Hardware Architectures for Deep Learning

Sparse Matrix Multiplication Accelerator Architecture

April 10, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

Goals of Today's Lecture

- Last lecture, how to systematically understand the translation of sparsity into reductions in energy consumption and processing cycles through dataflows that exploit sparsity for convolution.
- Today, how to systematically understand the translation of sparsity into reductions in energy consumption and processing cycles through dataflows that exploit sparsity for matrix multiply.

Resources

- Course notes: Chapter 8.2 and 8.3
- Extensor: Hegde, Pellauer, Crago, Jaleel, Solomonik, Emer, Fletcher, "ExTensor: An Accelerator for Sparse Tensor Algebra", MICRO 2019
- OuterSPACE: Pal, Beaumont, Park, Amarnath, Feng, Chakrabarti, Kim, Blaauw, Mudge, Dreslinski. "OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator." HPCA, 2018.
- Gamma: Zhang, Attaluri, Emer, Sanchez. "Gamma: leveraging Gustavson's algorithm to accelerate sparse matrix multiplication." ASPLOS 2021.
- EIE: Han, Liu, Mao, Pu, Pedram, Horowitz, Dally. "EIE: efficient inference engine on compressed deep neural network". ISCA 2016.
- TeAAL: Nayak, Odemuyiwa, Ugare, Fletcher, Pellauer, Emer. "TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators". Micro 2023.

FC: Exploiting Sparse Inputs \& Sparse Weights

Fully-Connected (FC) Layer

Einsum for FC

$$
\begin{gathered}
O_{n, m, p, q}=I_{n, c, p+r, q+s} \times F_{m, c, r, s} \\
\text { with } R=H, S=W \\
O_{n, m, p, q}=I_{n, c, p+h, q+w} \times F_{m, c, h, w} \\
\text { note } P=1, Q=1 \rightarrow p=0, q=0 \\
O_{n, m}=I_{n, c, h, w} \times F_{m, c, h, w} \\
\text { flatten } c, h, w \rightarrow c h w \\
O_{n, m}=I_{n, c h w} \times F_{m, c h w}
\end{gathered}
$$

FC as Matrix Multiplication

$$
\begin{gathered}
O_{n, m}=I_{n, c h w} \times F_{m, c h w} \\
\text { relabel } n \rightarrow m, m \rightarrow n, c h w \rightarrow k \\
O_{m, n}=I_{m, k} \times F_{n, k} \\
\text { relabel } O \rightarrow Z, I \rightarrow A, F \rightarrow B \\
Z_{m, n}=A_{m, k} \times B_{n, k}
\end{gathered}
$$

Einsum -> Sparse Computation

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices -> intersection (\&)

Fiber Intersection

Intersection

$A_{m} \times B_{m}$

$$
\text { for }\left(m,\left(a _v a l, b _v a l\right)\right) \text { in } a \& b:
$$

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices -> intersection (\&)
- Contracted indices -> reduction (+=)

Einsum - Matrix Multiply

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

- Shared indices $->$ intersection ($\&$)
- Contracted indices $->$ reduction (+=)
- Uncontracted indices -> populate output point (<<)

Populate

$$
Z_{m}=A_{m}
$$

Populate

$$
Z_{m}=A_{m} \quad \begin{gathered}
\text { for } m,\left(z_{1} r e f, ~ a _v a l\right) \\
\text { z_ref } \ll=a_{1} v a l
\end{gathered}
$$

Populate+Reduce

$$
Z_{m}=C_{k, m}
$$

$$
\begin{aligned}
& \text { for } k, c_{-} m \text { in c: } \\
& \text { for } m \text {, (z_ref, c_val) in } z _m \ll c_{-} m: \\
& \quad \text { z_ref += c_val }
\end{aligned}
$$

Einsum - Convolution

$$
O_{p, q, m}=I_{c, p+r, q+s} \times F_{m, c, r, s}
$$

- Shared indices -> intersection (\&)
- Contracted indices -> reduction (+=)
- Uncontracted indices -> populate output point(<<)
- Index arithmetic -> projection

Sparse Matrix Multiply - spMspM

spMspM - Loopnest

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

Traversal (s to f): M, N, K
Populate coord in Z_{m} for each non-empty coord in A_{m}

What dataflow is this?

