
L15-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Co-Design of DNN Models and
Hardware: Sparsity

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

April 1, 2024

L15-2

Sze and Emer

Goals of Today’s Lecture

• Today, we will focus on reducing the number of operations for
storage/compute

• Exploit sparsity, where sparsity refers to repeated values, in most
cases, repeated zeros
– Exploit natural sparsity in the data
– Create sparsity using pruning!

• Potential architectural benefits of sparsity
– (1) Reduce data movement and storage cost
– (2) Reduce number of operations

April 1, 2024

L15-3

Sze and Emer

Sources of Sparsity

• (Input) Activation Sparsity
– Sparsity due to ReLU
– Correlation in input data
– Structure of input representation (e.g., Graphs)

• Weight Sparsity
– Weight reordering and reuse
– Network pruning

April 1, 2024

L15-4

Sze and Emer

Exploiting Sparsity

Sparse data can be compressed
Can save space and
energy by avoiding
storage and movement
of zero values

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈	×𝟎	 = 𝟎

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈+ 𝟎	 = 𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈

Can save time and
energy by avoiding
fetching unnecessary
operands and avoiding
ineffectual computations

April 1, 2024

L15-5

Sze and Emer

Activation Sparsity

April 1, 2024

L15-6

Sze and Emer

Sparsity in Feature Maps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5
CONV Layer

of activations

of non-zero
activations

(Normalized) 75% zeros!

Example: AlexNet

April 1, 2024

L15-7

Sze and Emer

Apply Compression
• Compress Sparse Data

– Reduce data movement cost (memory bandwidth)
– Reduce storage cost

• Can also reduces data movement cost by storing more data at each level of the memory
hierarchy

• Requirements
– Uniquely decodable

• For variable length coding

– Lightweight algorithm
– Usually lossless

• Does not affect accuracy

April 1, 2024

L15-8

Sze and Emer

Skip Zero Activations: Cnvlutin
• Process Convolution Layers

• Built on top of DaDianNao (4.49% area overhead)
• Speed up of 1.37x (1.52x with activation pruning)

April 1, 2024 [Albericio, ISCA 2016]

L15-9

Sze and Emer

Pruning Activations

[Reagen, ISCA 2016]

Remove small activation values (affects accuracy!)

[Albericio, ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

April 1, 2024

L15-10

Sze and Emer

Exploit ReLU
Reduce number operations when if resulting activation will be negative
as ReLU will output a zero

April 1, 2024

Baseline ?

*Conv ReLU

-1 1 -5

4 2 1

time

?

[SnaPEA, ISCA 2018]

-5-3-9 0

Additional hardware required to decide when to terminate

SnaPEA ?

*Conv ReLU

-1 -5 1
4 1 2

time

?2-3 0

L15-11

Sze and Emer

Exploit ReLU
Simplify operations to cheaply check if resulting activation will be
negative as ReLU will output a zero

[PredictiveNet, ISCAS 2017], [Song, ISCA 2018]
April 1, 2024

Baseline -8.9

*Conv

0

ReLU

-1.5 1.0 -5.1

4.0 2.2 1.0

time

High bits* -7.0

*Conv

0

ReLU

-1.0 1.0 -5.0
4.0 2.0 1.0

time

Only compute on low bits if result is positive

*over-simplified

L15-12

Sze and Emer

Exploit Spatial Correlation of Inputs

[Diffy, MICRO 2018]

Neighboring activations in feature map are correlated

Process Activations
(baseline)

Process Delta

April 1, 2024

L15-13

Sze and Emer

Exploit Temporal Correlation of Inputs
• Reduce amount of computation if there is temporal correlation between inputs

(e.g., frames)

• Requires additional storage and need to find redundancy (e.g., motion vectors
for videos)

• Application specific (e.g., videos) – requires that the same operation is done
for each frame (not always the case)

April 1, 2024
[EVA2, ISCA 2018], [Euphrates, ISCA 2018], [Riera, ISCA 2018], [FAST, CVPRW 2017]

L15-14

Sze and Emer

Graph Neural Networks (GNN)

April 1, 2024

Graphs are widely used to represent data such as molecules, social,
biological, and financial networks.

Image Source: https://tkipf.github.io/graph-convolutional-networks/

GNN A graph can be described in terms of its
nodes and edges, i.e., G = (V, E) denote a
graph with nodes feature vectors Xv for v ∈ V

[Xu, ICLR 2019]

Popular variants of GNN include
Graph Convolutional Networks (GCN)
[Kipf, ICLR 2017] and GraphSAGE
[Hamilton, NeurIPS 2017].

https://tkipf.github.io/graph-convolutional-networks/

L15-15

Sze and Emer

Example Graph Neural Networks Tasks

April 1, 2024

Output can be a label on the
graph topology (i.e., how nodes
are connected by edges), node,
or edge.

