6.5930/1

Hardware Architectures for Deep Learning

Sparse Architectures - Part 1

April 3, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

Goals of Today's Lecture

- Last lecture, we discussed how to make weights and activations of DNN models sparse
- Sparsity of DNNs on the order of 30-70\%, while existing software libraries (e.g., sparse BLAS) designed for $>99 \%$
- Need specialized hardware to exploit!
- Today and in the next lecture, we will discuss how to translate sparsity into reductions in energy consumption and processing cycles
- First, discuss the representation of sparse data
- Second, present some architectures that exploit sparsity

Resources: Course notes - Chapter 8.2 and 8.3

Many problems use Sparse Tensors

[Hegde, et.al., ExTensor, MICRO 2019]

Motivation

- Leverage CNN sparsity to improve energy-efficiency

[Parashar, et.al., SCNN, ISCA 2017]

Aspects of Scheduling - Sparsity

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

CONV Layer

Tensors

Rank-0 - Scalar

Rank-2 - Matrix

Rank-1 - Vector

Tensor Data Terminology

- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank H has coordinates $0,1,2$
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point". So (1,2) -> "f"

Tree-based Tensor Abstraction

Tree-based Tensor Abstraction

Fibertree Tensor Abstraction

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Fibertree Tensor Abstraction

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Finding point $(2,1)$

Information in a Fiber

- Each fiber has a set of (coordinate, "payload") tuples

Information in a Fiber

Method: maybe(payload) $=$ fiber.getPayload(coordinate $)$

Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples
Array

Coordinate/Payload List

Data in a fiber is accessed by its position or offset in memory

Fiber Representation Choices

- Implicit Coordinates
- Uncompressed (no metadata required)
- Compressed - e.g., run length encoded
- Explicit Coordinates
- E.g., coordinate/payload list
- Compressed vs Uncompressed
- Compressed/uncompressed is an attribute of the representation*.
- Uncompressed means size is proportional to maximum coordinate value
- Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
- Space efficiency of a representation depends on sparsity
*Note: sparsity/density is an attribute of the data.

Implicit Coordinates: RLE

Example

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22
Method 1: Run Length Coding
Rather than send zero, send "run length" of zeros
e.g., 5 bits for run length and 16 bits for non-zero value

Output: 2, 12, 4, 53, 2, 22
5b 16b

Total Number of Bits:

Implicit Coordinates: Significance Map

Example
Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22
Method 2: Significance Map Coding
(a variant of this is referred to as bitmask coding)
Send one bit to indicate if significant (i.e., non-zero); if significant, send 16 bits for non-zero value

Total Number of Bits:

How does this compare to Run Length Coding?

Implicit Coordinates: Huffman Encoding

Example

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22

Method 3: Huffman Coding

Assign number of bits based on probability of occurrence
Message Codeword Probability

a_{1}	0
a_{2}	100
a_{3}	110
a_{4}	1110
a_{5}	101
a_{6}	1111

Assign codewords directly to values or to values and run-lengths

Quantization and Compression

- Quantization + Significance Map Coding

Example:
Value: 16^{\prime} b0 \rightarrow Compressed Code: $\left\{1^{\prime} \mathrm{b} 0\right\}$
Value: $16^{\prime} \mathrm{bx} \rightarrow$ Compressed Code: $\left\{1^{\prime} \mathrm{b} 1,16^{\prime} \mathrm{bx}\right\}$

- Tested on AlexNet $\rightarrow 2 \times$ overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffiO (MB/frame)	Voltage (V)	MMACs/ Frame	$\begin{aligned} & \text { Power } \\ & (\mathrm{mW}) \end{aligned}$	$\begin{gathered} \text { Real } \\ \text { (TOPS/W) } \end{gathered}$
General CNN	16 (0\%) / 16 (0\%)	1.0x		1.1	-	288	0.3
AlexNet 11	7 (21\%) / 4 (29\%)	$1.17 \mathrm{x} / 1.3 \mathrm{x}$	$1 / 0.77$	0.85	105	85	0.96
AlexNet 12	7 (19\%) / 7 (89\%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11\%) / 9 (82\%)	$1.05 \mathrm{x} / 4.1 \mathrm{x}$	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04\%) / 8 (72\%)	$1.00 \mathrm{x} / 2.9 \mathrm{x}$	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04\%) / 8 (72\%)	$1.00 \mathrm{x} / 2.9 \mathrm{x}$	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	-	-	19.8 / 10	-	-	76	0.94
LeNet-5 11	3 (35\%) / 1 (87\%)	1.40x / 5.2x	-0.008 10.007	0.7	0.3	25	1.07
LeNet-5 12	4 (26\%) / 6 (55\%)	$1.25 \mathrm{x} / 1.9 \mathrm{x}$	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	-	-	0.053 / 0.043	-	-	33	1.6

