6.5930/1

Hardware Architectures for Deep Learning

Co-Design of DNN Models and Hardware: Sparsity

April 1, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

14117

Goals of Today's Lecture

- Today, we will focus on *reducing the number* of operations for storage/compute
- Exploit sparsity, where sparsity refers to repeated values, in most cases, repeated zeros
 - Exploit natural sparsity in the data
 - Create sparsity using pruning!
- Potential architectural benefits of sparsity
 - (1) Reduce data movement and storage cost
 - (2) Reduce number of operations

Sources of Sparsity

(Input) Activation Sparsity

- Sparsity due to ReLU
- Correlation in input data
- Structure of input representation (e.g., Graphs)

Weight Sparsity

- Weight reordering and reuse
- Network pruning

Exploiting Sparsity

Can save space and energy by avoiding storage and movement of zero values

anything
$$\times 0 = 0$$

anything + 0 = anything

Can save time and energy by avoiding fetching unnecessary operands and avoiding **ineffectual** computations

Activation Sparsity

L15-5

Sparsity in Feature Maps

Many zeros in output fmaps after ReLU

Apply Compression

- Compress Sparse Data
 - Reduce data movement cost (memory bandwidth)
 - Reduce storage cost
 - Can also reduces data movement cost by storing more data at each level of the memory hierarchy

Requirements	Example	L = 4	(not uniquely decodable)
_ l Iniquely decodeble		r_0	0
- Oniquery decodable		$rac{r_1}{r_2}$	$\begin{array}{c}1\\0&0\end{array}$
		r_3	
 Lightweight algorithm 		L = 4 r_0	(uniquely decodable $)0 0$
 Usually lossless 		r_1	01
 Does not affect accuracy 		$rac{r_2}{r_3}$	$\begin{array}{c} 1 \ 0 \\ 1 \ 1 \end{array}$

Skip Zero Activations: Cnvlutin

- Process Convolution Layers
- Built on top of DaDianNao (4.49% area overhead)
- Speed up of 1.37x (1.52x with activation pruning)

Phir

[Albericio, /SCA 2016]

Pruning Activations

Exploit ReLU

Reduce number operations when if resulting activation will be negative as ReLU will output a zero

Additional hardware required to decide when to terminate

April 1, 2024

[SnaPEA, /SCA 2018]

Sze and Emer

Exploit ReLU

Simplify operations to cheaply check if resulting activation will be negative as ReLU will output a zero

Only compute on low bits if result is positive

*over-simplified

[PredictiveNet, /SCAS 2017], [Song, /SCA 2018]

Exploit Spatial Correlation of Inputs

Neighboring activations in feature map are correlated

Шiī

 $y_2 = a_1 \times w + (a_2 - a_1) \times w = y_1 + \Delta_a \times w$

Process Delta

[**Diffy**, *MICRO* 2018]

Exploit Temporal Correlation of Inputs

- Reduce amount of computation if there is temporal correlation between inputs (e.g., frames)
- Requires additional storage and need to find redundancy (e.g., motion vectors for videos)
- Application specific (e.g., videos) requires that the same operation is done for each frame (not always the case)

April 1, 2024

Graph Neural Networks (GNN)

Graphs are widely used to represent data such as molecules, social, biological, and financial networks.

A graph can be described in terms of its nodes and edges, i.e., G = (V, E) denote a graph with nodes feature vectors X_v for $v \in V$

> Popular variants of GNN include Graph Convolutional Networks (GCN) [**Kipf**, *ICLR* 2017] and GraphSAGE [**Hamilton**, NeurIPS 2017].

Image Source: <u>https://tkipf.github.io/graph-convolutional-networks/</u>

Example Graph Neural Networks Tasks

Output can be a label on the graph topology (i.e., how nodes are connected by edges), node, or edge.

Graph example

Input: graphs

Output: labels for each graph, (e.g., "does the graph contain two rings?")

Nodes example

Input: graph with unlabled nodes

Output: graph node labels

Edge example

Input: fully connected graph, unlabeled edges

Output: labels for edges

Structure of Graph Representation

The topology of the graph can be represented by an **Adjacency Matrix**, which is usually **sparse**!

Each node can be represented by a feature vector, and the aggregate of the nodes is represented by a **feature matrix**.

