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Goals of Today’s Lecture

• Last lecture, we discussed an abstract representation for sparse tensors with 
ranks, fibers and fibertrees.

• Today, we will discuss how to translate sparsity into reductions in energy 
consumption and processing cycles through dataflows that exploit sparsity

Resources: Course notes - Chapter 8.2 and 8.3

April 8, 2024
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Design Steps

Problem 
Spec Algorithm Schedule

April 8, 2024

[Halide, Ragan-Kelly, et.al., PLDI 2013]
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Einsum – Matrix Multiply

April 8, 2024

Problem 
Specification Algorithm

Data 
Format + 
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

[Relativity, Einstein, Annelen de Physik, 1916]
[TACO, Kjolstad et.al., ASE 2017]

[Timeloop, Parashar et.al., ISPASS 2019]

Operational Definition for Einsums (ODE):

- Traverse all points in space of all legal index values (iteration space)
-  At each point in iteration space:

- Calculate value on right hand at specified indices for each operand
- Assign value to operand at specified indices on left hand side
- Unless that operand is non-zero, then reduce value into it
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Einsum – Matrix Multiply

April 8, 2024

Problem 
Specification Algorithm

Data 
Format + 
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

• Shared indices -> intersection
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Einsum – Matrix Multiply

April 8, 2024

Problem 
Specification Algorithm

Data 
Format + 
Schedule

• Shared indices
• Contracted indices

-> intersection

-> reduction

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘
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Einsum – Matrix Multiply

April 8, 2024

Problem 
Specification Algorithm

Data 
Format + 
Schedule

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

• Shared indices
• Contracted indices
• Uncontracted indices

-> intersection
-> reduction

-> populate output point
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Einsum - Convolution

• Shared indices -> intersection
• Contracted indices -> reduction
• Uncontracted indices -> populate output point
• Index arithmetic

April 8, 2024

Problem 
Specification Algorithm

Data 
Format + 
Schedule

𝑂𝑂𝑝𝑝,𝑞𝑞,𝑚𝑚 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

[Extensor, Hegde, et.al., MICRO 2019]

-> projection
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Einsum - Convolution

• Shared indices -> intersection
• Contracted indices -> reduction
• Uncontracted indices -> populate output point
• Index arithmetic
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Problem 
Specification Algorithm

Data 
Format + 
Schedule

𝑂𝑂𝑝𝑝,𝑞𝑞,𝑚𝑚 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

[Extensor, Hegde, et.al., MICRO 2019]

-> projection
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Aspects of Scheduling - Sparsity
Format:

Choose tensor representations to 
save storage space and energy 
associated with zero accesses

Gating:
Explicitly eliminate ineffectual 

storage accesses and computes by 
letting the hardware unit staying idle 

for the cycle to save energy 

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by 
skipping the cycle to save energy and 

time 

April 8, 2024
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CONV: Exploiting Sparse 
Weights
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CONV Layer

April 8, 2024
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1-D Output-Stationary Convolution

† Assuming: ‘valid’ style convolution
April 8, 2024

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
  for s in [0, S):
  w = q + s
    o[q] += i[w] * f[s]

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠
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1-D Output-Stationary Convolution

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

What opportunity(ies) exist if  
some of the values are zero?

April 8, 2024

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
  for s in [0, S):
  w = q + s
    o[q] += i[w] * f[s]
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1-D Output-Stationary Convolution

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

What did we save using the conditional execution?

What didn’t we save using the conditional execution?

8  0  6

April 8, 2024

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
  for s in [0, S):
  w = q + s
    o[q] += i[w] * f[s]if (!f[s]): o[q] += i[w]*f[s]
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Eyeriss – Clock Gating
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when image data is zero.

Reduce PE power by 45%

April 8, 2024
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Weight Stationary

April 8, 2024

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for s in [0, S):
  for w in [s, Q + s):
  q = w – s
    o[q] += i[w] * f[s]

Note: s, w are the 
coordinates of the desired 

elements of the tensor

The variables “i” and “f” are? 

What are the tensor representations of “i” and “f”? 

The variables “s” and “w” are? 

Need to calculate position/coordinate in 
third tensor, i.e., do a projection
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Naïve Sparse Weight Stationary

April 8, 2024

i = Tensor(W)      # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for s in [0, S):
  for w in [s, Q + s):
  q = w – s
    ... TBD ...
    