Image Source: https://distill.pub/2021/gnn-intro/

Graph example

Nodes example Edge example

https://distill.pub/2021/gnn-intro/

L15-16

Sze and Emer

Structure of Graph Representation

April 1, 2024

Image source: http://www.btechsmartclass.com/data_structures/graph-representations.html

The topology of the graph can be represented by an Adjacency Matrix,
which is usually sparse!

Adjacency Matrix

Nodes: A, B, C, D, E

Each node can be represented by a feature vector, and the aggregate
of the nodes is represented by a feature matrix.

http://www.btechsmartclass.com/data_structures/graph-representations.html

L15-17

Sze and Emer

Key Steps in GNN
• Aggregate: Get node features from a node’s neighbors to form a matrix and

average* them to form a vector: this is the intermediate node feature
• Combine: Apply weights onto intermediate node feature to get next-layer

node feature

April 1, 2024 Image source: [Yan, HPCA 2020]

*Note: can be some other function

L15-18

Sze and Emer

Computation in GNN

April 1, 2024

𝑋 !"# = 𝜎 $𝐴𝑋(!)𝑊(!)

𝑋 # = 𝜎 $𝐴𝑋(&)𝑊(&)

𝑋 ' = 𝜎 $𝐴𝑋(#)𝑊(#)

…

Layer 0

Layer 1

Layer 𝑙

Normalized
Adjacency
Matrix

WeightsFeature
Matrix

(typically, all nodes)

L15-19

Sze and Emer

• Adjacency matrix is normalized to maintain the scale of the output
feature vectors (can be precomputed)

$𝐴 = 𝐷)
!
" 𝐴 + 𝐼 𝐷)

!
",

where 𝐷	is the diagonal matrix and 𝐼 is the identity matrix
• Can reuse same adjacency matrix across layers (topology

unchanged)

• Order of operations -𝐴×𝑋 ×𝑊	or -𝐴× 𝑋×𝑊 impacts sparsity

April 1, 2024

Computation in GNN

L15-20

Sze and Emer

Weight Sparsity

April 1, 2024

L15-21

Sze and Emer

Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

April 1, 2024

L15-22

Sze and Emer

Exploit Redundant Weights

• Preprocessing to reorder weights (ok since weights known)

• Perform addition before multiplication to reduce number of multiplies and
reads of weights

• Example: Input = [1 2 3] and filter [A B A]

Typical processing: Output = A*1+B*2+A*3

If reorder as [A A B]: Output = A*(1+3)+B*1

April 1, 2024

3 multiplies and 3 weight reads

2 multiplies and 2 weight reads

Note: Bitwidth of multiplication may need to increase

[UCNN, ISCA 2018]

L15-23

Sze and Emer

Pruning – Make Weights Sparse
Optimal Brain Damage
1. Choose a reasonable network

architecture

2. Train network until reasonable
solution obtained

3. Compute the second derivative for
each weight

4. Compute saliencies (i.e., impact on
training error) for each weight

5. Sort weights by saliency and
delete low-saliency weights

6. Iterate to step 2

[Lecun, NeurIPS 1989]

fine tuning

April 1, 2024

L15-24

Sze and Emer

Pruning – Make Weights Sparse

pruning
neurons

pruning
synapses

after pruningbefore pruning

Prune based on magnitude of weights

Train Connectivity

Prune Connections

Train Weights

[Han, NeurIPS 2015]

[Hertz et al., Neural Computation, 1991]

April 1, 2024

prune
filter

weight

prune
output

activation

Typical numbers: 50% sparsity without retraining, 80% with retraining

L15-25

Sze and Emer

Pruning – Make Weights Sparse

Weight removal

Scoring Grouping Ranking

Fine tuning Sparse
DNN Model

Scheduling

Dense
DNN Model

Number of Weights
to Remove

Fine tuned
DNN Model

(Updated Weights)

Pruned
DNN Model

April 1, 2024

L15-26

Sze and Emer

Weight Removal: Scoring

• Assign a score to each weight or a group of weights based on impact
on some criteria (usually accuracy)

• Magnitude-based pruning (most common)
– Assign score based on magnitude of weight

