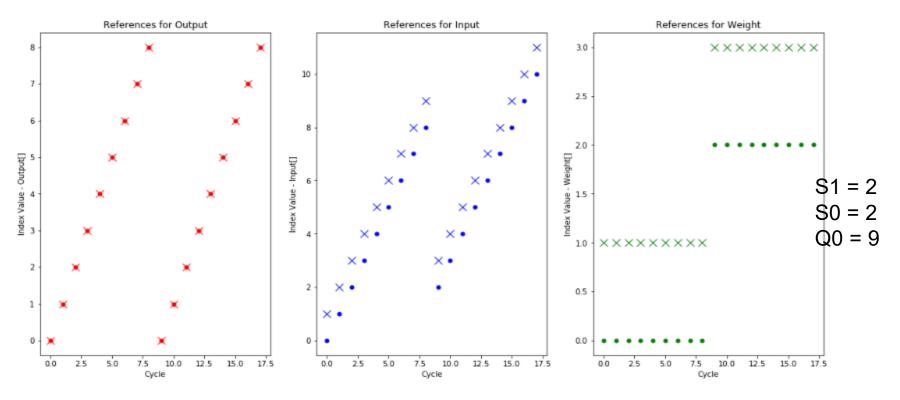
Shape:
$$-S = 4$$

 $-Q = 9$
 $-W = 12$

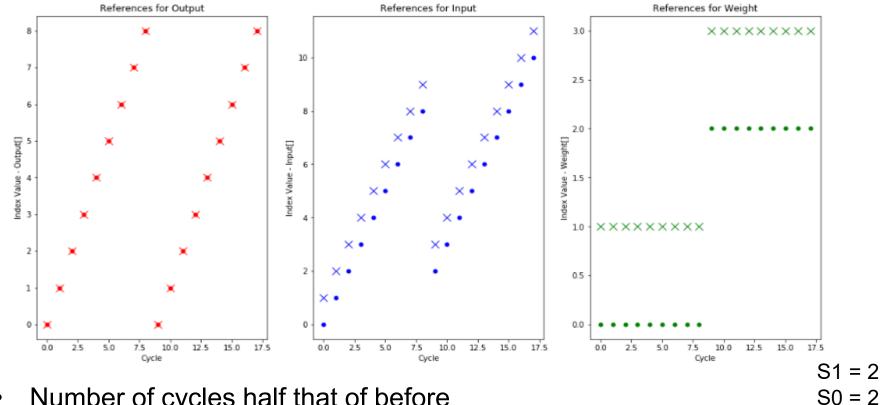
Loop limits:
$$-S1 = 2$$

$$-S0 = 2$$

$$- Q0 = 9$$

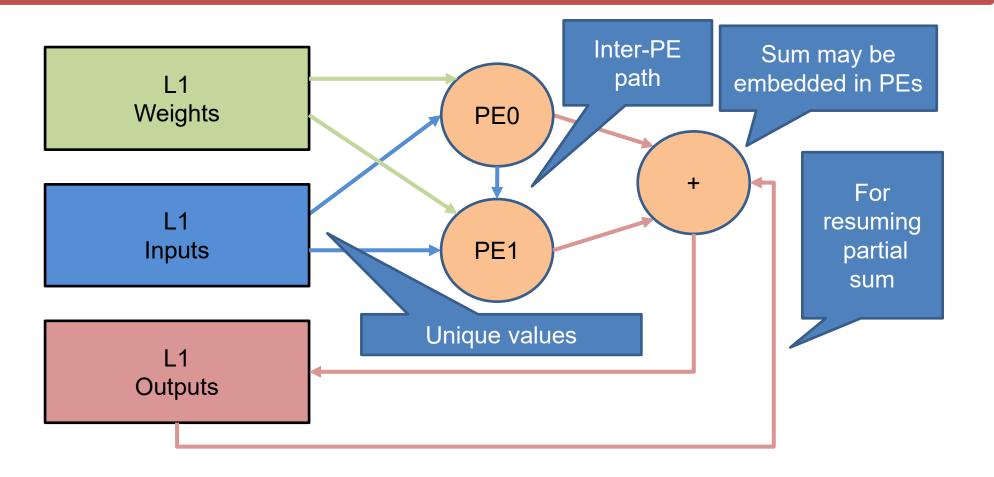


Spatial Weight Stationary References



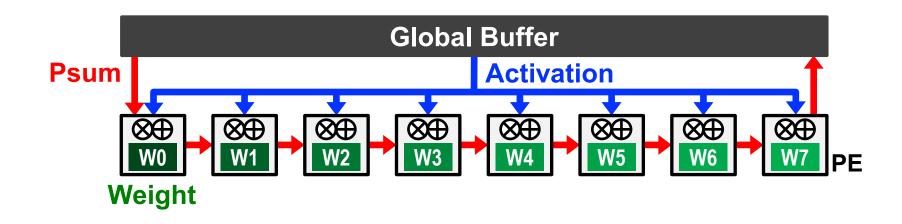
- Number of cycles half that of before
- Q0 = 9Single weight per PE used for a long time (unicast to each PE)
- Inputs reused in next cycle (opportunity for inter-PE communication)
- Inputs are also reused after a long interval, implying a large window (Q)
- Partial sums are reused in same cycle (opportunity for spatial sum)
- Partial sums reused after a long interval, very large window (size = Q)

