
L17-1

6.5930/1
Hardware Architectures for Deep Learning

Sparse Architectures – Part 2

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

April 8, 2024

L17-2

Sze and Emer

Goals of Today’s Lecture

• Last lecture, we discussed an abstract representation for sparse tensors with
ranks, fibers and fibertrees.

• Today, we will discuss how to translate sparsity into reductions in energy
consumption and processing cycles through dataflows that exploit sparsity

Resources: Course notes - Chapter 8.2 and 8.3

April 8, 2024

L17-3

Sze and Emer

Design Steps

Problem
Spec Algorithm Schedule

April 8, 2024

[Halide, Ragan-Kelly, et.al., PLDI 2013]

L17-4

Sze and Emer

Matrix Multiply
A

K

N

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

M

K
B

L17-5

Sze and Emer

Matrix Multiply
A

K

N

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

M

K
B

L17-6

Sze and Emer

Einsum – Matrix Multiply

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

[Relativity, Einstein, Annelen de Physik, 1916]
[TACO, Kjolstad et.al., ASE 2017]

[Timeloop, Parashar et.al., ISPASS 2019]

Operational Definition for Einsums (ODE):

- Traverse all points in space of all legal index values (iteration space)
- At each point in iteration space:

- Calculate value on right hand at specified indices for each operand
- Assign value to operand at specified indices on left hand side
- Unless that operand is non-zero, then reduce value into it

L17-7

Sze and Emer

Einsum – Matrix Multiply

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

• Shared indices -> intersection

L17-8

Sze and Emer

Einsum – Matrix Multiply

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

• Shared indices
• Contracted indices

-> intersection

-> reduction

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

L17-9

Sze and Emer

Einsum – Matrix Multiply

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

• Shared indices
• Contracted indices
• Uncontracted indices

-> intersection
-> reduction

-> populate output point

L17-10

Sze and Emer

Convolution (CONV) Layer

…

M

…

Input fmaps (N) Output fmaps (N)

…

R

S

R

S

C

C

filters

P

Q

H

C

H

W

C

P
1 1

N
N

W Q

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

L17-11

Sze and Emer

Convolution (CONV) Layer

…

M

…

Input fmaps (N) Output fmaps (N)

…

R

S

R

S

C

C

filters

P

Q

H

C

H

W

C

P
1 1

N
N

W Q

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

L17-12

Sze and Emer

Einsum - Convolution

• Shared indices -> intersection
• Contracted indices -> reduction
• Uncontracted indices -> populate output point
• Index arithmetic

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

𝑂𝑂𝑝𝑝,𝑞𝑞,𝑚𝑚 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

[Extensor, Hegde, et.al., MICRO 2019]

-> projection

L17-13

Sze and Emer

Einsum - Convolution

• Shared indices -> intersection
• Contracted indices -> reduction
• Uncontracted indices -> populate output point
• Index arithmetic

April 8, 2024

Problem
Specification Algorithm

Data
Format +
Schedule

𝑂𝑂𝑝𝑝,𝑞𝑞,𝑚𝑚 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

[Extensor, Hegde, et.al., MICRO 2019]

-> projection

L17-14

Sze and Emer

Aspects of Scheduling - Sparsity
Format:

Choose tensor representations to
save storage space and energy
associated with zero accesses

Gating:
Explicitly eliminate ineffectual

storage accesses and computes by
letting the hardware unit staying idle

for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by
skipping the cycle to save energy and

time

April 8, 2024

L17-15

Sze and EmerApril 8, 2024

CONV: Exploiting Sparse
Weights

L17-16

Sze and Emer

CONV Layer

April 8, 2024

P

output fmap

…
R

S
1

R 8

H

W Q

input fmap
C

C

C

S

M

filters

1

M

Filter overlay

Incomplete partial sum

L17-17

Sze and Emer

1-D Output-Stationary Convolution

† Assuming: ‘valid’ style convolution
April 8, 2024

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
 for s in [0, S):
 w = q + s
 o[q] += i[w] * f[s]

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

L17-18

Sze and Emer

1-D Output-Stationary Convolution

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

What opportunity(ies) exist if
some of the values are zero?