I/O Compression in Eyeriss

Off-Chip DRAM

64 bits

Compression Reduces DRAM BW

Uncompressed Fmaps + Weights

RLE Compressed Fmaps + Weights

From information theory,

Simple RLC within $5 \%-10 \%$ of theoretical entropy limit [Chen, ISSCC 2016]

Entropy $\begin{aligned} H= & -\sum_{i=0}^{L-1} p_{i} \cdot \log _{2} p_{i}\end{aligned}$
minimum average number of bits required to code f

Compressed Implicit Coordinate Representations

- "Empty" coordinate compression via zero-run encoding
- Run-length coding (RLE)
- (run-length of zeros, non-zero payload)...
- Significance map coding
- (flag to indicate if non-zero, non-zero payload)...
- Payload encoding
- Fixed length payload
- Variable length payload
- E..g., Huffman coding
- Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

Compressed Explicit Coordinate Representations

- Coordinate list representation
- Struct of arrays form
(coordinate of non-zero value)...
(non-zero payload)...

- Array of structs form
(coordinate of non-zero value, non-zero payload)...
- Payload encoding
- Explicit

Black bar show scope of struct

- Immediate value
- Pointer
- Implicit
- Offset of coordinate is offset of payload

More Explicit Coordinate Representations

- Coordinate Bitmask

Any complexity with lookupPayload()?

Have we seen a representation like this?

Is this useful even with no compression?

Uncompressed/Compressed Representation

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

A specific implementation of the fibertree abstract type

Uncompressed/Compressed Representation

Explicit Coordinate Representations

- Coordinate/Payload list
- (coordinate, non-zero payload)... (array of structs)
- (coordinate)..., (non-zero payload)... (struct of arrays)
- Hash table (per fiber)
- (coordinate -> payload) mapping
- Hash table (per rank)
- (fiber_id, coordinate -> payload) mapping
- Bit vector of non-zero coordinates
- Compressed or uncompressed payload

Per Rank Tensor Representations

- Uncompressed [U]
- Run-length Encoded [R]
- Coordinate/Payload List [C]
-
- Hash Table (per rank) [H_{r}]
- Hash Table (per fiber) $\left[\mathrm{H}_{\mathrm{f}}\right]$
- Tagged union of any combination of previous types

Inspired by collaboration with Kjolstad

Notation for CSR

Representation of Order of Ranks

Differentiating CSR and CSC

Traversal Efficiency

Efficiency of different traversal patterns through the tensor is affected by representation, e.g., finding the payload for a particular coordinate...

- Operations:
- maybe(payload) $=$ Fiber.getPayload(coordinate)
- (coordinate, payload) = Fiber.getNext(rank_traversal_order)

Fiber.getNext() is a useful iterator and its efficiency is highly dependent on representation, both order of ranks and representation of each rank....

Concordant traversal orders

CSR and CSC each has a natural (or "concordant"*) traversal order

Row-major order
Processing
Order

Original Matrix

Compressed
Sparse Row (CSR)

Column-major order

Compressed
Sparse Column (CSC)

Example Traversal Efficiency

- Efficiency of getPayload():
- Uncompressed - direct reference - $\mathrm{O}(1)$
- Run length encoded - linear search - O(n)
- Hash table - multiple references and compute - $O(1)$
- Coordinate/Payload list - binary search - O(log n)
- Efficiency of getNext() - (concordant traversal)
- Uncompressed - sequential reference, good spatial locality - O(1)
- Run length encoded - sequential reference - O(1)
- Coordinate/Payload list - same as uncompressed
- Efficiency of getNext() (discordant traversal)
- Essentially as good (or bad) as getPayload-method....