The variables “i” and “f” are? 

What are the tensor representations of “i” and “f”?  

The variables “s” and “w” are? 

o[q] += i.getPayload(w) * f.getPayload(s)

Why is this inefficient? 

The variables “q” is? 
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† Assuming: ‘valid’ style convolution
April 8, 2024
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Fiber coordinate values

April 8, 2024
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Output Stationary – Sparse Weights

April 8, 2024

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
  for (s, f_val) in f:
    w = q + s
    o[q] += i[w] * f_val

Concordant traversal

The traversal of “f” will be? 

For sparser weights, this implementation will be? 

What is “s”? 

What is “f_val”? 
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Output Stationary – Sparse Weights

April 8, 2024



L17-34

Sze and Emer

Output Stationary – Sparse Weights

April 8, 2024
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Output Stationary – Sparse Weights

April 8, 2024

MACCgen
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Filter Weights
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Weight Stationary - Sparse Weights 

April 8, 2024

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for (s, f_val) in f:
  for q in [0, Q):
  w = q + s
    o[q] += i[w] * f_val

Concordant traversal
What dataflow is this?

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠
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Weight Stationary - Sparse Weights 

April 8, 2024
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To Extend to Other Dimensions of DNN

• Need to add loop nests for:
– 2-D input activations and filters
– Multiple input channels
– Multiple output channels

• Add parallelism… 

April 8, 2024

Consider working on two weights at a time
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Complexity for uncompressed fiber? … for coordinate/payload list fiber?
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Parallel Weight Stationary - Sparse Weights 

April 8, 2024

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for (s1, f_split) in f.splitEqual(2):
  for q1 in [0, Q/4):
     parallel-for (s, f_val) in f_split:
       parallel-for q0 in [0, 4):
         q = q1*4 + q0
         w = q + s
         o[q] += i[w] * f_val

Get groups of two 
weights

Work on two 
weights in parallel

Work on four 
outputs at once

Calculate 
coordinates

Look up input 
activation

Accumulate 
multiple outputs 
each spatially 
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Cambricon-X – Activation Access

April 8, 2024

Weight (metadata) Weight (metadata)Input Activations

Cambricon-X – Zhang et.al., Micro 2016
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Parallel Weight Stationary - Sparse Weights 

April 8, 2024
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CONV: Exploiting Sparse Inputs
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Weight Stationary - Sparse Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Array(S)        # Filter weights
o = Array(Q)        # Output activations

for s in [0, S):
  for (w, i_val) in i if s <= w < Q+s:
    q = w – s
   o[q] += i_val * f[s]

Need to restrict 
input coordinates 

for the current 
weight coordinate

Can look up this weight once 
since it is stationary.

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

Projection of w and s

Reduction

𝑂𝑂𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑠𝑠

Populate

Skipping traversal
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Weight Stationary - Sparse Inputs 

April 8, 2024
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Output Stationary - Sparse Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Array(S)        # Filter weights
o = Array(Q)        # Output activations

for q in [0, Q):
  for (w, i_val) in i if q <= w < q + S:
    s = w – q
    o[q] += i_val * f[s] 

Need to restrict input coordinates 
to the active outputs

Need to look up a filter 
weight for each input

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠 𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑤𝑤−𝑞𝑞
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April 8, 2024
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a b c d e f g
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April 8, 2024
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Output Stationary - Sparse Inputs 

April 8, 2024
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Input Activations

… …

Cnvlutin

Source: CNVLUTIN: Ineffectual-neuron-free DNN computing
April 8, 2024
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i = Tensor(C,W)       # Input activations
f = Tensor(M,C,S)     # Filter weights
o = Array(Q,M)        # Output activations

for q in [0, Q]:
  for m, f_c in f:
    for (c, (f_s, i_w)) in f_c & i_c:
      for (w, i_val) in getWindow(i_w, q, S):
        s = w – q
        o[m, q] += i_val * f_s.getPayload(s)

Serial Cnvlutin Loop Nest

April 8, 2024

Output stationary

Corresponds to lookup of 
weight based on current 

input (and output)
More loops needed to show parallel 
processing of input and output channels

Implicit intersection

Irregular sliding 
windowHow do we make the getPayload() cheap?
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CNVLUTIN - Speedup

April 8, 2024

Compressing zero activations

Source: CNVLUTIN: Ineffectual-neuron-free DNN computing
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Input Stationary - Sparse Weights & Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Tensor(S)       # Filter weights
o = Array(Q)        # Output activations

for (w, i_val) in i:
  for (s, f_val) in f if w-Q <= s < w:
    q = w – s
    o[q] += i_val * f_val

Need to restrict weight 
coordinates to those relevant to 

the current input

What dataflow is this?