April 8, 2024

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
 for s in [0, S):
 w = q + s
 o[q] += i[w] * f[s]

L17-19

Sze and Emer

1-D Output-Stationary Convolution

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

What did we save using the conditional execution?

What didn’t we save using the conditional execution?

8 0 6

April 8, 2024

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
 for s in [0, S):
 w = q + s
 o[q] += i[w] * f[s]if (!f[s]): o[q] += i[w]*f[s]

L17-20

Sze and Emer

Eyeriss – Clock Gating

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip mult and mem reads
when image data is zero.

Reduce PE power by 45%

April 8, 2024

L17-21

Sze and Emer

Weight Stationary

April 8, 2024

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for s in [0, S):
 for w in [s, Q + s):
 q = w – s
 o[q] += i[w] * f[s]

Note: s, w are the
coordinates of the desired

elements of the tensor

The variables “i” and “f” are?

What are the tensor representations of “i” and “f”?

The variables “s” and “w” are?

Need to calculate position/coordinate in
third tensor, i.e., do a projection

L17-22

Sze and Emer

Naïve Sparse Weight Stationary

April 8, 2024

i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for s in [0, S):
 for w in [s, Q + s):
 q = w – s
 ... TBD ...

The variables “i” and “f” are?

What are the tensor representations of “i” and “f”?

The variables “s” and “w” are?

o[q] += i.getPayload(w) * f.getPayload(s)

Why is this inefficient?

The variables “q” is?

L17-23

Sze and Emer

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution
April 8, 2024

L17-24

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution
April 8, 2024

L17-25

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-26

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-27

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-28

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-29

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-30

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-31

Sze and Emer

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

† Assuming: ‘valid’ style convolution

Fiber coordinate values

April 8, 2024

L17-32

Sze and Emer

Output Stationary – Sparse Weights

April 8, 2024

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
 for (s, f_val) in f:
 w = q + s
 o[q] += i[w] * f_val

Concordant traversal

The traversal of “f” will be?

For sparser weights, this implementation will be?

What is “s”?

What is “f_val”?

L17-33

Sze and Emer

Output Stationary – Sparse Weights

April 8, 2024

L17-34

Sze and Emer

Output Stationary – Sparse Weights

April 8, 2024

L17-35

Sze and Emer

Output Stationary – Sparse Weights

April 8, 2024

MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q

Input Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]

L17-36

Sze and Emer

Weight Stationary - Sparse Weights

April 8, 2024

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (s, f_val) in f:
 for q in [0, Q):
 w = q + s
 o[q] += i[w] * f_val

Concordant traversal
What dataflow is this?

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

L17-37

Sze and Emer

Weight Stationary - Sparse Weights

April 8, 2024

MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q
Input

Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

o[q]

o’[q]

i[w]

f[s]f[s]

s

Latch

L17-38

Sze and Emer

To Extend to Other Dimensions of DNN

• Need to add loop nests for:
– 2-D input activations and filters
– Multiple input channels
– Multiple output channels

• Add parallelism…

April 8, 2024

Consider working on two weights at a time

L17-39

Sze and Emer

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

S
R

Grab first 2

S0

S1

R

Fiber Splitting Equally in Position Space

April 8, 2024

0

0

a

2

c

L17-40

Sze and Emer

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

S
R

Grab next 2

S0

S1

R

Fiber Splitting Equally in Position Space

April 8, 2024

0

0

a

2

c

1

3

d

5

f

L17-41

Sze and Emer

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

S
R

Grab next 2

S0

S1

R

Fiber Splitting Equally in Position Space

April 8, 2024

0

0

a

2

c

1

3

d

5

f

2

8

i

9

j

L17-42

Sze and Emer

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

S
R

After Split Equal by 2

S0

S1

R

Fiber Splitting Equally in Position Space

April 8, 2024

0

0

a

2

c

1

3

d

5

f

2

8

i

9

j

Complexity for uncompressed fiber? … for coordinate/payload list fiber?