Spatial PEs



What if hardware cannot do a spatial sum? Illegal mapping!

Weight Stationary (WS)



- Note that activations are multi-cast.
- To achieve this behavior we need to "skew" the activity in the PEs so instead of needing activation in adjacent cycles there are needed in the same cycle!

Buffered – 1D Convolution Einsum

$$O_q = I_{q+s} \times F_s$$

Split: S by S0

$$O_q = I_{q+s1*S1+s0} \times F_{s*S0+s0}$$

Traversal order (fastest to slowest): S0, Q

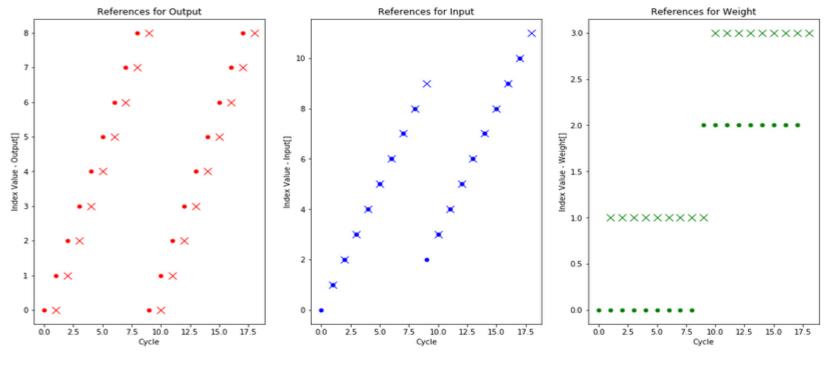
Parallel: S1

Time Skew: +s1

S1 = 2S0 = 2

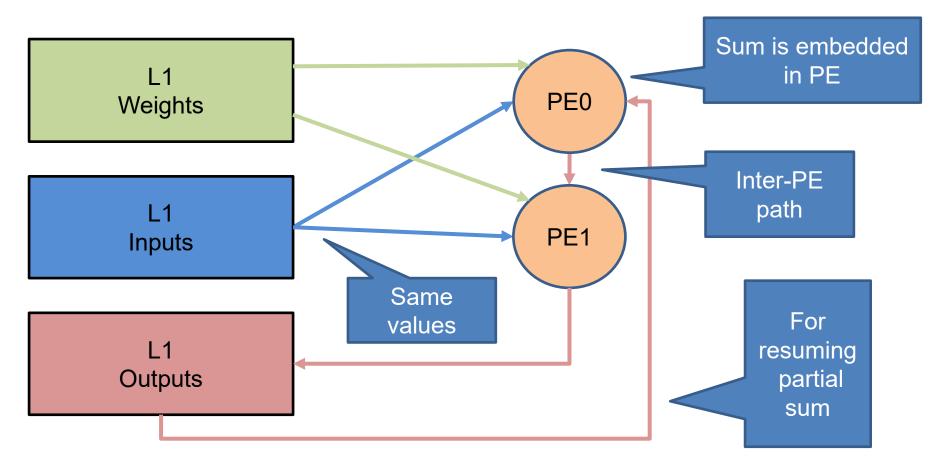
Q0 = 9

Spatial Weight Stationary (Skewed)



