6.5930/1

Hardware Architectures for Deep Learning

Sparse Matrix Multiplication Accelerator Architecture

April 10, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

14117

Goals of Today's Lecture

- Last lecture, how to systematically understand the translation of sparsity into reductions in energy consumption and processing cycles through dataflows that exploit sparsity for convolution.
- Today, how to systematically understand the translation of sparsity into reductions in energy consumption and processing cycles through dataflows that exploit sparsity for matrix multiply.

Resources

- Course notes: Chapter 8.2 and 8.3
- Extensor: Hegde, Pellauer, Crago, Jaleel, Solomonik, Emer, Fletcher, "ExTensor: An Accelerator for Sparse Tensor Algebra", MICRO 2019
- OuterSPACE: Pal, Beaumont, Park, Amarnath, Feng, Chakrabarti, Kim, Blaauw, Mudge, Dreslinski. "OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator." HPCA, 2018.
- **Gamma:** Zhang, Attaluri, Emer, Sanchez. "Gamma: leveraging Gustavson's algorithm to accelerate sparse matrix multiplication." *ASPLOS 2021.*
- EIE: Han, Liu, Mao, Pu, Pedram, Horowitz, Dally. "EIE: efficient inference engine on compressed deep neural network". ISCA 2016.
- **TeAAL:** Nayak, Odemuyiwa, Ugare, Fletcher, Pellauer, Emer. "TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators". Micro 2023.

FC: Exploiting Sparse Inputs & Sparse Weights

Fully-Connected (FC) Layer

Einsum for FC

$$O_{n,m,p,q} = I_{n,c,p+r,q+s} \times F_{m,c,r,s}$$
with $R = H, S = W$

$$O_{n,m,p,q} = I_{n,c,p+h,q+w} \times F_{m,c,h,w}$$
note $P = 1, Q = 1 \rightarrow p = 0, q = 0$

$$O_{n,m} = I_{n,c,h,w} \times F_{m,c,h,w}$$
flatten $c, h, w \rightarrow chw$

$$O_{n,m} = I_{n,chw} \times F_{m,chw}$$

$$O_{n,m} = I_{n,chw} \times F_{m,chw}$$

relabel
$$n \to m, m \to n, chw \to k$$

$$O_{m,n} = I_{m,k} \times F_{n,k}$$

relabel
$$0 \rightarrow Z, I \rightarrow A, F \rightarrow B$$

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$

Einsum -> Sparse Computation

Einsum – Matrix Multiply

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$

[TACO, Kjolstad et.al., ASE 2017] [Timeloop, Parashar et.al., ISPASS 2019]

Einsum – Matrix Multiply

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$

Shared indices -> intersection (&)

[TACO, Kjolstad et.al., ASE 2017] [Timeloop, Parashar et.al., ISPASS 2019]

Fiber Intersection

Intersection

Einsum – Matrix Multiply

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$

- Shared indices -> intersection (&)
- Contracted indices -> reduction (+=)

[TACO, Kjolstad et.al., ASE 2017] [Timeloop, Parashar et.al., ISPASS 2019]

Einsum – Matrix Multiply

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$

- Shared indices -> intersection (&)
- Contracted indices -> reduction (+=)
- Uncontracted indices -> populate output point (<<)

Populate

$$Z_m = A_m$$

Populate

for m, (z_ref, a_val) in z << a:
 z_ref <<= a_val</pre>

Populate+Reduce

Einsum - Convolution

$$O_{p,q,m} = I_{c,p+r,q+s} \times F_{m,c,r,s}$$

- Shared indices -> intersection (&)
- Contracted indices -> reduction (+=)
- Uncontracted indices -> populate output point(<<)
- Index arithmetic -> projection

Sparse Matrix Multiply - spMspM

L18-19

spMspM – Loopnest

1411

Output Stationary - Animation

Sparse Data Tiling

L18-22

L18-27

ExTensor

Tensor A – C-Space Split 3x3

Tensor A – Split 3x3 (uncompressed)

Tensor: A[K, M]	Rank: M									
			0		3			6		
		0	1	2	3	4	5	6	7	8
Rank: K	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	4	0	0	0	0
	3	0	5	0	4	0	0	0	0	0
3	4	0	0	5	0	0	5	0	3	0
	5	0	0	0	3	0	0	0	0	0
	6	0	0	0	0	2	3	0	2	0
6	7	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	5

Tensor B – C-space Split – 3x3

Two-level ExTensor – Loop Nest

[Extensor, Hegde, et.al., MICRO 2019]

Two-level ExTensor Animation

Two-level ExTensor - Observations

- Tile corresponds to top two coordinates
- One traversal through the A tiles
- Multiple traversals through the B tiles
- Traversals in A and B stay within a tile and then move to another tile.
- Output tiles created successively
- Note output tile 0,0 is never created.