Image source: <u>http://www.btechsmartclass.com/data_structures/graph-representations.html</u>

L15-17

Sze and Emer

- Aggregate: Get node features from a node's neighbors to form a matrix and average* them to form a vector: this is the intermediate node feature
- Combine: Apply weights onto intermediate node feature to get next-layer node feature

PHIT

Image source: [Yan, HPCA 2020]

Computation in GNN

$$X^{(1)} = \sigma(\hat{A}X^{(0)}W^{(0)}) \quad \text{Layer 0}$$

$$X^{(2)} = \sigma(\hat{A}X^{(1)}W^{(1)}) \quad \text{Layer 1}$$

$$\dots$$

$$X^{(l+1)} = \sigma(\hat{A}X^{(l)}W^{(l)}) \quad \text{Layer l}$$

$$Normalized \quad \text{Feature Weights}$$

$$Adjacency \quad \text{Matrix}$$

Computation in GNN

• Adjacency matrix is normalized to maintain the scale of the output feature vectors (can be precomputed)

$$\hat{A} = D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}},$$

where *D* is the diagonal matrix and *I* is the identity matrix

- Can reuse same adjacency matrix across layers (topology unchanged)
- Order of operations $(\hat{A} \times X) \times W$ or $\hat{A} \times (X \times W)$ impacts sparsity

Weight Sparsity

Gauss's Multiplication Algorithm

$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$
Real part = $k_{1} - k_{3}$
Imaginary part = $k_{1} + k_{2}$.

3 multiplications + 5 additions

Exploit Redundant Weights

- Preprocessing to reorder weights (ok since weights known)
- Perform addition before multiplication to reduce number of multiplies and reads of weights
- **Example:** Input = [1 2 3] and filter [A B A]

```
Typical processing: Output = A*1+B*2+A*3
3 multiplies and 3 weight reads
```

```
If reorder as [A A B]: Output = A*(1+3)+B*1
2 multiplies and 2 weight reads
```

Note: Bitwidth of multiplication may need to increase

[UCNN, *ISCA* 2018]

Pruning – Make Weights Sparse

Optimal Brain Damage

- 1. Choose a reasonable network architecture
- 2. Train network until reasonable solution obtained
- Compute the second derivative for each weight
- 4. Compute saliencies (i.e., impact on training error) for each weight
- 5. Sort weights by saliency and delete low-saliency weights
- 6. Iterate to step 2

Pruning – Make Weights Sparse

Prune based on *magnitude* of weights

[Hertz et al., Neural Computation, 1991]

Typical numbers: 50% sparsity without retraining, 80% with retraining

[Han, NeurlPS 2015]

Pruning – Make Weights Sparse

 Assign a score to each weight or a group of weights based on impact on some criteria (usually accuracy)

- Magnitude-based pruning (most common)
 - Assign score based on magnitude of weight

- Feature-based pruning
 - Assign score based on impact on output feature map

Weight Removal: Scoring

IIIii

[**Yang**, *CVPR* 2017]

Weight Removal: Scoring

Also consider the impact that each weight has on energy efficiency and throughput

* measured from a commercial 65nm process

PHIT

[Yang, CVPR 2017]

Energy Estimation

ШГ

Tool available at https://energyestimation.mit.edu/

For class, use Timeloop/Accelergy

[Yang, CVPR 2017]

April 1, 2024

Key Insights

- Number of weights alone is not a good metric for energy
- All data types should be considered

Energy-Aware Pruning

14117

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume most energy first
- EAP reduces AlexNet energy by 3.7x and outperforms the previous work that uses magnitude-based pruning by 1.7x

Pruned models available at <u>http://eyeriss.mit.edu/energy.html</u>

Normalized Energy (AlexNet)

Prune to Reduce Number of Classes

	[8]	This Work			
# of	1000	1000	100	10	10
Classes	1000	1000	100	(Random)	(Dog)
CONV1	16%	83%	86%	89%	89%
CONV2	62%	92%	97%	97%	96%
CONV3	65%	91%	97%	98%	97%
CONV4	63%	81%	88%	97%	95%
CONV5	63%	74%	79%	98%	98%
FC1	91%	92%	93%	$\sim 100\%$	~100%
FC2	91%	91%	94%	$\sim 100\%$	~100%
FC3	74%	78%	78%	$\sim 100\%$	$\sim 100\%$

Table 2. Compression ratio¹ of each layer in AlexNet.

¹ The number of removed weights divided by the number of total weights. The higher, the better.

The energy breakdown of the networks in this work. Following the same order as the table.

