
L18-1

6.5930/1
Hardware Architectures for Deep Learning

Sparse Matrix Multiplication
Accelerator Architecture

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

April 10, 2024

L18-2

Sze and Emer

Goals of Today’s Lecture

• Last lecture, how to systematically understand the translation of sparsity into
reductions in energy consumption and processing cycles through dataflows
that exploit sparsity for convolution.

• Today, how to systematically understand the translation of sparsity into
reductions in energy consumption and processing cycles through dataflows
that exploit sparsity for matrix multiply.

April 10, 2024

L18-3

Sze and Emer

Resources

• Course notes: Chapter 8.2 and 8.3

• Extensor: Hegde, Pellauer, Crago, Jaleel, Solomonik, Emer, Fletcher, “ExTensor: An
Accelerator for Sparse Tensor Algebra”, MICRO 2019

• OuterSPACE: Pal, Beaumont, Park, Amarnath, Feng, Chakrabarti, Kim, Blaauw, Mudge,
Dreslinski. “OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator.”
HPCA, 2018.

• Gamma: Zhang, Attaluri, Emer, Sanchez. “Gamma: leveraging Gustavson’s algorithm to
accelerate sparse matrix multiplication.” ASPLOS 2021.

• EIE: Han, Liu, Mao, Pu, Pedram, Horowitz, Dally. “EIE: efficient inference engine on
compressed deep neural network”. ISCA 2016.

• TeAAL: Nayak, Odemuyiwa, Ugare, Fletcher, Pellauer, Emer. “TeAAL: A Declarative
Framework for Modeling Sparse Tensor Accelerators”. Micro 2023.

April 10, 2024

L18-4

Sze and EmerApril 10, 2024

FC: Exploiting Sparse Inputs &
Sparse Weights

L18-6

Sze and Emer

Einsum for FC

April 10, 2024

𝑂𝑂𝑛𝑛,𝑚𝑚,𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑛𝑛,𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

𝑂𝑂𝑛𝑛,𝑚𝑚 = 𝐼𝐼𝑛𝑛,𝑐𝑐,ℎ,𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑐𝑐,ℎ,𝑤𝑤

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑅𝑅 = 𝐻𝐻, 𝑆𝑆 = 𝑊𝑊

𝑂𝑂𝑛𝑛,𝑚𝑚,𝑝𝑝,𝑞𝑞 = 𝐼𝐼𝑛𝑛,𝑐𝑐,𝑝𝑝+ℎ,𝑞𝑞+𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑐𝑐,ℎ,𝑤𝑤

n𝑜𝑜𝑤𝑤𝑜𝑜 𝑃𝑃 = 1,𝑄𝑄 = 1 → 𝑝𝑝 = 0, 𝑞𝑞 = 0

𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤𝑜𝑜𝑓𝑓 𝑐𝑐,ℎ,𝑤𝑤 → 𝑐𝑐ℎ𝑤𝑤

𝑂𝑂𝑛𝑛,𝑚𝑚 = 𝐼𝐼𝑛𝑛,𝑐𝑐ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑐𝑐ℎ𝑤𝑤

L18-7

Sze and Emer

FC as Matrix Multiplication

April 10, 2024

𝑟𝑟𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑜𝑜𝑓𝑓 𝑓𝑓 → 𝑚𝑚,𝑚𝑚 → 𝑓𝑓, 𝑐𝑐ℎ𝑤𝑤 → 𝑘𝑘

𝑂𝑂𝑚𝑚,𝑛𝑛 = 𝐼𝐼𝑚𝑚,𝑘𝑘 × 𝐹𝐹𝑛𝑛,𝑘𝑘

𝑂𝑂𝑛𝑛,𝑚𝑚 = 𝐼𝐼𝑛𝑛,𝑐𝑐ℎ𝑤𝑤 × 𝐹𝐹𝑚𝑚,𝑐𝑐ℎ𝑤𝑤

𝑟𝑟𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑜𝑜𝑓𝑓 𝑂𝑂 → 𝑍𝑍, 𝐼𝐼 → 𝐴𝐴,𝐹𝐹 → 𝐵𝐵

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

L18-8

Sze and EmerApril 10, 2024

Einsum -> Sparse Computation

L18-9

Sze and Emer

Einsum – Matrix Multiply

April 10, 2024

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

[TACO, Kjolstad et.al., ASE 2017]
[Timeloop, Parashar et.al., ISPASS 2019]

L18-10

Sze and Emer

Einsum – Matrix Multiply

April 10, 2024

[TACO, Kjolstad et.al., ASE 2017]
[Timeloop, Parashar et.al., ISPASS 2019]

• Shared indices -> intersection (&)

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

L18-11

Sze and Emer

g

5

a b c d

42 7 8

N

&

e

1

f

2

h

8

N

f

2

h

8

a d

N

Fiber Intersection

April 10, 2024

L18-13

Sze and Emer

Einsum – Matrix Multiply

April 10, 2024

[TACO, Kjolstad et.al., ASE 2017]
[Timeloop, Parashar et.al., ISPASS 2019]

• Shared indices
• Contracted indices

-> intersection (&)

-> reduction (+=)

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

L18-14

Sze and Emer

Einsum – Matrix Multiply

April 10, 2024

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

[TACO, Kjolstad et.al., ASE 2017]
[Timeloop, Parashar et.al., ISPASS 2019]

• Shared indices
• Contracted indices
• Uncontracted indices

-> intersection (&)
-> reduction (+=)

-> populate output point (<<)

L18-15

Sze and Emer

? ? ? ?