- Single weight per PE used for a long time (unicast to each PE)
- Inputs used simultaneously at both PEs (opportunity for multicast)
- Inputs are also reused after a long interval, implying a large window (Q)
- Partial sums are reused are reused in adjacent cycles in adjacent PEs opportunity for inter-PE communication and temporal sum
- Partial sums reused after a long interval, very large window (size = Q)

Spatial PEs



Weights are still unique, but note lower bandwidth and bursty demand.

Is there a way to avoid the large input and psum window? Make S1 = S

With S1 = S

Shape:
$$-S = 4$$

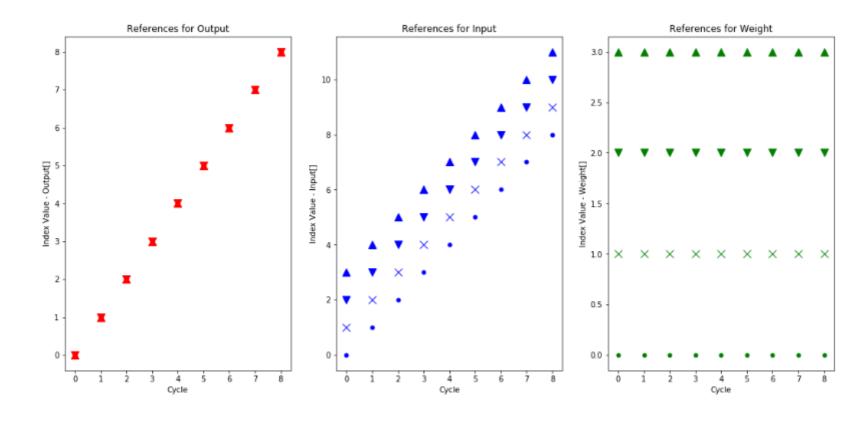
 $-Q = 9$
 $-W = 12$

Loop limits:

$$-S1 = 4$$

$$-S0 = 1$$

$$-Q0 = 9$$



Mapping Process

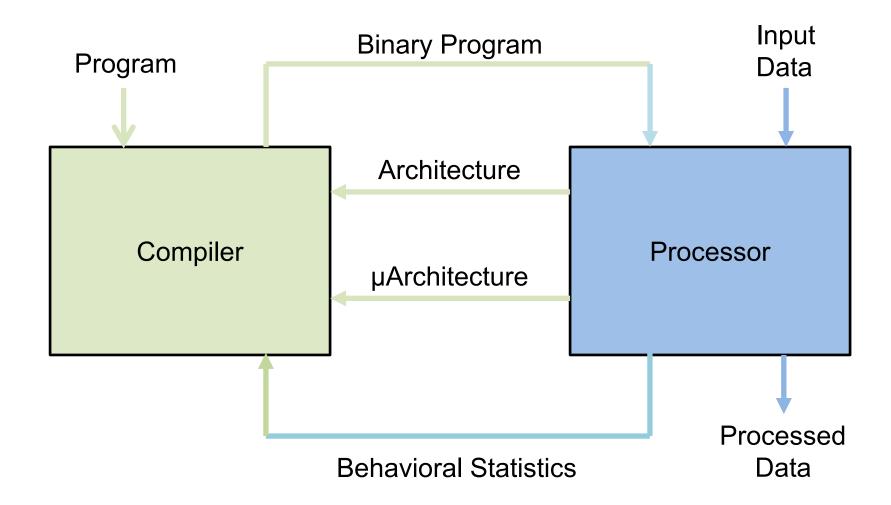
Mapping

Definition: selecting the placement and scheduling in space and time of every operation (including delivering the appropriate operands) required for a DNN computation onto the hardware function units of the accelerator.

