6.5930/1

Hardware Architectures for Deep Learning

Sparse Architectures – Part 1

April 3, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Goals of Today's Lecture

- Last lecture, we discussed how to make weights and activations of DNN models sparse
- Sparsity of DNNs on the order of 30-70%, while existing software libraries (e.g., sparse BLAS) designed for >99%
 - Need specialized hardware to exploit!
- Today and in the next lecture, we will discuss how to translate sparsity into reductions in energy consumption and processing cycles
 - First, discuss the representation of sparse data
 - Second, present some architectures that exploit sparsity

Resources: Course notes - Chapter 8.2 and 8.3

Many problems use Sparse Tensors

[Hegde, et.al., ExTensor, MICRO 2019]

Motivation

• Leverage CNN sparsity to improve energy-efficiency

[Parashar, et.al., SCNN, ISCA 2017]

Aspects of Scheduling - Sparsity

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

CONV Layer

Tensors

Rank-2 - Matrix

Rank-3 - Cube

Tensor Data Terminology

- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank H has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point".
 So (1,2) -> "f"

Tree-based Tensor Abstraction

April 3, 2024

Sze and Emer

Tree-based Tensor Abstraction

Information in a Fiber

• Each fiber has a set of (coordinate, "payload") tuples

Information in a Fiber

Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples Coordinate/Payload List Array Payload Coordinate 3 5 8 Payload 2 3 4 5 678 0 1 0 2 3 1 Position and coordinate Position

Data in a fiber is accessed by its position or offset in memory

Fiber Representation Choices

- Implicit Coordinates
 - Uncompressed (no metadata required)
 - Compressed e.g., run length encoded
- Explicit Coordinates
 - E.g., coordinate/payload list
- Compressed vs Uncompressed
 - Compressed/uncompressed is an attribute of the representation*.
 - Uncompressed means size is proportional to maximum coordinate value
 - Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
 - Space efficiency of a representation depends on sparsity

Implicit Coordinates: RLE

Example

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22

Method 1: Run Length Coding

Rather than send zero, send "run length" of zeros

e.g., 5 bits for run length and 16 bits for non-zero value

Implicit Coordinates: Significance Map

Example

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22

<u>Method 2</u>: Significance Map Coding (a variant of this is referred to as bitmask coding)

Send one bit to indicate if significant (i.e., non-zero); if significant, send 16 bits for non-zero value

L16-50

Implicit Coordinates: Huffman Encoding

Example

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22

Method 3: Huffman Coding

Assign number of bits based on probability of occurrence

Message Codeword Probability

Assign codewords directly to values or to values and run-lengths

Quantization and Compression

• Quantization + Significance Map Coding

Example:

Value: 16'b0 \rightarrow Compressed Code: {1'b0}

Value: 16'bx \rightarrow Compressed Code: {1'b1, 16'bx}

Tested on AlexNet → 2× overall BW Reduction

Layer	Filter / Image bits (0%)	Filter / Image BW Reduc.	IO / HuffIO (MB/frame)	Voltage (V)	MMACs/ Frame	Power (mW)	Real (TOPS/W)
General CNN	16 (0%) / 16 (0%)	1.0x		1.1	_	288	0.3
AlexNet 11	7 (21%) / 4 (29%)	1.17x / 1.3x	1 / 0.77	0.85	105	85	0.96
AlexNet 12	7 (19%) / 7 (89%)	1.15x / 5.8x	3.2 / 1.1	0.9	224	55	1.4
AlexNet 13	8 (11%) / 9 (82%)	1.05x / 4.1x	6.5 / 2.8	0.92	150	77	0.7
AlexNet 14	9 (04%) / 8 (72%)	1.00x / 2.9x	5.4 / 3.2	0.92	112	95	0.56
AlexNet 15	9 (04%) / 8 (72%)	1.00x / 2.9x	3.7 / 2.1	0.92	75	95	0.56
Total / avg.	—	—	19.8 / 10	—	—	76	0.94
LeNet-5 11	3 (35%) / 1 (87%)	1.40x / 5.2x	0.003 / 0.001	0.7	0.3	25	1.07
LeNet-5 12	4 (26%) / 6 (55%)	1.25x / 1.9x	0.050 / 0.042	0.8	1.6	35	1.75
Total / avg.	-	_	0.053 / 0.043	_	-	33	1.6