What sparsity can it exploit?

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠 𝑂𝑂𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑤𝑤 × 𝐹𝐹𝑠𝑠
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CONV: Exploiting Sparse 
Inputs & Sparse Weights
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Input Stationary - Sparse Weights & Inputs 

April 8, 2024

MACPgen

Pgen

Input Act.

Pos
Payload

Coord

Partial Sums

Coord Payload

Update

qCalc
w-s

w

s
Filter Weights

Pos
Coord

Payload

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]



L17-63

Sze and Emer
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Fiber Splitting Equally in Position Space

April 8, 2024



L17-64

Sze and Emer

Input Stationary - Sparse Weights & Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Tensor(S)       # Filter weights
o = Array(Q)        # Output activations

for (w1, i_split) in i.splitEqual(2):
  for (s1, f_split) in f.splitEqual(2):
    parallel-for (w0, i_val) in i_split:
      parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
      w = w0
      s = s0
      q = w - s        
      o[q] += i_val * f_val

Is there a nice pattern to the multipliers’ input operands? 

Is there a nice pattern to the multiplier outputs?

How many multipliers in this design?  
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Cartesian Product

April 8, 2024
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Sparse CNN (SCNN)

Input Stationary Dataflow 

Supports Convolutional Layers

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]
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Flattening

April 8, 2024
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SCNN Tile – one channel

April 8, 2024

𝑂𝑂𝑚𝑚,𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ,𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚𝑟𝑟𝑠𝑠

Rearrange indices

Flatten
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SCNN Tile – one channel

April 8, 2024

i = Tensor(HW)      # Input activations
f = Tensor(MRS)     # Filter weights
o = Array(M,P,Q)    # Output activations

for (hw1, i_split) in i.splitEqual(4):
  for (mrs1, f_split) in f.splitEqual(4):
    parallel-for (((h,w), i_val) in i_split:
      parallel-for ((m,r,s), f_val) in f_split if “legal”
      p = h - r        
      q = w - s        
      o[m,p,q] += i_val * f_val

𝑂𝑂𝑚𝑚,ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚𝑟𝑟𝑠𝑠
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SCNN PE microarchitecture

Sparse-compressed 
frontend

f[C][M*R*S]

i[C][W*H]

m = Mcoord(mrs2, mrs1, mrs0);
p = Wcoord(wh1,wh0)-Rcoord(mrs2, mrs1, mrs0);
q = Hcoord(wh1,wh0)-Scoord(mrs2, mrs1, mrs0);

MRS0 X WH0

Dense backend

o[M][P][Q];

Flattened 
Weights

Flattened 
Input 

Activations

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]
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SCNN Latency Versus Density

April 8, 2024

[Parashar et al., SCNN, ISCA 2017]
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SCNN Energy Versus Density

[Parashar et al., SCNN, ISCA 2017]
April 8, 2024
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Weight Stationary - Sparse Weights & Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Tensor(S)       # Filter weights
o = Array(Q)        # Output activations

for (s1, f_split) in f.splitEqual(2):
 for (w1, i_split) in i.splitEqual(2):
   parallel-for (w0, i_val) in i_split:
      parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
      w = w0
      s = s0
      q = w - s        
      o[q] += i_val * f_val

Do you see any disadvantage to this design? 