L17-43

Sze and Emer

Parallel Weight Stationary - Sparse Weights

April 8, 2024

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (s1, f_split) in f.splitEqual(2):
 for q1 in [0, Q/4):
 parallel-for (s, f_val) in f_split:
 parallel-for q0 in [0, 4):
 q = q1*4 + q0
 w = q + s
 o[q] += i[w] * f_val

Get groups of two
weights

Work on two
weights in parallel

Work on four
outputs at once

Calculate
coordinates

Look up input
activation

Accumulate
multiple outputs
each spatially

L17-44

Sze and Emer

Cambricon-X – Activation Access

April 8, 2024

Weight (metadata) Weight (metadata)Input Activations

Cambricon-X – Zhang et.al., Micro 2016

L17-45

Sze and Emer

Parallel Weight Stationary - Sparse Weights

April 8, 2024

L17-46

Sze and EmerApril 8, 2024

CONV: Exploiting Sparse Inputs

L17-47

Sze and Emer

Weight Stationary - Sparse Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for s in [0, S):
 for (w, i_val) in i if s <= w < Q+s:
 q = w – s
 o[q] += i_val * f[s]

Need to restrict
input coordinates

for the current
weight coordinate

Can look up this weight once
since it is stationary.

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

Projection of w and s

Reduction

𝑂𝑂𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑠𝑠

Populate

Skipping traversal

L17-48

Sze and Emer

Weight Stationary - Sparse Inputs

April 8, 2024

MACCgen

Filter Weights

Coord Payload

Pgen

Input Activations

Pos
Payload

Coord

Calc
w-s

Partial Sums

Coord Payload

Update

w

q

s

s

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]

L17-49

Sze and Emer

Output Stationary - Sparse Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
 for (w, i_val) in i if q <= w < q + S:
 s = w – q
 o[q] += i_val * f[s]

Need to restrict input coordinates
to the active outputs

Need to look up a filter
weight for each input

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠 𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑤𝑤−𝑞𝑞

L17-50

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0 a b c

R

Sparse Sliding Window
S=3

0 <= w < 3

April 8, 2024

L17-51

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0

q=1

a b c

b c

R

Sparse Sliding Window
S=3

1 <= w < 4

April 8, 2024

L17-52

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0

q=1

q=2

a b c

b c

c d

R

Sparse Sliding Window
S=3

2 <= w < 5

April 8, 2024

L17-53

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0

q=1

q=2

a b c

b c

c d

dq=3

R

Sparse Sliding Window
S=3

3 <= w < 6

April 8, 2024

L17-54

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0

q=1

q=2

a b c

b c

c d

d

d e

q=3

q=4

R

Sparse Sliding Window
S=3

4 <= w < 7

April 8, 2024

L17-55

Sze and Emer

a b c d e f g

10 2 64 8 9

H

q=0

q=1

q=2

a b c

b c

c d

d

d e

e

q=3

q=4

q=5

R

Sparse Sliding Window
S=3

5 <= w < 8

April 8, 2024

L17-56

Sze and Emer

MACCgen

Pgen

Input Activations

Pos
Value
Coord

Calc
w-q

w

s

q

q

Filter Weights

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

o’[q]

o[q]

i[w]

f[s]

Output Stationary - Sparse Inputs

April 8, 2024

L17-57

Sze and Emer

E
n
c
o
d
e
rInput Activations

Weights

Weights

Weights

Weights

Input Activations

… …

Cnvlutin

Source: CNVLUTIN: Ineffectual-neuron-free DNN computing
April 8, 2024

L17-58

Sze and Emer

i = Tensor(C,W) # Input activations
f = Tensor(M,C,S) # Filter weights
o = Array(Q,M) # Output activations

for q in [0, Q]:
 for m, f_c in f:
 for (c, (f_s, i_w)) in f_c & i_c:
 for (w, i_val) in getWindow(i_w, q, S):
 s = w – q
 o[m, q] += i_val * f_s.getPayload(s)

Serial Cnvlutin Loop Nest

April 8, 2024

Output stationary

Corresponds to lookup of
weight based on current

input (and output)
More loops needed to show parallel
processing of input and output channels

Implicit intersection

Irregular sliding
windowHow do we make the getPayload() cheap?