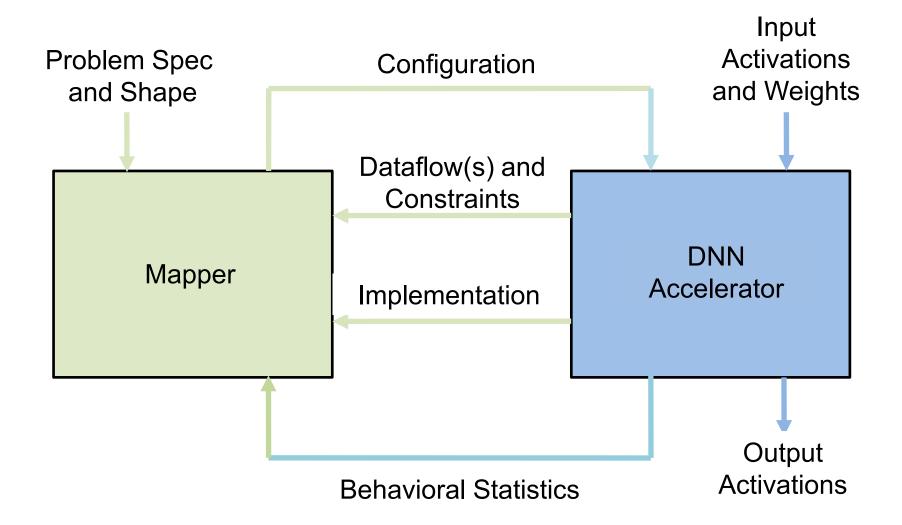
Steps: Within the constraints of the hardware, select for each level of the storage hierarchy:

- A dataflow (for loop order)
- A partitioning (for loop limits) both spatial and temporal
- Other behavioral details..., e.g., bypassing
- A binding computation to specific hardware units

