6.5930/1
 Hardware Architectures for Deep Learning

Sparse Architectures - Part 2

April 8, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

Goals of Today's Lecture

- Last lecture, we discussed an abstract representation for sparse tensors with ranks, fibers and fibertrees.
- Today, we will discuss how to translate sparsity into reductions in energy consumption and processing cycles through dataflows that exploit sparsity

Resources: Course notes - Chapter 8.2 and 8.3

Design Steps

Problem

Spec

Algorithm

Schedule

[Halide, Ragan-Kelly, et.al., PLDI 2013]

Matrix Multiply

Matrix Multiply

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

Operational Definition for Einsums (ODE):

- Traverse all points in space of all legal index values (iteration space)
- At each point in iteration space:
- Calculate value on right hand at specified indices for each operand
- Assign value to operand at specified indices on left hand side
- Unless that operand is non-zero, then reduce value into it

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices -> intersection

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices -> intersection
- Contracted indices -> reduction

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices $->$ intersection
- Contracted indices $->$ reduction
- Uncontracted indices -> populate output point

Convolution (CONV) Layer

Convolution (CONV) Layer

Einsum - Convolution

$$
O_{p, q, m}=I_{c, p+r, q+s} \times F_{m, c, r, s}
$$

- Shared indices -> intersection
- Contracted indices -> reduction
- Uncontracted indices -> populate output point
- Index arithmetic -> projection

Einsum - Convolution

$$
O_{p, q, m}=I_{c, p+r, q+s} \times F_{m, c, r, s}
$$

- Shared indices -> intersection
- Contracted indices -> reduction
- Uncontracted indices -> populate output point
- Index arithmetic -> projection

Aspects of Scheduling - Sparsity

Format:

$\rightarrow \square \quad \begin{gathered}\text { Choose tensor representations to } \\ \text { save storage space and energy }\end{gathered}$ associated with zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

CONV: Exploiting Sparse Weights

CONV Layer

1-D Output-Stationary Convolution

$$
O_{q}=I_{q+s} \times F_{s}
$$

```
i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations
for q in [0, Q):
    for s in [0, S):
    w = q + s
    o[q] += i[w] * f[s]
```


1-D Output-Stationary Convolution

Weights

S

Inputs

W

Outputs
$Q=W$-ceil(S/2) ${ }^{\dagger}$

```
i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations
for q in [0, Q):
    for s in [0, S):
    w = q + s
    o[q] += i[w] * f[s]
```

What opportunity(ies) exist if some of the values are zero?

Can avoid reading operands, doing multiply and updating output

1-D Output-Stationary Convolution

Weights


```
i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations
for q in [0, Q):
    for s in [0, S):
    w = q + s
    if (!f[s]): o[q] += i[W]*f[s]
```

What did we save using the conditional execution?
What didn't we save using the conditional execution?

Energy
Time

Eyeriss - Clock Gating

Weight Stationary

```
i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations
```

for s in $[0, S):$
for w in $[s, Q+s):$
$q=w-s$
$\mathrm{o}[\mathrm{q}]+\mathbf{+} \mathrm{i}[\mathrm{W}] * \mathrm{f}[\mathrm{s}]$
third tensor, i.e., do a projection

The variables " i " and " f " are? Tensors, Arrays and Fibers
What are the tensor representations of "i" and " f "? $\begin{aligned} & \text { Uncompressed } \\ & \text { Implicit coordinate }\end{aligned}$
The variables " s " and " w " are? Coordinates and Positions

Naïve Sparse Weight Stationary

```
i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations
for s in [0, S):
    for w in [s, Q + s):
        q = w - s
        o[q] += i.getPayload(w) * f.getPayload(s)
```

The variables " i " and " f " are? Tensors, Fibers
What are the tensor representations of " i " and " f "? Abstract
The variables " s " and " w " are? Coordinates
The variables " q " is? Coordinate and position
Why is this inefficient? No time savings --- ues getPayload()

Output Stationary - Sparse Weights

Uncompressed Weights

${ }^{\dagger}$ Assuming: 'valid’ style convolution

Output Stationary - Sparse Weights

```
i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations
for q in [0, Q):
    for (s, f_val) in f:
        w = q + s
        o[q] += i[w] * f_val

What is " s "? Coordinate
What is "f_val"? Payload, Value
The traversal of " f " will be? Concordant
For sparser weights, this implementation will be? Faster

\section*{Output Stationary - Sparse Weights}


\section*{Output Stationary - Sparse Weights}
\(\square\)

\section*{Output Stationary - Sparse Weights}


\section*{Weight Stationary - Sparse Weights}
\[
O_{q}=I_{q+s} \times F_{s}
\]
```