Output stationary

Output Stationary - Animation

Sparse Data Tiling

Fiber Splitting Uniformly in Coordinate Space

Fiber Splitting Uniformly in Coordinate Space

ExTensor

Tensor A - C-Space Split 3x3

Tensor: A+swapped [M, K]

Rank: M

Rank: K

Rank: M1

Rank: K1

Rank: MO

Rank: KO

Tensor A - Split 3x3 (uncompressed)

Tensor: A[K, M]
Rank: M

Tensor B - C-space Split - 3×3

Rank: K1

Rank: NO

Rank: K0

Two-level ExTensor - Loop Nest

$$
Z_{m 1, n 1, m 0, n 0}=A_{m 1, k 1, m 0, k 0} \times B_{n 1, k 1, n 0, k 0}
$$

Two-level ExTensor Animation

Two-level ExTensor - Observations

- Tile corresponds to top two coordinates
- One traversal through the A tiles
- Multiple traversals through the B tiles
- Traversals in A and B stay within a tile and then move to another tile.
- Output tiles created successively
- Note output tile 0,0 is never created.

ExTensor - Concepts

- Hierarchical Sparse Tiling
- Hierarchical Intersection
- Optimized intersection unit

OuterSPACE

OuterSPACE - Einsum

$$
\begin{gathered}
Z_{m, n}=A_{m, k} \times B_{n, k} \\
T_{k, m, n}=A_{k, m} \times B_{k, n} \\
Z_{m, n}=T_{m, n, k}
\end{gathered}
$$

Note: Indices rearranged for improved readability

OuterSPACE - Einsum+Schedule

$$
T_{k, m, n}=A_{k, m} \times B_{k, n}
$$

$$
Z_{m, n}=T_{m, n, k} \quad\left\{\begin{array}{l}
\text { Loop order (s to } \mathrm{f}): \mathrm{M}, \mathrm{~N}, \mathrm{~K} \\
\text { Parallelize across: } \mathrm{K}
\end{array}\right.
$$

OuterSPACE - Loopnest

```
a = Tensor(K,M) # Input A
b = Tensor(K,N) # Input B
t = Tensor(K,M,N) # Temporary
z = Tensor(M,N) # Output
for k, (t_m, (a_m, b_n)) in t_k << (a_k & b_k):
        p-for m, (t_n, a_val) in t_m << a_m:
            for n, (t_ref, b_val) in t_n << b_n:
                    t_ref += a_val * b_val
                                    Intersection
                                    on k for A
                                    and B
for m, (z_n, t_n) in z_m << t_m:
    for n, (z_ref, t_k) in z_n << t_n:
        p-for k, t_val in t_k:
            z_ref += t_val
```


OuterSPACE - Step 1

OuterSPACE - Step 1 - Observations

- Concordant traversal of B
- with multicast use of a B_n element in a step
- Concordant traversal of A
- with parallel access to elements in A_m fiber
- Works on one element of T_k fiber of T matrix at a time
- Parallel append traversal to multiple T_n fibers of T matrix

OuterSPACE - Step 2

OuterSPACE - Step 2 - Observations

- Concordant traversal of T tensor
- with parallel access to elements in T_k fiber
- Concordant traversal of A
- with parallel access to A_m fiber
- Works on one output K matrix at a time
- Parallel append traversal of Z matrix
- But creation order of \mathbf{T} matrix (K,M,N) is different than consumption order ($\mathrm{M}, \mathrm{N}, \mathrm{K}$)!

OuterSPACE - Design

OuterSPACE - Concepts

- Two step process: partial output creation then reducing partial outputs
- Create multiple partial output tiles using outer product
- Efficient format for different traversal orders on creation/consumption of partial result matrices.

