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Goals of Today’s Lecture

• Today, we will focus on reducing the number of operations for 
storage/compute 

• Exploit sparsity, where sparsity refers to repeated values, in most 
cases, repeated zeros
– Exploit natural sparsity in the data 
– Create sparsity using pruning!

• Potential architectural benefits of sparsity 
– (1) Reduce data movement and storage cost
– (2) Reduce number of operations

April 1, 2024
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Sources of Sparsity

• (Input) Activation Sparsity
– Sparsity due to ReLU
– Correlation in input data
– Structure of input representation (e.g., Graphs)

• Weight Sparsity
– Weight reordering and reuse
– Network pruning

April 1, 2024
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Exploiting Sparsity

Sparse data can be compressed
Can save space and 
energy by avoiding 
storage and movement 
of zero values

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈	×𝟎	 = 𝟎

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈+ 𝟎	 = 𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈

Can save time and 
energy by avoiding 
fetching unnecessary 
operands and avoiding 
ineffectual computations

April 1, 2024
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Activation Sparsity

April 1, 2024
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Sparsity in Feature Maps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5
CONV Layer

# of activations

# of non-zero
activations

(Normalized) 75% zeros!

Example: AlexNet

April 1, 2024
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Apply Compression
• Compress Sparse Data

– Reduce data movement cost (memory bandwidth)
– Reduce storage cost

• Can also reduces data movement cost by storing more data at each level of the memory 
hierarchy

• Requirements
– Uniquely decodable 

• For variable length coding

– Lightweight algorithm
– Usually lossless

• Does not affect accuracy

April 1, 2024
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Skip Zero Activations: Cnvlutin
• Process Convolution Layers

• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

April 1, 2024 [Albericio, ISCA 2016]
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Pruning Activations

[Reagen, ISCA 2016]

Remove small activation values (affects accuracy!)

[Albericio, ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

April 1, 2024
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Exploit ReLU 
Reduce number operations when if resulting activation will be negative 
as ReLU will output a zero

April 1, 2024

Baseline ?

*Conv ReLU

-1 1 -5

4 2 1

time

?

[SnaPEA, ISCA 2018]

-5-3-9 0

Additional hardware required to decide when to terminate

SnaPEA ?

*Conv ReLU

-1 -5 1
4 1 2

time

?2-3 0
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Exploit ReLU 
Simplify operations to cheaply check if resulting activation will be 
negative as ReLU will output a zero

[PredictiveNet, ISCAS 2017], [Song, ISCA 2018]
April 1, 2024

Baseline -8.9

*Conv

0

ReLU

-1.5 1.0 -5.1

4.0 2.2 1.0

time

High bits* -7.0

*Conv

0

ReLU

-1.0 1.0 -5.0
4.0 2.0 1.0

time

Only compute on low bits if result is positive

*over-simplified
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Exploit Spatial Correlation of Inputs 

[Diffy, MICRO 2018]

Neighboring activations in feature map are correlated

Process Activations 
(baseline)

Process Delta

April 1, 2024
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Exploit Temporal Correlation of Inputs 
• Reduce amount of computation if there is temporal correlation between inputs 

(e.g., frames)

• Requires additional storage and need to find redundancy (e.g., motion vectors 
for videos)

• Application specific (e.g., videos) – requires that the same operation is done 
for each frame (not always the case) 

April 1, 2024
[EVA2, ISCA 2018], [Euphrates, ISCA 2018], [Riera, ISCA 2018], [FAST, CVPRW 2017]
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Graph Neural Networks (GNN)

April 1, 2024

Graphs are widely used to represent data such as molecules, social, 
biological, and financial networks. 

Image Source: https://tkipf.github.io/graph-convolutional-networks/ 

GNN A graph can be described in terms of its 
nodes and edges, i.e., G = (V, E) denote a 
graph with nodes feature vectors Xv for v ∈ V

[Xu, ICLR 2019]

Popular variants of GNN include 
Graph Convolutional Networks (GCN) 
[Kipf, ICLR 2017] and GraphSAGE 
[Hamilton, NeurIPS 2017].

https://tkipf.github.io/graph-convolutional-networks/
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Example Graph Neural Networks Tasks

April 1, 2024

Output can be a label on the 
graph topology (i.e., how nodes 
are connected by edges), node, 
or edge. 

Image Source: https://distill.pub/2021/gnn-intro/ 

Graph example

Nodes example Edge example

https://distill.pub/2021/gnn-intro/
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Structure of Graph Representation

April 1, 2024

Image source: http://www.btechsmartclass.com/data_structures/graph-representations.html 

The topology of the graph can be represented by an Adjacency Matrix, 
which is usually sparse!

Adjacency Matrix

Nodes: A, B, C, D, E

Each node can be represented by a feature vector, and the aggregate 
of the nodes is represented by a feature matrix.

http://www.btechsmartclass.com/data_structures/graph-representations.html


L15-17

Sze and Emer

Key Steps in GNN
• Aggregate: Get node features from a node’s neighbors to form a matrix and 

average* them to form a vector: this is the intermediate node feature
• Combine: Apply weights onto intermediate node feature to get next-layer 

node feature

April 1, 2024 Image source: [Yan, HPCA 2020]

*Note: can be some other function
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Computation in GNN

April 1, 2024

𝑋 !"# = 𝜎 $𝐴𝑋(!)𝑊(!)