i = Array(W) \# Input activations
f = Tensor(S) \# Filter weights
o = Array(Q) \# Output activations
for (s, f_val) in f:
for q in [0, Q):
w = q + s
o[q] += i[w] * f_val

```

What dataflow is this?
Weight stationary

\section*{Weight Stationary - Sparse Weights}


\section*{To Extend to Other Dimensions of DNN}
- Need to add loop nests for:
- 2-D input activations and filters
- Multiple input channels
- Multiple output channels
- Add parallelism...

Consider working on two weights at a time

\section*{Fiber Splitting Equally in Position Space}

Before Split Equal by 2


\section*{Fiber Splitting Equally in Position Space}

Before Split Equal by 2


\section*{Fiber Splitting Equally in Position Space}

Before Split Equal by 2


\section*{Fiber Splitting Equally in Position Space}

Before Split Equal by 2


After Split Equal by 2


Complexity for uncompressed fiber?
Low, but doesn't exploit sparsity
... for coordinate/payload list fiber?

Iliit
Also low, but exploits sparsity

\section*{Parallel Weight Stationary - Sparse Weights}


\section*{Cambricon-X - Activation Access}


Cambricon-X - Zhang et.al., Micro 2016

Parallel Weight Stationary - Sparse Weights


\section*{CONV: Exploiting Sparse Inputs}

\section*{Weight Stationary - Sparse Inputs}
\[
O_{q}=I_{q+s} \times F_{s} \quad \square \quad O_{w-s}=I_{w} \times F_{s}
\]


\section*{Weight Stationary - Sparse Inputs}


\section*{Output Stationary - Sparse Inputs}
\[
O_{q}=I_{q+s} \times F_{s} \quad \Rightarrow \quad O_{q}=I_{w} \times F_{w-q}
\]


\section*{Sparse Sliding Window}


\section*{Output Stationary - Sparse Inputs}


\section*{Cnvlutin}


Source: CNVLUTIN: Ineffectual-neuron-free DNN computing

\section*{Serial Cnvlutin Loop Nest}


\section*{CNVLUTIN - Speedup}


Compressing zero activations
Source: CNVLUTIN: Ineffectual-neuron-free DNN computing

\section*{Input Stationary - Sparse Weights \& Inputs}
\[
O_{q}=I_{q+s} \times F_{s} \quad \square \quad O_{w-s}=I_{w} \times F_{s}
\]
```

i = Tensor(W) \# Input activations
f = Tensor(S) \# Filter weights
o = Array(Q) \# Output activations
for (w, i_val) in i:
for (s, f_val) in f if w-Q <= s < w:
q = w - s
o[q] += i_val * f_val
What dataflow is this?
Input stationary
What sparsity can it exploit?

```

Need to restrict weight coordinates to those relevant to the current input

\section*{CONV: Exploiting Sparse Inputs \& Sparse Weights}

\section*{Input Stationary - Sparse Weights \& Inputs}


\section*{Fiber Splitting Equally in Position Space}

Before Split Equal by 2


After Split Equal by 2


\section*{Input Stationary - Sparse Weights \& Inputs}
```

i = Tensor(W) \# Input activations
f = Tensor(S) \# Filter weights
o = Array(Q) \# Output activations
for (w1, i_split) in i.splitEqual(2):
for (s1, f_split) in f.splitEqual(2):
parallel-for (w0, i_val) in i_split:
parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
w = w0
s = s0
q = w - s
o[q] += i_val * f_val

```

How many multipliers in this design?4

Is there a nice pattern to the multipliers' input operands? Yes
Is there a nice pattern to the multiplier outputs? No

\section*{Cartesian Product}


\section*{Sparse CNN (SCNN)}

\section*{Supports Convolutional Layers}


Input Stationary Dataflow

\section*{Flattening}

Tensor: \(\mathrm{A}[\mathrm{C}, \mathrm{H}, \mathrm{W}]\)

Rank: C

Rank: H

Rank: W


\section*{SCNN Tile - one channel}
\[
O_{m, p, q}=I_{p+r, q+s} \times F_{m, r, s}
\]

Rearrange indices
\[
O_{m, h-r, w-s}=I_{h, w} \times F_{m, r, s}
\]

Flatten
\[
O_{m, h-r, w-s}=I_{h w} \times F_{m r s}
\]

\section*{SCNN Tile - one channel}
\[
O_{m, h-r, w-s}=I_{h w} \times F_{m r s}
\]
```

i = Tensor(HW) \# Input activations
f = Tensor(MRS) \# Filter weights
o = Array(M,P,Q) \# Output activations
for (hw1, i_split) in i.splitEqual(4):
for (mrs1, f_split) in f.splitEqual(4):
parallel-for (((h,w), i_val) in i_split:
parallel-for ((m,r,s), f_val) in f_split if "legal"
p = h - r
q = w - s
o[m,p,q] += i_val * f_val

```

\section*{SCNN PE microarchitecture}


\section*{SCNN Latency Versus Density}

[Parashar et al., SCNN, ISCA 2017]

\section*{SCNN Energy Versus Density}

[Parashar et al., SCNN, ISCA 2017]

\section*{Weight Stationary - Sparse Weights \& Inputs}
```