• Feature-based pruning
– Assign score based on impact on output feature map

April 1, 2024

L15-27

Sze and Emer

Weight Removal: Scoring

1 1 1
1 1 1
1 1 1

-8 3 2
1 -3 -2
1 1 1

fmap filter

∗ = -4

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

-8 3 2

0 -3 -2

0 0 0

fmap filter

∗ Prune
=

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

-8 0 0

1 0 0

1 1 1

fmap filter

∗ Prune
=

-8

-4

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

fmap filter

∗ = -4

Error = -4

Error = 0

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

-8 3 2

0 -3 -2

0 0 0

fmap filter

∗ Prune
=

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

-8 0 0

1 0 0

1 1 1

fmap filter

∗ Prune
=

-8

-4

1 1 1

1 1 1

1 1 1

-8 3 2

1 -3 -2

1 1 1

fmap filter

∗ = -4

Error = -4

Error = 0

Magnitude-
based
pruning

Feature-
based
pruning

[Yang, CVPR 2017]April 1, 2024

L15-28

Sze and Emer

Weight Removal: Scoring
Also consider the impact that each weight has on

energy efficiency and throughput

April 1, 2024

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

Energy of weight depends
on memory hierarchy and

dataflow

[Yang, CVPR 2017]

L15-29

Sze and Emer

Energy Estimation

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Tool available at https://energyestimation.mit.edu/ For class, use Timeloop/Accelergy

April 1, 2024 [Yang, CVPR 2017]

https://energyestimation.mit.edu/

L15-30

Sze and Emer

Key Insights

• Number of weights alone is not a good metric for energy

• All data types should be considered

April 1, 2024

GoogLeNet
Energy
Breakdown

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

[Yang, CVPR 2017]

L15-31

Sze and Emer

Energy-Aware Pruning

Directly target energy and
incorporate it into the

optimization of DNNs to provide
greater energy savings

• Sort layers based on energy and
prune layers that consume most
energy first

• EAP reduces AlexNet energy by
3.7x and outperforms the previous
work that uses magnitude-based
pruning by 1.7x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ori. DC EAP

Normalized Energy (AlexNet)

2.1x 3.7x

x109

Magnitude
Based Pruning

Energy Aware
Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html [Yang, CVPR 2017]

April 1, 2024

http://eyeriss.mit.edu/energy.html

L15-32

Sze and Emer

Prune to Reduce Number of Classes

• When reducing the number of classes of AlexNet,
– Large compression ratios are achieved in all layers except for CONV1

The energy breakdown of the networks in this work.
Following the same order as the table.

[Yang, CVPR 2017]
April 1, 2024

L15-33

Sze and Emer

of Operations vs. Latency

of operations (MACs) does not approximate latency well

April 1, 2024

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

L15-34

Sze and Emer

NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to a
mobile platform to reach a
target latency or energy
budget

• Use empirical measurements
to guide optimization (avoid
modeling of tool chain or
platform architecture)

• Few hyperparameters to
reduce tuning effort

April 1, 2024 [Yang, ECCV 2018]

NetAdapt Measure

…

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…

…

…

Pretrained	
Network	 Metric Budget

Latency 3.8

Energy 10.5

Budget	

Adapted	
Network	

…

…

Pla8orm	

A	 B	 C	 D	 Z	

Code available at http://netadapt.mit.edu

http://netadapt.mit.edu/

L15-35

Sze and Emer

Simplified Example of One Iteration

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%
…

Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize
Accuracy

Network from
Previous
Iteration

Network for
Next

Iteration

April 1, 2024 [Yang, ECCV 2018]

L15-36

Sze and Emer

Improved Latency vs. Accuracy Tradeoff
Increase the real inference speed of MobileNet by up to 1.7x with
similar accuracy

April 1, 2024

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang, ECCV 2018]

L15-37

Sze and Emer

Using Direct Metrics is Important

• If NetAdapt was guided by the number of MACs, it would achieve a
better accuracy-MAC trade-off

• However, it does not mean lower latency

• It is important to incorporate direct metrics rather than indirect
metrics into the design of DNNs

April 1, 2024

Network Top-1 Accuracy # of MACs (M) Latency (ms)
Small MobileNet V1 45.1 (+0) 13.6 (100%) 4.65 (100%)

NetAdapt 46.3 (+1.2) 11.0 (81%) 6.01 (129%)
Large MobileNet V1 68.8 (+0) 325.4 (100%) 69.3 (100%)

NetAdapt 69.1 (+0.3) 284.3 (87%) 74.9 (108%)

[Yang, ECCV 2018]

L15-38

Sze and Emer

Weight Removal: Grouping

…

R

S
1

C …

…

…

R

S
m

C …

…

…

…

R

S
1

C …

…

…

R

S
m

C …

…

…

…

R

S
1

C …

…

…

R

S
m

C …

…

…

…

R

S
1

C …

…

…

R

S
m

C …

…

…

…

R M

C …

…

…

…

R

C …

…

…

…

R M

C …

…

…

…

R M

C …

…

…

S S S S
channel
pruning

filter
pruning

row
pruning

unpruned
filters

…

R

S
1

C

…

…

S

C …

…

…

…

C …

…

…

weight
pruning

=

=
=

R m

…

fine-grained coarse-grained

R M M
S

Benefits:
Increase coarseness à more structure in sparsity (easier for hardware)
Less signaling for location of zeros à better compression