Loops reversed
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Output Stationary - Sparse Weights & Inputs 

April 8, 2024

i = Tensor(W)       # Input activations
f = Tensor(S)       # Filter weights
o = Array(Q)        # Output activations

for q in [0,Q):
for (s, (f_val, i_val)) in f.project(+q) & i:
o[q] += i_val * f_val 

𝑂𝑂𝑞𝑞 = 𝐼𝐼𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑠𝑠

Need to work on a series of pairs 
of weights and inputs
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42 7 8

N.project(+2)

Fiber Coordinate Projection

W

Inputs

Q = W-ceil(R/2)†

Outputs

=

S

Weights

April 8, 2024

Does projection require complex hardware? 
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Fiber Intersection

April 8, 2024

Does intersection require complex hardware? 

What representations would be good?
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Output Stationary - Sparse Weights & Inputs 

April 8, 2024
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IS-OS Dataflow Einsums (K=1)

April 8, 2024

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

Substituting h=p+r, p=h-r and w=q+s, q=w-s

Split into multiple steps

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑂𝑂ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠

Reverse-substituting p=h-r, h=p+r and q=w-s into the second step

𝑂𝑂ℎ−𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝑇𝑇𝑝𝑝+𝑟𝑟,𝑟𝑟,𝑞𝑞
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IS-OS Dataflow – Step 1

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
  for w, i_val in i_w:
    for c, (i_w, f_r) in i_c & f_c:
       for r, (t_q, f_s) in t_r << f_r:
         parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
           t_ref += i_val * f_val

𝑇𝑇ℎ,𝑟𝑟,𝑤𝑤−𝑠𝑠 = 𝐼𝐼𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑐𝑐,𝑟𝑟,𝑠𝑠

Order: h -> w -> c -> r -> s

Project `t_q` to `s`
using `s = w-q`

The fiber `t_q` is
from the  `w-s` rank of T
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IS-OS Dataflow – Step 2

April 8, 2024

parallel-for p, o_q in o_p:
   for q, (o_ref, t_val) in o_q << t_q:
     for r, t_h in t_r:
       t_val = t_h.getPayload(p+r):
       o_ref += t_val

𝑂𝑂𝑝𝑝,𝑞𝑞 = 𝑇𝑇𝑝𝑝+𝑟𝑟,𝑟𝑟,𝑞𝑞

Order: p -> q -> r -> p+r

Pathological iteration over 
rank, since it is constrained 

by known `p` and `r`
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IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
  for w, i_val in i_w:
    for c, (i_w, f_r) in i_c & f_c:
       for r, (t_q, f_s) in t_r << f_r:
         parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
           t_ref += i_val * f_val
 

parallel-for p, o_q in o_p:
  for q, (o_ref, t_r) in o_q << t_q:
    for r, t_h in t_r:
      t_val = t_h.getPayload(p+r):
      o_ref += t_val

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]
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IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
  for w, i_val in i_w:
    for c, (i_w, f_r) in i_c & f_c:
       for r, (t_q, f_s) in t_r << f_r:
         parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
           t_ref += i_val * f_val
 

parallel-for p, o_q in o_p:
  for q, (o_ref, t_r) in o_q << t_q:
    for r, t_h in t_r:
      t_val = t_h.getPayload(p+r):
      o_ref += t_val

T is traversed 
in a discordant 

order

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]
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IS-OS Dataflow

April 8, 2024

parallel-for h, (t_r, i_w) in t_h << i_h:
  for w, i_val in i_w:
    for c, (i_w, f_r) in i_c & f_c:
       for r, (t_q, f_s) in t_r << f_r:
         parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
           t_ref += i_val * f_val

t = t.swizzleRanks([“H”, “R”, “Q”] -> [“Q”, “R”, “H”])

parallel-for p, o_q in o_p:
  for q, (o_ref, t_r) in o_q << t_q:
    for r, t_h in t_r:
      t_val = t_h.getPayload(p+r):
      o_ref += t_val

-> [“Q”, “R”, “H”][“H”, “R”, “Q”]
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IS-OS dataflow breakdown

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]
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IS-OS dataflow breakdown

IS 
frontend

OS 
backend

Partial 
results

Input 
wavefront

Output 
wavefront

pipeline pipelinesmall

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]
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IS-OS dataflow breakdown

IS 
frontend

OS 
backend

Partial 
results

Input 
wavefront

Output 
wavefront

pipeline pipelinesmall

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]
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ISOSceles Speedup

1.7

7.5

April 8, 2024

[Yang et al., ISOSceles, HPCA 2023]
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Next Lecture:
  Sparse Multiplication
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