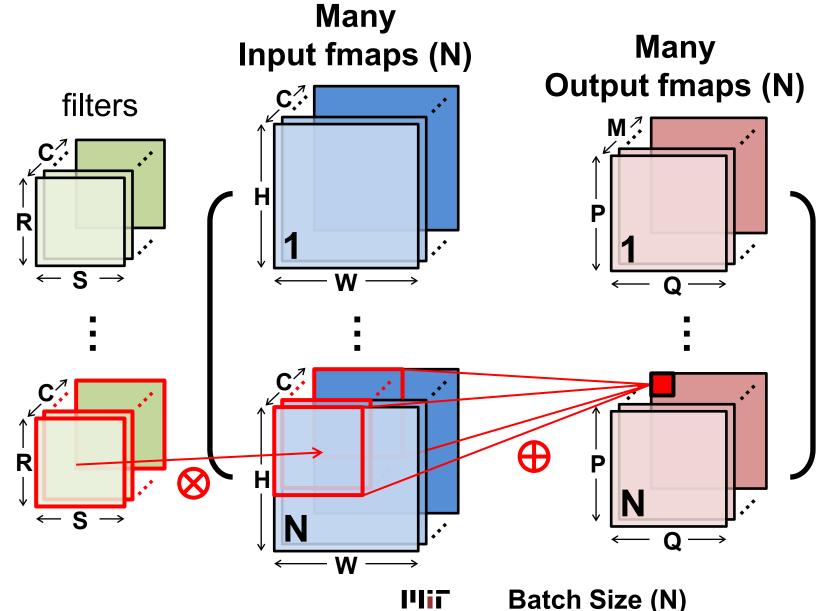
CPU Compute Model



DNN Compute Model

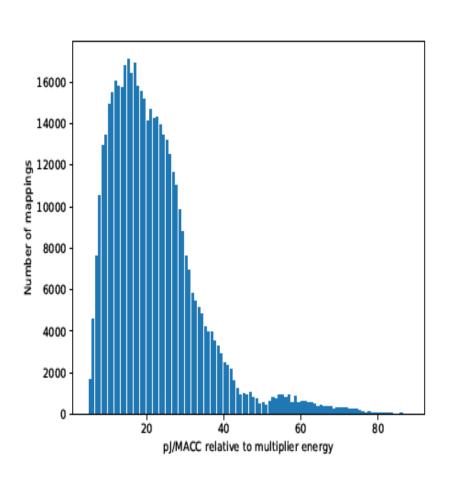


Convolution (CONV) Layer



Mapping Choices

Energy-efficiency of peak-perf mappings of a single problem



480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 1%

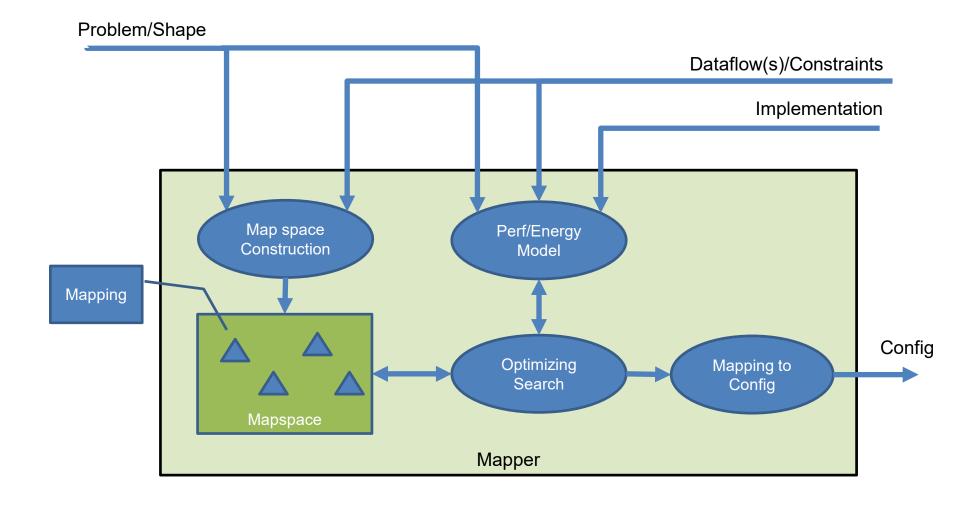
A model needs a mapper to evaluate a DNN workload on an architecture

6,582 mappings have min. DRAM accesses but vary 11x in energy efficiency

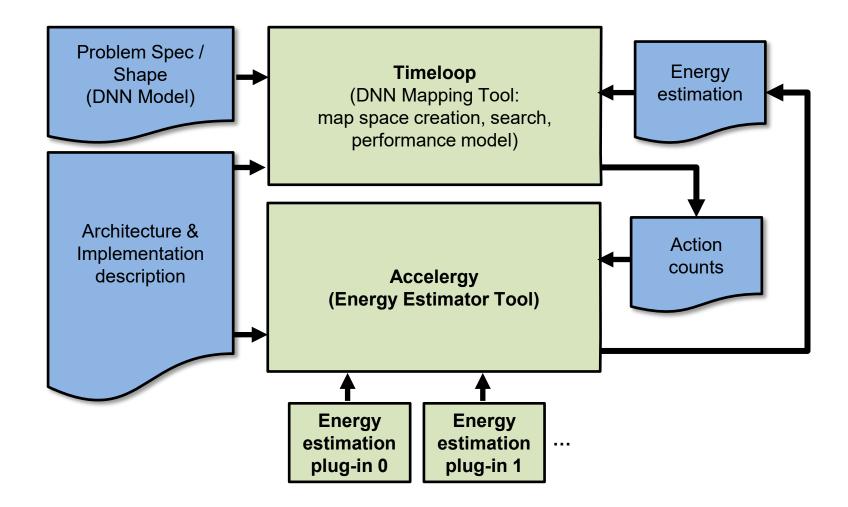
A mapper needs a good cost model to find an optimal mapping