ExTensor - Concepts

- Hierarchical Sparse Tiling
- Hierarchical Intersection
- Optimized intersection unit

OuterSPACE

L18-36

$$Z_{m,n} = A_{m,k} \times B_{n,k}$$
$$I_{k,m,n} = A_{k,m} \times B_{k,n}$$
$$Z_{m,n} = T_{m,n,k}$$

Note: Indices rearranged for improved readability

OuterSPACE – Einsum+Schedule

Note: Indices rearranged for improved readability

*Tiling not modeled

OuterSPACE – Loopnest

L18-39

OuterSPACE – Step 1

OuterSPACE – Step 1 - Observations

- Concordant traversal of B
 - with multicast use of a B_n element in a step
- Concordant traversal of A
 - with parallel access to elements in A_m fiber
- Works on one element of T_k fiber of T matrix at a time
- Parallel append traversal to multiple T_n fibers of T matrix

OuterSPACE – Step 2

OuterSPACE – Step 2 - Observations

- Concordant traversal of T tensor
 - with parallel access to elements in T_k fiber
- Concordant traversal of A
 - with parallel access to A_m fiber
- Works on one output K matrix at a time
- Parallel append traversal of Z matrix

 But creation order of T matrix (K,M,N) is different than consumption order (M,N,K)!

OuterSPACE - Design

[OuterSPACE, Pal, et.al., HPCA 2018]

OuterSPACE - Concepts

- Two step process: partial output creation then reducing partial outputs
- Create multiple partial output tiles using outer product
- Efficient format for different traversal orders on creation/consumption of partial result matrices.

L18-46

Traversing Sparse Tensors

Concordant Traversal - Uncompressed

Traversal order (slowest to fastest): K, M

Discordant Traversal - Uncompressed

Traversal order (slowest to fastest): K,M

Any difficulties with the pattern? Not good with block memory reads

Traversal - Flattened

Traversal order (slowest to fastest): K,M

Traversal order (slowest to fastest): M,K

Rank: KM
0 1 2 3 4 5 6 7 8 9 10 11
0 3 0 3 2 3 1 3 5 0 1 0

Concordant Traversal - Fibertree

Traversal order (slowest to fastest): K, M

Discordant Traversal - Fibertree

Traversal order (slowest to fastest): M,K

Rank Swizzle/Merger

Take lowest untaken coordinate in input M-fibers and place into result at location with coordinates reversed

Gamma

L18-53

Gamma Dataflow

Gamma Loopnest (no M parallelism)

a = Tensor(M,K) # Input A b = Tensor(K,N) # Input B t = Tensor(M,K,N) # Temporary z = Tensor(M,N) # Output for m, (t_k, a_k) in t_m << a_m:</pre> p-for k, $(t_n, (a_val, b_n))$ in $t_k << (a_k \& b_k)$: for n, (t_ref, b_val) in t_n << b n:</pre> t_ref <<= b_val # swizzle ranks of t here ... for m, (z_n, (t_n, a_k)) in z_m << (t_m & a_m):</pre> for n, (z_ref, t_k) in z_n << t_n:</pre> for k, (t_val, a_val) in t_k & a_k: z_ref += t val * a_val

Gamma - Step 1

$$T_{m,k,n} = right(A_{m,k}, B_{k,n})$$

Traversal (s to f): M, K, N

Parallel K, M*

Gamma – Step 1 - Observations

- There is a single concordant traversal of A
- The same B_n fibers are fetched multiple times.

- For each specific M, the processing is parallel across K
 - And the T_n fibers below are created concordently
 - Thus, creating T in a manner that allows for it to be rank swizzled

Gamma - Rank Swizzled T

T[M,K,N]

Since elements of each K fiber in T[M,K,N] are processed in parallel and elements in N fibers are created concordantly, the head elements needed for the swizzle are available!

Gamma – Step 2

$$Z_{m,n} = T_{m,n,k} \times A_{k,m}$$

*Not modelled

Traversal (s to f): M, N, K

Parallel M*

Gamma – Step 2 - Observations

- Exactly one concordant traversal of (swizzled) T tensor
- Concordant traversal of (swizzled) T that means it can be created in pipeline and consumed immediately without being held in its entirety in a buffer.
- Note that A_k fibers are re-read repeatedly but are small since they are post-intersection.
- Output Z is created concordantly

Gamma – Block Diagram

- Send to merger
- Merge to swizzle ranks
- Fetch A_{m,k} for B_{k,n} and multiply
- Accumulate products for A_{m,n}
- Save result

Key: $A_{m,k}$ $B_{k,n}$ $Z_{m,n}$

[Gamma, Zhang, et.al., ASPLOS 2021]