I/O Compression in Eyeriss

[**I**][**Chen**, *ISSCC* 2016]

Compression Reduces DRAM BW

Compressed Implicit Coordinate Representations

- "Empty" coordinate compression via zero-run encoding
 - Run-length coding (RLE)
 - (run-length of zeros, non-zero payload)...
 - Significance map coding
 - (flag to indicate if non-zero, non-zero payload)...
- Payload encoding
 - Fixed length payload
 - Variable length payload
 - E..g., Huffman coding
- Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

Compressed Explicit Coordinate Representations

- Coordinate list representation
 - Struct of arrays form (coordinate of non-zero value)...

(non-zero payload)...

Array of structs form

(coordinate of non-zero value, non-zero payload)...

- Payload encoding
 - Explicit
 - Immediate value
 - Pointer
 - Implicit
 - Offset of coordinate is offset of payload

Black bar show scope of struct

More Explicit Coordinate Representations

Coordinate Bitmask

Any complexity with lookupPayload()?

May require a population count of the coordinate array.

Have we seen a representation like this?

Yes, the Eyeriss input activations used for gating were sort of like that....

Is this useful even with no compression?

Yes, cheap check for zeros.

Explicit Coordinate Representations

- Coordinate/Payload list
 - (coordinate, non-zero payload)...
 (array of structs)
 - (coordinate)..., (non-zero payload)... (struct of arrays)

(array of structs) (struct of arrays)

- Hash table (per fiber)
 - (coordinate -> payload) mapping
- Hash table (per rank)
 - (fiber_id, coordinate -> payload) mapping
- Bit vector of non-zero coordinates
 - Compressed or uncompressed payload

Per Rank Tensor Representations

– Uncompressed [U]

•

- Run-length Encoded [R]
 - •
- Coordinate/Payload List [C]
- Hash Table (per rank) [H_r]
- Hash Table (per fiber) [H_f]
- Tagged union of any combination of previous types

Inspired by collaboration with Kjolstad in [Kjolstad, OOPSLA17], [Chou, OOPSLA18]

Sze and Emer

Notation for CSR

Representation of Order of Ranks

Sze and Emer

Traversal Efficiency

Efficiency of different traversal patterns through the tensor is affected by representation, e.g., finding the payload for a particular coordinate...

- Operations:
 - maybe(payload) = Fiber.getPayload(coordinate)
 - (coordinate, payload) = Fiber.getNext(rank_traversal_order)

Fiber.getNext() is a useful iterator and its efficiency is highly dependent on representation, both order of ranks and representation of each rank....

Concordant traversal orders

CSR and CSC each has a natural (or "concordant"*) traversal order

Example Traversal Efficiency

- Efficiency of getPayload():
 - Uncompressed direct reference O(1)
 - Run length encoded linear search O(n)
 - Hash table multiple references and compute O(1)
 - Coordinate/Payload list binary search O(log n)
- Efficiency of getNext() (concordant traversal)
 - Uncompressed sequential reference, good spatial locality O(1)
 - Run length encoded sequential reference O(1)
 - Coordinate/Payload list same as uncompressed
- Efficiency of getNext() (discordant traversal)
 - Essentially as good (or bad) as getPayload-method....