Source: Parashar, Timeloop

Mapper Organization

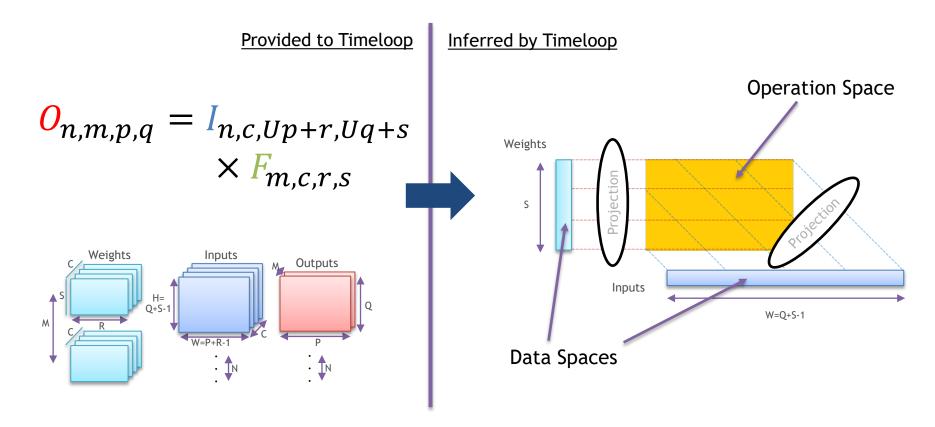


Timeloop Accelergy



Workload Specification

Deep Loop Nest



Source: Parashar, Timeloop

Architecture Specifications

- Temporal reuse features
 - Number of buffer levels and buffer sizes
 - Buffer bypassing capabilities
 - Network topology
 - ...
- Parallelism and spatial reuse features
 - Topology of spatial fractures
 - Multicast capabilities
 - Inter-PE network, e.g., spatial sum and forwarding reuse
 - ...
- Constraints
 - Index sequence restrictions, e.g., allowable strides
 - Fixed level 0 loop nest, e.g., fixed vector width
 - Fixed level 1 spatial mappings, e.g., input/output channel array
 - **–** ...

Determines the legal mappings:
loop permutations (dataflows) and associated loop limits

Implementation Specifications

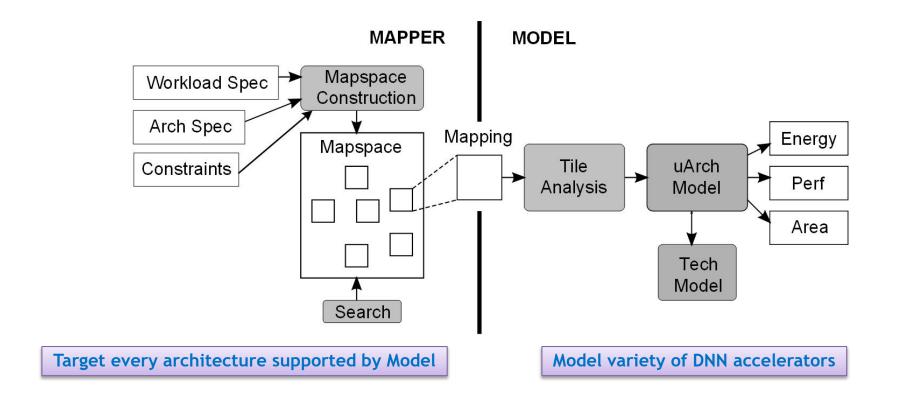
- Buffer bandwidth and latency
- Buffer port and banking organization
- PE vectorization
- Network bandwidth and latency, e.g., router costs
- Shared or per-datatype network links

•

Determines the latency and energy consumption of a mapping.

Timeloop

 Tool for Evaluation and Architectural Design-Space Exploration of DNN Accelerators



Source: Parashar, Timeloop

Next Lecture: Calculating Data Movement

Thank you!