April 1, 2024

L15-39

Sze and Emer

Coarse-Grained Pruning
• Scalpel

– Prune to match the underlying data-parallel hardware
organization for speed up (1.92x over unstructured)

[Yu, ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD

April 1, 2024

L15-40

Sze and Emer

Pattern-Based Weight Pruning

April 1, 2024

[PCONV, AAAI 2020], [PatDNN, ASPLOS 2020]

Prune based on pattern (rather than row)

L15-41

Sze and Emer

Weight Removal: Ranking

• The weights are ranked based on their scores.

• Depending on grouping, each weight can be ranked individually, or
each group of weights are ranked relative to other groups.

• The likelihood that each weight or group of weights is removed is
based on its rank.

April 1, 2024

L15-42

Sze and Emer

Fine tuning and Scheduling

• Fine tuning: Update the values of the remaining weights to restore accuracy

• Scheduling: Determine how many weights to prune in each iteration

April 1, 2024

Weight removal

Scoring Grouping Ranking

Fine tuning Sparse
DNN Model

Scheduling

Dense
DNN Model

Number of Weights
to Remove

Fine tuned
DNN Model

(Updated Weights)

Pruned
DNN Model

L15-43

Sze and Emer

Fine Tuning: Restoring
Allow weights to be restored during pruning process (splicing)

[Guo, NeurIPS 2016]

w/o splicing w/ splicing

Number of
non-zero weights
reduced by ~2x

April 1, 2024

L15-44

Sze and Emer

Interplay: Pruning and Layer Types

For AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

Convolutional Layers Fully Connected Layers

Example: AlexNet

[Han, NeurIPS 2015]April 1, 2024

L15-45

Sze and Emer

Interplay: Pruning and Accuracy Loss

April 1, 2024 [Hoefler, JMLR 2021]

Accuracy drops more
quickly for modern
efficient DNN models

L15-46

Sze and Emer

Interplay: Pruning and DNN Model

Using an unpruned efficient
DNN model can perform better
than a pruned inefficient
DNN model

[Blalock, MLSys 2020]

April 1, 2024

L15-47

Sze and Emer

Aspects of Scheduling - Sparsity

Format:
Choose tensor representations to
save storage space and energy
associated with zero accesses

Gating:
Explicitly eliminate ineffectual

storage accesses and computes by
letting the hardware unit staying idle

for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by
skipping the cycle to save energy and

time

April 1, 2024

L15-48

Sze and Emer

Aspects of Scheduling - Sparsity

Format:
Choose tensor representations to
save storage space and energy
associated with zero accesses

Gating:
Explicitly eliminate ineffectual

storage accesses and computes by
letting the hardware unit staying idle

for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by
skipping the cycle to save energy and

time

April 1, 2024

L15-49

Sze and Emer

Eyeriss – Gating

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filter
Weights

Input
Activations

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Gate multiply and memory reads
when input data is zero.

Reduce PE power by 45%

April 1, 2024 [Chen, ISSCC 2016]

L15-50

Sze and Emer

Summary

• Sparsity can be used to reduce number of operations, data movement and
storage cost

• Fine tuning can help increase amount of sparsity
• Sparsity on the order of 30-70%

– Existing software libraries designed for >99%
• Need specialized hardware to exploit! à Next few lectures

– Coarse grained pruning can also be used to improve speed and storage cost

• Using direct hardware metrics (energy, latency) often results in a better
accuracy versus complexity tradeoff than indirect proxy metrics (number of
operations and weights)

April 1, 2024

L15-51

Sze and Emer

Recommended Reading
• Textbook: Section 8.1

– https://doi.org/10.1007/978-3-031-01766-7

• D. Blalock*, J. J. Gonzalez-Ortiz*, J. Frankle, J. Guttag, “What is the State of
Neural Network Pruning?,” MLSys 2020
– https://proceedings.mlsys.org/papers/2020/73

• T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, “Sparsity in Deep
Learning: Pruning and growth for efficient inference and training in neural
networks,” JMLR 2021
– https://jmlr.org/papers/volume22/21-0366/21-0366.pdf

April 1, 2024

https://doi.org/10.1007/978-3-031-01766-7
https://proceedings.mlsys.org/papers/2020/73
https://jmlr.org/papers/volume22/21-0366/21-0366.pdf