Traversing Sparse Tensors

Concordant Traversal - Uncompressed

Traversal order (slowest to fastest): K, M

Tensor: $\mathrm{A}[\mathrm{K}, \mathrm{M}]$
Rank: M

Rank: K

Discordant Traversal - Uncompressed

Traversal order (slowest to fastest): K,M

```
Tensor: A[K, M]
```

Rank: M

Rank: K

Any difficulties with the pattern?
Not good with block memory reads

Traversal - Flattened

Traversal order (slowest to fastest): K,M

```
Tensor: A-flattened[KM]
Rank: KM
\begin{tabular}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}
```

Traversal order (slowest to fastest): M,K

Concordant Traversal - Fibertree

Traversal order (slowest to fastest): K, M

Tensor: $\mathrm{A}[\mathrm{K}, \mathrm{M}]$

Discordant Traversal - Fibertree

Traversal order (slowest to fastest): M, K

Tensor: A[K, M]

Rank Swizzle/Merger

Tensor: $\mathrm{A}[\mathrm{K}, \mathrm{M}]$

Rank: K

Rank: M

Take lowest untaken coordinate in input M-fibers and place into result at location with coordinates reversed

Gamma

Gamma Dataflow

$$
Z_{m, n}=A_{m, k} \times B_{n, k}
$$

$$
Z_{m, n}=T_{m, n, k} \times A_{k, m}
$$

*Not modelled

Gamma Loopnest (no M parallelism)

```
a = Tensor(M,K) # Input A
b = Tensor(K,N) # Input B
t = Tensor(M,K,N) # Temporary
z = Tensor(M,N) # Output
for m, (t_k, a_k) in t_m << a_m:
    p-for k, (t_n, (a_val, b_n)) in t_k << (a_k & b_k):
        for n, (t_ref, b_val) in t_n << b_n:
            t_ref <<= b_val
# swizzle ranks of t here...
for m, (z_n, (t_n, a_k)) in z_m << (t_m & a_m):
    for n, (z_ref, t_k) in z_n << t_n:
        for k, (t_val, a_val) in t_k & a_k:
            z_ref += t_val * a_val
```


Gamma - Step 1

$$
T_{m, k, n}=\operatorname{right}\left(A_{m, k}, B_{k, n}\right)
$$

Traversal (s to f): M, K, N
Parallel K, M*

*Not modelled

Gamma - Step 1 - Observations

- There is a single concordant traversal of A
- The same B_n fibers are fetched multiple times.
- For each specific M, the processing is parallel across K
- And the T_n fibers below are created concordently
- Thus, creating T in a manner that allows for it to be rank swizzled

Gamma - Rank Swizzled T

T[M,K,N]

Since elements of each K fiber in $T[M, K, N]$ are processed in parallel and elements in N fibers are created concordantly, the head elements needed for the swizzle are available!

Gamma - Step 2

$$
Z_{m, n}=T_{m, n, k} \times A_{k, m}
$$

Traversal (s to f): M, N, K

Parallel M*

*Not modelled

Gamma - Step 2 - Observations

- Exactly one concordant traversal of (swizzled) T tensor
- Concordant traversal of (swizzled) T that means it can be created in pipeline and consumed immediately without being held in its entirety in a buffer.
- Note that A_k fibers are re-read repeatedly but are small since they are post-intersection.
- Output Z is created concordantly

Gamma - Block Diagram

- Send to merger
- Merge to swizzle ranks
- Fetch $A_{m, k}$ for $B_{k, n}$ and multiply
- Accumulate products for $A_{m, n}$

Key: $A_{m, k} B_{k, n} Z_{m, n}$

- Save result

Conventional caches suffer from dependent reads

Decoupled implicit data orchestration

FiberCache decouples read roundtrips and memory latencies

Preprocessing matrix A for GAMMA

§selective coordinate-space tiling

Ω Affinity-based row reordering

Gamma Concepts

- Pipeline computations with small intermediate storage
- Use parallelism/merger to do pipelined rank swizzle
- Decoupled/implicit fibercache to hold B fibers that might be reused
- Reorder A to maximize effectiveness of fibercache

TeAAL - Modeling Sparse Dataflows

TeAAL - Eyeriss Design

Eyeriss [JSSC2017]