𝑋 # = 𝜎 $𝐴𝑋(&)𝑊(&)

𝑋 ' = 𝜎 $𝐴𝑋(#)𝑊(#)

…

Layer 0

Layer 1

Layer 𝑙

Normalized
Adjacency 
Matrix

WeightsFeature 
Matrix

(typically, all nodes)
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• Adjacency matrix is normalized to maintain the scale of the output 
feature vectors (can be precomputed)

$𝐴 = 𝐷)
!
" 𝐴 + 𝐼 𝐷)

!
", 

where 𝐷	is the diagonal matrix and 𝐼 is the identity matrix
• Can reuse same adjacency matrix across layers (topology 

unchanged)

• Order of operations -𝐴×𝑋 ×𝑊	or -𝐴× 𝑋×𝑊  impacts sparsity

April 1, 2024

Computation in GNN
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Weight Sparsity

April 1, 2024
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Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

April 1, 2024
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Exploit Redundant Weights 

• Preprocessing to reorder weights (ok since weights known)

• Perform addition before multiplication to reduce number of multiplies and 
reads of weights

• Example: Input = [1 2 3 ] and filter [A B A]

Typical processing: Output = A*1+B*2+A*3

If reorder as [A A B]:  Output =  A*(1+3)+B*1

April 1, 2024

3 multiplies and 3 weight reads

2 multiplies and 2 weight reads

Note: Bitwidth of multiplication may need to increase

[UCNN, ISCA 2018]
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Pruning – Make Weights Sparse
Optimal Brain Damage
1. Choose a reasonable network 

architecture

2. Train network until reasonable 
solution obtained

3. Compute the second derivative for 
each weight

4. Compute saliencies (i.e., impact on 
training error) for each weight

5. Sort weights by saliency and 
delete low-saliency weights

6. Iterate to step 2

[Lecun, NeurIPS 1989]

fine tuning

April 1, 2024
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Pruning – Make Weights Sparse

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Prune based on magnitude of weights

Train Connectivity

Prune Connections

Train Weights

[Han, NeurIPS 2015]

[Hertz et al., Neural Computation, 1991]

April 1, 2024

prune 
filter 

weight

prune 
output 

activation

Typical numbers: 50% sparsity without retraining, 80% with retraining
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Pruning – Make Weights Sparse

Weight removal

Scoring Grouping Ranking

Fine tuning Sparse
DNN Model

Scheduling

Dense
DNN Model

Number of Weights 
to Remove

Fine tuned
DNN Model

(Updated Weights)

Pruned
DNN Model

April 1, 2024
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Weight Removal: Scoring

• Assign a score to each weight or a group of weights based on impact 
on some criteria (usually accuracy)

• Magnitude-based pruning (most common)
– Assign score based on magnitude of weight

• Feature-based pruning
– Assign score based on impact on output feature map

April 1, 2024
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Weight Removal: Scoring

1 1 1
1 1 1
1 1 1
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[Yang, CVPR 2017]April 1, 2024



L15-28

Sze and Emer

Weight Removal: Scoring
Also consider the impact that each weight has on 

energy efficiency and throughput

April 1, 2024

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Energy of weight depends 
on memory hierarchy and 

dataflow

[Yang, CVPR 2017]
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Energy Estimation

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Tool available at https://energyestimation.mit.edu/ For class, use Timeloop/Accelergy

April 1, 2024 [Yang, CVPR 2017]

https://energyestimation.mit.edu/
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Key Insights

• Number of weights alone is not a good metric for energy

• All data types should be considered 

April 1, 2024

GoogLeNet 
Energy 
Breakdown

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

[Yang, CVPR 2017]
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Energy-Aware Pruning

Directly target energy and 
incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the previous 
work that uses magnitude-based 
pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html   [Yang, CVPR 2017]

April 1, 2024

http://eyeriss.mit.edu/energy.html
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Prune to Reduce Number of Classes

• When reducing the number of classes of AlexNet,
– Large compression ratios are achieved in all layers except for CONV1

The energy breakdown of the networks in this work. 
Following the same order as the table.

[Yang, CVPR 2017]
April 1, 2024
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# of Operations vs. Latency

# of operations (MACs) does not approximate latency well

April 1, 2024

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to a 
mobile platform to reach a 
target latency or energy 
budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Few hyperparameters to 
reduce tuning effort

April 1, 2024 [Yang, ECCV 2018]

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Pla8orm	

A	 B	 C	 D	 Z	

Code available at http://netadapt.mit.edu 

http://netadapt.mit.edu/
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Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%
…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize 
Accuracy

Network from 
Previous 
Iteration

Network for 
Next 

Iteration

April 1, 2024 [Yang, ECCV 2018]
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Improved Latency vs. Accuracy Tradeoff
Increase the real inference speed of MobileNet by up to 1.7x with 
similar accuracy