L16-77

Sze and Emer

t_pos	h	t_val	z
0	0	1	1
1	5	4	5
2	8	2	7
3	9	3	10

 $Z = T_{h,w}$

t_pos	h	t_h_pos	w	t_val
0	0	?	?	?
0	0	0	0	а
0	0	1	2	С
1	2	?	?	?

l'liī

Sze and Emer

Sze and Emer

Phir

Abstraction versus Implementation

- Abstraction
 - An interface and semantics
 - Attributes: No implementation, data layout or timing
 - Use: implementation-agnostic understanding
 - Examples:
 - Fibers
 - Fibertree
- Implementation
 - Specific implementation of an abstract spec
 - Attributes: Concrete implementation, data layout and timing
 - Examples:
 - Fibers \rightarrow uncompressed array, coordinate/payload list
 - − Fiber-tree \rightarrow CSR, CSC, CSF, COO...

Tensor Traversal (CSR Style)

Plii

0

2

For efficiency one can form new representations where the data structure for two or more ranks are combined.

For efficiency one can form new representations where the data structure for two or more ranks are combined. 0 Tensor-<C,C>(H,W) Η 2 g 2 0 1 Н H,W <mark>4.2</mark> <mark>4,3</mark> 0.3 W С g h

For efficiency one can form new representations where the data structure for two or more ranks are combined. 0 Tensor-<C,C>(H,W) Η 2 1 2 0 Η H,W 0,3 **4.2** <mark>4,3</mark> W 0.1 g h g

For efficiency one can form new representations where the data structure for two or more ranks are combined. 0 Tensor-<C,C>(H,W) Η 2 1 2 0 Н H,W **4,2** 0.3 <mark>4.</mark>3 W С g h h g l'li ī

Sze and Emer

- For efficiency one can form new representations where the data structure for two or more ranks are combined:
- Examples:
 - Tensor-(C²)
 List of (coordinate tuple,payload) COO
 - Tensor-(H²)
 - Hash table with coordinate tuple as key
 - Tensor-(U²)
 - Flattened array
 - Coordinates can be recovered with modulo arithmetic on "position"
 - Tensor-(R²)
 - Flattened run-length encoded sequence

Split uniformly by coordinates (groups of 8 coordinates)

Split uniformly by coordinates (groups of 8 coordinates)

Split uniformly by coordinates (groups of 8 coordinates)

Sze and Emer

Split uniformly by coordinates (groups of 8 coordinates)

Split uniformly by coordinates (groups of 8 coordinates)

Splitting Fibers – Coordinate Space

g

е

Splitting Fibers – Coordinate Space

Split evenly by occupancy (groups of 4)

Split evenly by occupancy (groups of 4)

Split evenly by occupancy (groups of 4)

Split evenly by occupancy (groups of 4)

Split evenly by occupancy (groups of 4)

Fibertree Representation of Weight Pruning

Example 3D Weight Tensor

Fibertree Representation

Each dimension in the original tensor is represented as a rank in the tree

Specification of Channel-based Sparsity

Flattening: Specification of Sub-kernel Sparsity

Flattening: Specification of Sub-kernel Sparsity

l'liī

Flattening: Specification of Unstructured Sparsity

Fibertree Representation of Dense Tensor

Flattening: Specification of Unstructured Sparsity

Flattening: Specification of Unstructured Sparsity

April 3, 2024

I'li T

 $RS \rightarrow C_1 \rightarrow C_0(2:4)$

April 3, 2024 *flattened for ease of presentation, not required L16-130

Sze and Emer

Hierarchical Structured Sparsity (HSS)

Hierarchical Structured Sparsity (HSS)

Fibertree Representation of Dense Tensor

- N-1 rank HSS defined as •
 - $RS \rightarrow C_{N-1} \rightarrow C_{N-2}(G_{N-2}; H_{N-2})$ $\rightarrow \dots \rightarrow C_1(3:4) \rightarrow C_0(2:4)$
- HSS qualitative difference: allows pruning rules for more thank one ranks
- HSS provides a systematic and • modularized way to represent a large number of sparsity degrees

(1) Reorder Ranks 2 Partition Rank C into N ranks (N>=2), e.g., N=3 as shown below ③ Apply Per-rank Pruning Rule rule: N/A Rank3 RS* rule: N/A

L16-133

Next: Sparse Architectures