i = Tensor(W) \# Input activations
f = Tensor(S) \# Filter weights
o = Array(Q) \# Output activations
Loops reversed
for (s1, f_split) in f.splitEqual(2):
for (w1, i_split) in i.splitEqual(2):
parallel-for (w0, i_val) in i_split:
parallel-for (s0, f_val) in f_split if w0-Q <= s0 < w0
w = w0
s = s0
q = w - s
o[q] += i_val * f_val

```

Do you see any disadvantage to this design?
Yes, more frequent read from larger buffer

\section*{Output Stationary - Sparse Weights \& Inputs}
\[
O_{q}=I_{q+s} \times F_{s}
\]
```

i = Tensor(W) \# Input activations
f = Tensor(S) \# Filter weights
o = Array(Q) \# Output activations
for q in [0,Q):
for (s, (f_val, i_val)) in f.project(+q) \& i:
o[q] += i_val * f_val

```
    Need to work on a series of pairs
    of weights and inputs

\section*{Fiber Coordinate Projection}

\section*{Weights}


Does projection require complex hardware?
Representation dependent

\section*{Fiber Intersection}


\section*{Output Stationary - Sparse Weights \& Inputs}


\section*{IS-OS Dataflow Einsums (K=1)}
\[
O_{p, q}=I_{c, p+r, q+s} \times F_{c, r, s}
\]

Substituting \(h=p+r, p=h-r\) and \(w=q+s, q=w-s\)
\[
O_{\underline{h-r, w-s}}=I_{c, \underline{h, w}} \times F_{c, r, s}
\]

Split into multiple steps
\[
\begin{gathered}
T_{h, r, w-s}=I_{c, h, w} \times F_{c, r, s} \\
O_{h-r, w-s}=T_{h, r, w-s}
\end{gathered}
\]

Reverse-substituting \(\mathrm{p}=\mathrm{h}-\mathrm{r}, \mathrm{h}=\mathrm{p}+\mathrm{r}\) and \(\mathrm{q}=\mathrm{w}\)-s into the second step
\[
\begin{gathered}
T_{h, r, w-s}=I_{c, h, w} \times F_{c, r, s} \\
O_{p, q}=T_{p+r, r, q}
\end{gathered}
\]

\section*{IS-OS Dataflow - Step 1}
\[
T_{h, r, w-s}=I_{c, h, w} \times F_{c, r, s}
\]

> Order: h -> w -> c -> r -> s
```

parallel-for h, (t_r, i_w) in t_h << i_h:
for w, i_val in i_w:
for c, (i_w, f_r) in i_c \& f_c:
for r, (t_q, f_s) in t_r<< f_r:
parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
t_ref += i_val * f_val

IS-OS Dataflow - Step 2

$$
O_{p, q}=T_{p+r, r, q}
$$

Order: p -> q -> r -> p+r

```
parallel-for p, o_q in o_p:
    for q, (o_ref, t_val) in o_q << t_q:
        for r, t_h in t_r:
            t_val = t_h.getPayload(p+r):
            o_ref += t_val

\section*{IS-OS Dataflow}
```

parallel-for h, t_r, i_w) in t_h<< i_h:
for w, i_val in i_w:
for c, (i_w,ffr) in i_c\& \&_c:
for r, t__q. f_s) in t_r<<< f_r:
parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
t_ref += i_val * f_val
["H", "R", "Q"] -> ["Q", "R", "H"]
parallel-for p, o_q in o_p:
for q, (oref, t r) in o_q << t_q
t_val =t_h,getPayload(p+r):
o_ref += t_val

```

\section*{IS-OS Dataflow}
```

parallel-for h, (t_r, i_w) in t_h << i_h:
for w, i_val in i_w:
for c, (i_w, f_r) in i_c \& f_c:
for r, (t_q, f_s) in t_r << f_r:
parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
t_ref += i_val * f_val
["H", "R", "Q"] -> ["Q", "R", "H"]
parallel-for p, o_q in o_p:
for q, (o_ref, t_r) in o_q << t_q:
for r, t_h in t_r:
t_val = t_h.getPayload(p+r):
o_ref += t_val

```

\section*{IS-OS Dataflow}
```

parallel-for h, (t_r, i_w) in t_h << i_h:
for w, i_val in i_w:
for c, (i_w, f_r) in i_c \& f_c:
for r, (t_q, f_s) in t_r << f_r:
parallel-for s, (t_ref, f_val) in t_q.project(w-q) << f_s
t_ref += i_val * f_val
t = t.swizzleRanks(["H", "R", "Q"]] -> ["Q", "R", "H"])
parallel-for p, o_q in o_p:
for q, (o_ref, t_r) in o_q << t_q:
for r, t_h in t_r:
t_val = t_h.getPayload(p+r):
o_ref += t_val

```

\section*{IS-OS dataflow breakdown}

[Yang et al., ISOSceles, HPCA 2023]

\section*{IS-OS dataflow breakdown}

[Yang et al., ISOSceles, HPCA 2023]

\section*{IS-OS dataflow breakdown}

[Yang et al., ISOSceles, HPCA 2023]

\section*{ISOSceles Speedup}

[Yang et al., ISOSceles, HPCA 2023]

\section*{Next Lecture:}

\section*{Sparse Multiplication}```