L17-59

Sze and Emer

CNVLUTIN - Speedup

April 8, 2024

Compressing zero activations

Source: CNVLUTIN: Ineffectual-neuron-free DNN computing

L17-60

Sze and Emer

Input Stationary - Sparse Weights & Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (w, i_val) in i:
 for (s, f_val) in f if w-Q <= s < w:
 q = w – s
 o[q] += i_val * f_val

Need to restrict weight
coordinates to those relevant to

the current input

What dataflow is this?

What sparsity can it exploit?

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠 𝑂𝑂𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑠𝑠

L17-61

Sze and EmerApril 8, 2024

CONV: Exploiting Sparse
Inputs & Sparse Weights

L17-62

Sze and Emer

Input Stationary - Sparse Weights & Inputs

April 8, 2024

MACPgen

Pgen

Input Act.

Pos
Payload

Coord

Partial Sums

Coord Payload

Update

qCalc
w-s

w

s
Filter Weights

Pos
Coord

Payload

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]

L17-63

Sze and Emer

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

W

R

After Split Equal by 2

0 2

W0

W1

0

a

2

c

1

3

d

5

f

8

i

9

j

R

Fiber Splitting Equally in Position Space

April 8, 2024

L17-64

Sze and Emer

Input Stationary - Sparse Weights & Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (w1, i_split) in i.splitEqual(2):
 for (s1, f_split) in f.splitEqual(2):
 parallel-for (w0, i_val) in i_split:
 parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
 w = w0
 s = s0
 q = w - s
 o[q] += i_val * f_val

Is there a nice pattern to the multipliers’ input operands?

Is there a nice pattern to the multiplier outputs?

How many multipliers in this design?

L17-65

Sze and Emer

4

d

6

f

1 d

4 f

i_split

f_
sp

lit

X

X

X

X

o[0]
o[3]

o[2]
o[5]

Cartesian Product

April 8, 2024

L17-66

Sze and Emer

Sparse CNN (SCNN)

Input Stationary Dataflow

Supports Convolutional Layers

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]

L17-67

Sze and Emer

Flattening

April 8, 2024

L17-68

Sze and Emer

SCNN Tile – one channel

April 8, 2024

𝑂𝑂𝑚𝑚,𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ,𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚𝑟𝑟𝑠𝑠

Rearrange indices

Flatten

L17-69

Sze and Emer

SCNN Tile – one channel

April 8, 2024

i = Tensor(HW) # Input activations
f = Tensor(MRS) # Filter weights
o = Array(M,P,Q) # Output activations

for (hw1, i_split) in i.splitEqual(4):
 for (mrs1, f_split) in f.splitEqual(4):
 parallel-for (((h,w), i_val) in i_split:
 parallel-for ((m,r,s), f_val) in f_split if “legal”
 p = h - r
 q = w - s
 o[m,p,q] += i_val * f_val

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚𝑟𝑟𝑠𝑠

L17-70

Sze and Emer

SCNN PE microarchitecture

Sparse-compressed
frontend

f[C][M*R*S]

i[C][W*H]

m = Mcoord(mrs2, mrs1, mrs0);
p = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
q = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);

MRS0 X WH0

Dense backend

o[M][P][Q];

Flattened
Weights

Flattened
Input

Activations

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]

L17-71

Sze and Emer

SCNN Latency Versus Density

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]

L17-72

Sze and Emer

SCNN Energy Versus Density

[Parashar et al., SCNN, ISCA 2017]
April 8, 2024

L17-73

Sze and Emer

Weight Stationary - Sparse Weights & Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (s1, f_split) in f.splitEqual(2):
 for (w1, i_split) in i.splitEqual(2):
 parallel-for (w0, i_val) in i_split:
 parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
 w = w0
 s = s0
 q = w - s
 o[q] += i_val * f_val

Do you see any disadvantage to this design?