TeAAL - Matrix Multiplication Designs

einsum:

declaration :
$\mathrm{A}:[\mathrm{K}, \mathrm{M}]$
B: $[K, N]$
T: $[\mathrm{K}, \mathrm{M}, \mathrm{N}]$
$\mathrm{Z}:[\mathrm{M}, \mathrm{N}]$
expressions :
$-\mathrm{T}[\mathrm{k}, \mathrm{m}, \mathrm{n}]=\operatorname{takc}(\mathrm{A} \mid \mathrm{k}, \mathrm{m}], \mathrm{B} \mid \mathrm{k}, \mathrm{n}], 1)$ $-Z[m, n]=T[k, m, n] * A[k, m]$

mapping:

rank-order:
A: $[\mathrm{M}, \mathrm{K}]$
$\mathrm{B}:[\mathrm{K}, \mathrm{N}]$
T: $[\mathrm{M}, \mathrm{K}, \mathrm{N}]$
$\mathrm{Z}: ~[\mathrm{M}, \mathrm{N}]$
partitioning :
T:
M: |uniform_occupancy(A.32)|
K: [uniform_occupancy(A.64)]
Z:
M: |uniform_occupancy(A.32)|
K : [uniform_occupancy(A.64)] loop-order:
T: [M1, M0, K1, K0, N]
Z: [M1, M0, K1, N, K0]
spacetime:
T:
space: [M0, K1]
time: [M1, K0, N]

7:

space: [M0, K1]
time: [M1, N, K0]
(a) Gamma accelerator [50].

1 einsum:
declaration :
A: $[K, M]$
B: $[\mathrm{K}, \mathrm{N}]$
Z: $[\mathrm{M}, \mathrm{N}]$
expressions :
$-\mathrm{Z}[\mathrm{m}, \mathrm{n}]=\mathrm{A}[\mathrm{k}, \mathrm{m}] * \mathrm{~B}[\mathrm{k}, \mathrm{n}]$

8 mapping:

rank-order:
$\mathrm{A}:[\mathrm{K}, \mathrm{M}]$
B: $[K, N]$
Z: $[\mathrm{M}, \mathrm{N}]$
partitioning
Z:
K:

- uniform_shape(K1)
- uniform_shape(K0)

M:

- uniform_shape(M1)
- uniform_shape(M0)
$\mathrm{N}:$
- uniform_shape(N1)
- uniform_shape(NO)
loop-order:
7: [N2, K2, M2, M1, N1, K1, M0, N0, K0] spacetime:
7:
space: [K1]
time: [N2, K2, M2, M1, N1, M0, N0, K0]
(b) ExTensor accelerator [14].

```
einsum:
    declaration :
        A: [K, M]
        B: [K,N]
        T: [K,M]
        Z: [M,N]
    expressions:
    -T[k,m]=\operatorname{take}(A[k,m],B[k,n],0)
        - Z[m, n] = T[k,m]*B[k, n]
mapping:
    rank-order:
        A: [K, M]
        B: [K, N]
        T: [K, M]
        T: [K,M]
        Z: [M,N]
        partitioning :
        Z:
            K: [uniform_shape(128)]
            (M, K0): [ flatten O]
            MK0: [uniform_occupancy(T.16384)]
        loop-order:
            T: [K, M]
            Z: [K1, MK01, N, MK00]
spacetime:
    T:
            space: []
            time: [K, M]
        Z:
            space: [MK00]
            time: [K1, MK01, M]
```

(c) SIGMA accelerator [34].

Modeling Infrastructure

Summary

spMspM dataflows

$$
Z_{m, n}=\sum_{k} A_{m, k} B_{k, n}
$$

spMspM dataflows

Speedups over Intel MKL on common-set matrices

EIE

EIE

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format (i.e., CSC format)
- Read relative column when input is non-zero

Supports Fully Connected Layers Only

PE Architecture

[EIE, Han et al., ISCA 2016]

Summary

- Design attributes of spMspM accelerators:
- Data can be tiled to improve locality
- Sparse data makes intersection an explicit operation
- Intersection can be hierarchical - intersecting at higher levels of the fibertree
- There are three major dataflows for spMspM
- spMspM can be broken into multiple pipelined stages
- Rank swapping can be required to achieve concordant traversals
- Rank swapping can be implemented with a "merge" unit
- Data movement can be optimized via data format selection
- Data movement can be reduced with explicit-decoupled caching
- Most of the above can be expressed as a scheduled Einsum
- A loop nest implementation can be inferred from a scheduled Einsum
- Lots of interesting variations in spMspM acceleration!

Thank You