April 1, 2024

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang, ECCV 2018]
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Using Direct Metrics is Important

• If NetAdapt was guided by the number of MACs, it would achieve a 
better accuracy-MAC trade-off

• However, it does not mean lower latency

• It is important to incorporate direct metrics rather than indirect 
metrics into the design of DNNs

April 1, 2024

Network Top-1 Accuracy # of MACs (M) Latency (ms)
Small MobileNet V1 45.1 (+0) 13.6 (100%) 4.65 (100%)

NetAdapt 46.3 (+1.2) 11.0 (81%) 6.01 (129%)
Large MobileNet V1 68.8 (+0) 325.4 (100%) 69.3 (100%)

NetAdapt 69.1 (+0.3) 284.3 (87%) 74.9 (108%)

[Yang, ECCV 2018]
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Weight Removal: Grouping
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Benefits:
Increase coarseness à more structure in sparsity (easier for hardware)
Less signaling for location of zeros à better compression

April 1, 2024
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Coarse-Grained Pruning 
• Scalpel

– Prune to match the underlying data-parallel hardware 
organization for speed up (1.92x over unstructured)

 

[Yu, ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD

April 1, 2024



L15-40

Sze and Emer

Pattern-Based Weight Pruning

April 1, 2024

[PCONV, AAAI 2020], [PatDNN, ASPLOS 2020] 

Prune based on pattern (rather than row)
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Weight Removal: Ranking

• The weights are ranked based on their scores.

• Depending on grouping, each weight can be ranked individually, or 
each group of weights are ranked relative to other groups. 

• The likelihood that each weight or group of weights is removed is 
based on its rank.

April 1, 2024
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Fine tuning and Scheduling

• Fine tuning: Update the values of the remaining weights to restore accuracy

• Scheduling: Determine how many weights to prune in each iteration

April 1, 2024

Weight removal

Scoring Grouping Ranking

Fine tuning Sparse
DNN Model

Scheduling

Dense
DNN Model

Number of Weights 
to Remove

Fine tuned
DNN Model

(Updated Weights)

Pruned
DNN Model
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Fine Tuning: Restoring
Allow weights to be restored during pruning process (splicing)

[Guo, NeurIPS 2016]

w/o splicing w/ splicing

Number of 
non-zero weights 
reduced by ~2x

April 1, 2024
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Interplay: Pruning and Layer Types 

For AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

Convolutional Layers Fully Connected Layers

Example: AlexNet

[Han, NeurIPS 2015]April 1, 2024
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Interplay: Pruning and Accuracy Loss

April 1, 2024 [Hoefler, JMLR 2021]

Accuracy drops more 
quickly for modern 
efficient DNN models
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Interplay: Pruning and DNN Model

Using an unpruned efficient 
DNN model can perform better 
than a pruned inefficient 
DNN model

[Blalock, MLSys 2020]

April 1, 2024
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Aspects of Scheduling - Sparsity

Format:
Choose tensor representations to 
save storage space and energy 
associated with zero accesses

Gating:
Explicitly eliminate ineffectual 

storage accesses and computes by 
letting the hardware unit staying idle 

for the cycle to save energy 

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by 
skipping the cycle to save energy and 

time 

April 1, 2024



L15-48

Sze and Emer

Aspects of Scheduling - Sparsity

Format:
Choose tensor representations to 
save storage space and energy 
associated with zero accesses

Gating:
Explicitly eliminate ineffectual 

storage accesses and computes by 
letting the hardware unit staying idle 

for the cycle to save energy 

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by 
skipping the cycle to save energy and 

time 

April 1, 2024
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Eyeriss – Gating

Filter 
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filter
Weights

Input 
Activations

Input
Psum

2-stage 
pipelined 
multiplier

Output
Psum  

0

Accumulate
Input Psum

1

0

== 0 Zero 
Buffer

Enable

Image
Scratch Pad 

(12x16b REG)

0
1

Gate multiply and memory reads 
when input data is zero.

Reduce PE power by 45%

April 1, 2024 [Chen, ISSCC 2016]
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Summary

• Sparsity can be used to reduce number of operations, data movement and 
storage cost

• Fine tuning can help increase amount of sparsity
• Sparsity on the order of 30-70%

– Existing software libraries designed for >99%
• Need specialized hardware to exploit! à Next few lectures

– Coarse grained pruning can also be used to improve speed and storage cost

• Using direct hardware metrics (energy, latency) often results in a better 
accuracy versus complexity tradeoff than indirect proxy metrics (number of 
operations and weights)

April 1, 2024
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Recommended Reading
• Textbook: Section 8.1 

– https://doi.org/10.1007/978-3-031-01766-7

• D. Blalock*, J. J. Gonzalez-Ortiz*, J. Frankle, J. Guttag, “What is the State of 
Neural Network Pruning?,” MLSys 2020
– https://proceedings.mlsys.org/papers/2020/73

• T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, “Sparsity in Deep 
Learning: Pruning and growth for efficient inference and training in neural 
networks,” JMLR 2021
– https://jmlr.org/papers/volume22/21-0366/21-0366.pdf 

April 1, 2024
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