Loops reversed

L17-74

Sze and Emer

Output Stationary - Sparse Weights & Inputs

April 8, 2024

i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for q in [0,Q):
for (s, (f_val, i_val)) in f.project(+q) & i:
o[q] += i_val * f_val

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

Need to work on a series of pairs
of weights and inputs

L17-75

Sze and Emer

a b c d

20 5 6

N

a b c d

42 7 8

N.project(+2)

Fiber Coordinate Projection

W

Inputs

Q = W-ceil(R/2)†

Outputs

=

S

Weights

April 8, 2024

Does projection require complex hardware?

L17-76

Sze and Emer

a b c d

42 7 8

e

1

f

2

g

5

h

8

N

f

2

h

8

&

b c

N

N

Fiber Intersection

April 8, 2024

Does intersection require complex hardware?

What representations would be good?

L17-77

Sze and Emer

Output Stationary - Sparse Weights & Inputs

April 8, 2024

MAC

Pgen

Pgen

Input Act.

Pos
Coord

Payload

Partial Sums

Coord Payload

Update
q

Inter-
section

w

s

Filter Weights

Pos
Payload

Coord

Pgen

o’[q]

o[q]

i[w]

f[s]

i[w]

f[s]

Calc
s+q

N
ext

N
ext

L17-78

Sze and Emer

IS-OS Dataflow Einsums (K=1)

April 8, 2024

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

Substituting h=p+r, p=h-r and w=q+s, q=w-s

Split into multiple steps

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑂𝑂ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠

Reverse-substituting p=h-r, h=p+r and q=w-s into the second step

𝑂𝑂ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝑇𝑇𝑝𝑝+𝑟𝑟,𝑟𝑟,𝑞𝑞

L17-79

Sze and Emer

IS-OS Dataflow – Step 1

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
 for w, i_val in i_w:
 for c, (i_w, f_r) in i_c & f_c:
 for r, (t_q, f_s) in t_r << f_r:
 parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
 t_ref += i_val * f_val

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

Order: h -> w -> c -> r -> s

Project `t_q` to `s`
using `s = w-q`

The fiber `t_q` is
from the `w-s` rank of T

L17-80

Sze and Emer

IS-OS Dataflow – Step 2

April 8, 2024

parallel-for p, o_q in o_p:
 for q, (o_ref, t_val) in o_q << t_q:
 for r, t_h in t_r:
 t_val = t_h.getPayload(p+r):
 o_ref += t_val

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝑇𝑇𝑝𝑝+𝑟𝑟,𝑟𝑟,𝑞𝑞

Order: p -> q -> r -> p+r

Pathological iteration over
rank, since it is constrained

by known `p` and `r`

L17-81

Sze and Emer

IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
 for w, i_val in i_w:
 for c, (i_w, f_r) in i_c & f_c:
 for r, (t_q, f_s) in t_r << f_r:
 parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
 t_ref += i_val * f_val

parallel-for p, o_q in o_p:
 for q, (o_ref, t_r) in o_q << t_q:
 for r, t_h in t_r:
 t_val = t_h.getPayload(p+r):
 o_ref += t_val

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]

L17-82

Sze and Emer

IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
 for w, i_val in i_w:
 for c, (i_w, f_r) in i_c & f_c:
 for r, (t_q, f_s) in t_r << f_r:
 parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
 t_ref += i_val * f_val

parallel-for p, o_q in o_p:
 for q, (o_ref, t_r) in o_q << t_q:
 for r, t_h in t_r:
 t_val = t_h.getPayload(p+r):
 o_ref += t_val

T is traversed
in a discordant

order

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]