Traversing a Sparse Tensor

Tensor Traversal (2-D)

Tensor Traversal (2-D)

$$
Z=T_{h, w}
$$

t_pos	\mathbf{h}	\mathbf{t} _h_pos	\mathbf{w}	\mathbf{t} _val
0	0	$?$	$?$	$?$
0	0	0	0	a
0	0	1	2	c
1	2	$?$	$?$	$?$
\ldots	\ldots	\ldots	\ldots	\ldots

Tensor Traversal (2-D)

Abstraction versus Implementation

- Abstraction
- An interface and semantics
- Attributes: No implementation, data layout or timing
- Use: implementation-agnostic understanding
- Examples:
- Fibers
- Fibertree
- Implementation
- Specific implementation of an abstract spec
- Attributes: Concrete implementation, data layout and timing
- Examples:
- Fibers \rightarrow uncompressed array, coordinate/payload list
- Fiber-tree \rightarrow CSR, CSC, CSF, COO...

Tensor Traversal (CSR Style)

```
# 2-D Tensor Traversal (CSR)
t_segs = Array(H)
t_coords = Array(W)
t_vals = Array(W)
    sum = 0
for t_h_pos in [0,H):
    h = t_h_pos
    t_w_start = t_segs[t_h_pos]
    t_w_len = t_segs[t_h_pos+1]-t_w_start
    for t_w_pos in [t_w_start, t_w_len):
        h = t_coords[t_w_pos]
        t_val = t_vals[t_w_pos]
            sum += t_val
```

For uncompressed rank coordinate equals position

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Merging Ranks

- For efficiency one can form new representations where the data structure for two or more ranks are combined:
- Examples:
- Tensor-(C²)

List of (coordinate tuple, payload) - COO

- Tensor-(H ${ }^{2}$)
- Hash table with coordinate tuple as key
- Tensor-(U2)
- Flattened array
- Coordinates can be recovered with modulo arithmetic on "position"
- Tensor-(R^{2})
- Flattened run-length encoded sequence

Splitting Fibers - Coordinate Space

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Coordinate Space

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers - Position Space

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Splitting Fibers - Position Space

Split evenly by occupancy (groups of 4)

Fibertree Representation of Weight Pruning

Each dimension in the original tensor is represented as a rank in the tree

Specification of Channel-based Sparsity

Flattening: Specification of Sub-kernel Sparsity

Fibertree Representation of Dense Tensor

Flattening: Specification of Sub-kernel Sparsity

Fibertree Representation of Dense Tensor

Flattening: Specification of Unstructured Sparsity

Fibertree Representation of Dense Tensor

Flattening: Specification of Unstructured Sparsity

Fibertree Representation of Dense Tensor

Flattening: Specification of Unstructured Sparsity

Fibertree Representation of Dense Tensor

Reordering \& Partitioning: Specification of 2:4 Sparsity

Fibertree Representation of Dense Tensor

Reordering \& Partitioning: Specification of 2:4 Sparsity

Fibertree Representation of Dense Tensor

Reordering \& Partitioning: Specification of 2:4 Sparsity

Reordering \& Partitioning: Specification of 2:4 Sparsity

Fibertree Representation of Dense Tensor

Hierarchical Structured Sparsity (HSS)

Fibertree Representation of Dense Tensor
(1) Reorder Ranks
(2) Partition Rank C into N ranks ($\mathrm{N}>=2$) , e.g., $\mathrm{N}=3$ as shown below
(3) Apply Per-rank Pruning Rule

Hierarchical Structured Sparsity (HSS)

(1) Reorder Ranks
(2) Partition Rank C into N ranks ($\mathrm{N}>=2$) , e.g., $\mathrm{N}=3$ as shown below
(3) Apply Per-rank Pruning Rule

- N-1 rank HSS defined as

$$
\begin{aligned}
\cdot R S \rightarrow C_{N-1} \rightarrow C_{N-2}\left(G_{N-2}: H_{N-2}\right) \\
\\
\rightarrow \ldots \rightarrow C_{1}(3: 4) \rightarrow C_{0}(2: 4)
\end{aligned}
$$

- HSS qualitative difference: allows pruning rules for more thank one ranks
- HSS provides a systematic and modularized way to represent a large number of sparsity degrees

Next: Sparse Architectures