٠

٠

٠

1411

Conventional caches suffer from dependent reads

Decoupled implicit data orchestration

11117

FiberCache decouples read roundtrips and memory latencies

Preprocessing matrix A for GAMMA

L18-65

Gamma Concepts

- Pipeline computations with small intermediate storage
- Use parallelism/merger to do pipelined rank swizzle
- Decoupled/implicit fibercache to hold B fibers that might be reused
- Reorder A to maximize effectiveness of fibercache

TeAAL – Modeling Sparse Dataflows

L18-67

TeAAL - Eyeriss Design

Eyeriss [JSSC2017]

TeAAL - Matrix Multiplication Designs

einsum:

cinsum:
declaration :
A: [K, M]
B: [K, N]
T: [K, M, N]
Z: [M, N]
expressions :
-T[k,m,n] = take(A[k,m], B[k,n], 1)
- Z[m,n] = T[k,m,n] * A[k,m]
mapping:
rank-order:
A: [M, K]
B: [K, N]
T: [M, K, N]
Z: [M, N]
partitioning :
T:
M: [uniform_occupancy(A.32)]
K: [uniform_occupancy(A.64)]
Z:
M: [uniform_occupancy(A.32)]
K: [uniform_occupancy(A.64)]
loop-order:
T: [M1, M0, K1, K0, N]
Z: [M1, M0, K1, N, K0]
spacetime:
T:
space: [M0, K1]
time: [M1, K0, N]
Z:
space: [M0, K1]
time: [M1, N, K0]
(a) Commo accolorator [50]

(a) Gamma accelerator [50].

1 0	einsum:
2	declaration :
3	A: [K, M]
4	B: [K, N]
5	and the second se
6	expressions :
7	-Z[m,n] = A[k,m] * B[k,n]
8	mapping:
9	rank-order:
10	A: [K, M]
11	B: [K, N]
12	Z: [M, N]
13	partitioning :
14	Z:
15	K:
16	 uniform_shape(K1)
17	 uniform_shape(K0)
18	M:
19	 uniform_shape(M1)
20	 uniform_shape(M0)
21	N:
22	– uniform_shape(N1)
23	 uniform_shape(N0)
24	loop-order:
25	Z: [N2, K2, M2, M1, N1, K1, M0, N0, K0]
26	spacetime:
27	7:
28	space: [K1]
29	time: [N2, K2, M2, M1, N1, M0, N0, K0]

(b) ExTensor accelerator [14].

1 e	insum:
2	declaration :
3	A: [K, M]
4	B: [K, N]
5	T: [K, M]
6	Z: [M, N]
7	expressions :
8	-T[k, m] = take(A[k, m], B[k, n], 0)
9	-Z[m, n] = T[k, m] * B[k, n]
10 n	happing:
11	rank-order:
12	A: [K, M]
13	B: [K, N]
14	T: [K, M]
15	Z: [M, N]
16	partitioning :
17	Z:
18	K: [uniform_shape(128)]
19	(M, K0): [flatten ()]
20	MK0: [uniform_occupancy(T.16384)]
21	loop-order:
22	T: [K, M]
23	Z: [K1, MK01, N, MK00]
24	spacetime:
25	T:
26	space: []
27	time: [K, M]
28	Z:
29	space: [MK00]
30	time: [K1, MK01, M]
	(c) SIGMA accelerator [34].

[Nayak, TeAAL, MICRO2023] Sze and Emer

Modeling Infrastructure

Summary

spMspM dataflows

14112

spMspM dataflows

Speedups over Intel MKL on common-set matrices

L18-75

L18-76

EIE

Phir

EIE: A Sparse Linear Algebra Engine

- Process Fully Connected Layers (after Deep Compression)
- Store weights column-wise in Run Length format (i.e., CSC format)
- Read relative column when input is non-zero

Supports Fully Connected Layers Only

l'li**r**

PE Architecture

[EIE, Han et al., ISCA 2016]

L18-78

Plii

Summary

- Design attributes of spMspM accelerators:
 - Data can be tiled to improve locality
 - Sparse data makes intersection an explicit operation
 - Intersection can be hierarchical intersecting at higher levels of the fibertree
 - There are three major dataflows for spMspM
 - spMspM can be broken into multiple pipelined stages
 - Rank swapping can be required to achieve concordant traversals
 - Rank swapping can be implemented with a "merge" unit
 - Data movement can be optimized via data format selection
 - Data movement can be reduced with explicit-decoupled caching
- Most of the above can be expressed as a scheduled Einsum
- A loop nest implementation can be inferred from a scheduled Einsum
- Lots of interesting variations in spMspM acceleration!

Thank You