L17-83

Sze and Emer

IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
 for w, i_val in i_w:
 for c, (i_w, f_r) in i_c & f_c:
 for r, (t_q, f_s) in t_r << f_r:
 parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
 t_ref += i_val * f_val

t = t.swizzleRanks([“H”, “R”, “Q”] -> [“Q”, “R”, “H”])

parallel-for p, o_q in o_p:
 for q, (o_ref, t_r) in o_q << t_q:
 for r, t_h in t_r:
 t_val = t_h.getPayload(p+r):
 o_ref += t_val

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]

L17-84

Sze and Emer

IS-OS dataflow breakdown

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]

L17-85

Sze and Emer

IS-OS dataflow breakdown

IS
frontend

OS
backend

Partial
results

Input
wavefront

Output
wavefront

pipeline pipelinesmall

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]

L17-86

Sze and Emer

IS-OS dataflow breakdown

IS
frontend

OS
backend

Partial
results

Input
wavefront

Output
wavefront

pipeline pipelinesmall

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]

L17-87

Sze and Emer

ISOSceles Speedup

1.7

7.5

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]

L17-88

Sze and EmerApril 8, 2024

Next Lecture:
 Sparse Multiplication

	6.5930/1 �Hardware Architectures for Deep Learning��Sparse Architectures – Part 2�
	Goals of Today’s Lecture
	Design Steps
	Matrix Multiply
	Matrix Multiply
	Einsum – Matrix Multiply
	Einsum – Matrix Multiply
	Einsum – Matrix Multiply
	Einsum – Matrix Multiply
	Convolution (CONV) Layer
	Convolution (CONV) Layer
	Einsum - Convolution
	Einsum - Convolution
	Aspects of Scheduling - Sparsity
	Slide Number 15
	CONV Layer
	1-D Output-Stationary Convolution
	1-D Output-Stationary Convolution
	1-D Output-Stationary Convolution
	Eyeriss – Clock Gating
	Weight Stationary
	Naïve Sparse Weight Stationary
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Output Stationary – Sparse Weights
	Weight Stationary - Sparse Weights
	Weight Stationary - Sparse Weights
	To Extend to Other Dimensions of DNN
	Fiber Splitting Equally in Position Space
	Fiber Splitting Equally in Position Space
	Fiber Splitting Equally in Position Space
	Fiber Splitting Equally in Position Space
	Parallel Weight Stationary - Sparse Weights
	Cambricon-X – Activation Access
	Parallel Weight Stationary - Sparse Weights
	Slide Number 46
	Weight Stationary - Sparse Inputs
	Weight Stationary - Sparse Inputs
	Output Stationary - Sparse Inputs
	Sparse Sliding Window
	Sparse Sliding Window
	Sparse Sliding Window
	Sparse Sliding Window
	Sparse Sliding Window
	Sparse Sliding Window
	Output Stationary - Sparse Inputs
	Cnvlutin
	Serial Cnvlutin Loop Nest
	CNVLUTIN - Speedup
	Input Stationary - Sparse Weights & Inputs
	Slide Number 61
	Input Stationary - Sparse Weights & Inputs
	Fiber Splitting Equally in Position Space
	Input Stationary - Sparse Weights & Inputs
	Cartesian Product
	Sparse CNN (SCNN)
	Flattening
	SCNN Tile – one channel
	SCNN Tile – one channel
	SCNN PE microarchitecture
	SCNN Latency Versus Density
	SCNN Energy Versus Density
	Weight Stationary - Sparse Weights & Inputs
	Output Stationary - Sparse Weights & Inputs
	Fiber Coordinate Projection
	Fiber Intersection
	Output Stationary - Sparse Weights & Inputs
	IS-OS Dataflow Einsums (K=1)
	IS-OS Dataflow – Step 1
	IS-OS Dataflow – Step 2
	IS-OS Dataflow
	IS-OS Dataflow
	IS-OS Dataflow
	IS-OS dataflow breakdown
	IS-OS dataflow breakdown
	IS-OS dataflow breakdown
	ISOSceles Speedup
	Slide Number 88