- · When reducing the number of classes of AlexNet,
 - Large compression ratios are achieved in all layers except for CONV1

Sze and Emer

L15-32

of Operations vs. Latency

of operations (MACs) does not approximate latency well

Source: Google (<u>https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html</u>)

NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use empirical measurements to guide optimization (avoid modeling of tool chain or platform architecture)
- Few hyperparameters to reduce tuning effort

Code available at http://netadapt.mit.edu

Simplified Example of One Iteration

April 1, 2024

Improved Latency vs. Accuracy Tradeoff

Increase **the real inference speed** of MobileNet by up to 1.7x with similar accuracy

Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

Sze and Emer

Using Direct Metrics is Important

- If NetAdapt was guided by the number of MACs, it would achieve a better accuracy-MAC trade-off
- However, it does not mean lower latency
- It is important to incorporate direct metrics rather than indirect metrics into the design of DNNs

Network	Top-1 Accuracy	# of MACs (M)	Latency (ms)
Small MobileNet V1	45.1 (+0)	13.6 (100%)	4.65 (100%)
NetAdapt	46.3 (+1.2)	11.0 (81%)	6.01 (129%)
Large MobileNet V1	68.8 (+0)	325.4 (100%)	69.3 (100%)
NetAdapt	69.1 (+0.3)	284.3 (87%)	74.9 (108%)

Weight Removal: Grouping

Benefits:

Increase coarseness \rightarrow more structure in sparsity (easier for hardware) Less signaling for location of zeros \rightarrow better compression

Plii

Coarse-Grained Pruning

- Scalpel
 - Prune to match the underlying data-parallel hardware organization for speed up (1.92x over unstructured)

PliT

Pattern-Based Weight Pruning

Prune based on pattern (rather than row)

[PCONV, AAAI 2020], [PatDNN, ASPLOS 2020]

Шіг

L15-40

Sze and Emer

Weight Removal: Ranking

• The weights are ranked based on their scores.

 Depending on grouping, each weight can be ranked individually, or each group of weights are ranked relative to other groups.

• The likelihood that each weight or group of weights is removed is based on its rank.

Fine tuning and Scheduling

- Fine tuning: Update the values of the remaining weights to restore accuracy
- Scheduling: Determine how many weights to prune in each iteration

Fine Tuning: Restoring

w/o splicing

w/ splicing

	Layer	Params.	Params.% [9]	Params.% (Ours)
	conv1	35K	$\sim 84\%$	53.8%
	conv2	307K	$\sim 38\%$	40.6%
Number of	conv3	885K	$\sim 35\%$	29.0%
non-zero weights	conv4	664K	$\sim 37\%$	32.3%
roducod by ~2x	conv5	443K	$\sim 37\%$	32.5%
reduced by 2X	fc1	38M	$\sim 9\%$	3.7%
	fc2	17M	$\sim 9\%$	6.6%
	fc3	4M	$\sim 25\%$	4.6%
	Total	61M	$\sim 11\%$	5.7%

Interplay: Pruning and Layer Types

For AlexNet Weight Reduction: CONV layers 2.7x, FC layers 9.9x (Most reduction on fully connected layers) Overall: 9x weight reduction, 3x MAC reduction

PHIT

[Han, NeurlPS 2015]

Interplay: Pruning and Accuracy Loss

[Hoefler, JMLR 2021]

14117

Interplay: Pruning and DNN Model

Speed and Size Tradeoffs for Original and Pruned Models 85 Top 1 Accuracy (%) 65 96 Top 5 Accuracy (%) 88 06 66 66 84 10⁷ 10¹⁰ 10⁸ 10⁶ 10⁹ Number of Weights Number of MACs MobileNet-v2 (2018) ResNet (2016) VGG (2014) EfficientNet (2019) MobileNet-v2 Pruned ResNet Pruned VGG Pruned

Using an **unpruned efficient** DNN model can perform better than a **pruned inefficient** DNN model

[Blalock, MLSys 2020]

Aspects of Scheduling - Sparsity

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Skipping: Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Aspects of Scheduling - Sparsity

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Skipping: Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Eyeriss – Gating

Phir

Summary

- Sparsity can be used to reduce number of operations, data movement and storage cost
- Fine tuning can help increase amount of sparsity
- Sparsity on the order of 30-70%
 - Existing software libraries designed for >99%
 - Need specialized hardware to exploit! → Next few lectures
 - Coarse grained pruning can also be used to improve speed and storage cost
- Using *direct* hardware metrics (energy, latency) often results in a better accuracy versus complexity tradeoff than *indirect* proxy metrics (number of operations and weights)

Recommended Reading

- Textbook: Section 8.1
 - https://doi.org/10.1007/978-3-031-01766-7
- D. Blalock*, J. J. Gonzalez-Ortiz*, J. Frankle, J. Guttag, "What is the State of Neural Network Pruning?," MLSys 2020
 - <u>https://proceedings.mlsys.org/papers/2020/73</u>
- T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, "Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks," JMLR 2021
 - https://jmlr.org/papers/volume22/21-0366/21-0366.pdf