21 5 8

e

1

f

2

g

5

h

8

M

<<

M

Populate

April 10, 2024

𝑍𝑍𝑚𝑚 = 𝐴𝐴𝑚𝑚

L18-18

Sze and Emer

Einsum - Convolution

• Shared indices -> intersection (&)
• Contracted indices -> reduction (+=)
• Uncontracted indices -> populate output point(<<)
• Index arithmetic

April 10, 2024

𝑂𝑂𝑝𝑝,𝑞𝑞,𝑚𝑚 = 𝐼𝐼𝑐𝑐,𝑝𝑝+𝑟𝑟,𝑞𝑞+𝑠𝑠 × 𝐹𝐹𝑚𝑚,𝑐𝑐,𝑟𝑟,𝑠𝑠

[Extensor, Hegde, et.al., MICRO 2019]

-> projection

L18-19

Sze and EmerApril 10, 2024

Sparse Matrix Multiply - spMspM

L18-21

Sze and Emer

Output Stationary - Animation

April 10, 2024

L18-22

Sze and EmerApril 10, 2024

Sparse Data Tiling

L18-23

Sze and Emer

0

a

2

c

6

d

7

f

8

i

9

j

Before Split Uniform by 3

S

R

S0

S1

R

Fiber Splitting Uniformly in Coordinate Space

0

0

a

2

c

Extract 0-2

April 10, 2024

L18-24

Sze and Emer

0

a

2

c

6

d

7

f

8

i

9

j

Before Split Uniform by 3

S

R

S0

S1

R

Fiber Splitting Uniformly in Coordinate Space

0

0

a

2

c

Extract 3-5 Nothing to do

April 10, 2024

L18-25

Sze and Emer

0

a

2

c

6

d

7

f

8

i

9

j

Before Split Uniform by 3

S

R

S0

S1

R

Fiber Splitting Uniformly in Coordinate Space

0

0

a

2

c

6

d

7

f

8

i

6

Extract 6-8

April 10, 2024

L18-26

Sze and Emer

0

a

2

c

6

d

7

f

8

i

9

j

Before Split Uniform by 3

S

R

S0

S1

R

Fiber Splitting Uniformly in Coordinate Space

0

0

a

2

c

6

d

7

f

8

i

6 9

9

j

Extract 9-11

April 10, 2024

L18-27

Sze and Emer

0

a

2

c

6

d

7

f

8

i

9

j

Before Split Uniform by 3

S

R

S0

S1

R

Fiber Splitting Uniformly in Coordinate Space

0

0

a

2

c

6

d

7

f

8

i

6 9

9

j

After Split Uniform by 3

April 10, 2024

L18-28

Sze and EmerApril 10, 2024

ExTensor

L18-29

Sze and Emer

Tensor A – C-Space Split 3x3

April 10, 2024

L18-31

Sze and Emer

Tensor B – C-space Split – 3x3

April 10, 2024

L18-33

Sze and Emer

Two-level ExTensor Animation

April 10, 2024

L18-34

Sze and Emer

Two-level ExTensor - Observations

• Tile corresponds to top two coordinates
• One traversal through the A tiles
• Multiple traversals through the B tiles
• Traversals in A and B stay within a tile and then move to

another tile.
• Output tiles created successively
• Note output tile 0,0 is never created.

April 10, 2024

L18-35

Sze and Emer

ExTensor - Concepts

• Hierarchical Sparse Tiling
• Hierarchical Intersection
• Optimized intersection unit

April 10, 2024

L18-36

Sze and EmerApril 10, 2024

OuterSPACE

L18-37

Sze and Emer

OuterSPACE - Einsum

April 10, 2024

𝑇𝑇𝑘𝑘,𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑘𝑘,𝑚𝑚 × 𝐵𝐵𝑘𝑘,𝑛𝑛

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑚𝑚,𝑘𝑘 × 𝐵𝐵𝑛𝑛,𝑘𝑘

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝑇𝑇𝑚𝑚,𝑛𝑛,𝑘𝑘

Note: Indices rearranged for improved readability

L18-38

Sze and Emer

OuterSPACE – Einsum+Schedule

April 10, 2024

𝑇𝑇𝑘𝑘,𝑚𝑚,𝑛𝑛 = 𝐴𝐴𝑘𝑘,𝑚𝑚 × 𝐵𝐵𝑘𝑘,𝑛𝑛

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝑇𝑇𝑚𝑚,𝑛𝑛,𝑘𝑘

Note: Indices rearranged for improved readability

Loop order (s to f): M, N, K

Parallelize across: K

Outer Product

Loop order (s to f) K, M, N

Parallelize across M

*Tiling not modeled

L18-40

Sze and Emer

OuterSPACE – Step 1

April 10, 2024

L18-41

Sze and Emer

OuterSPACE – Step 1 - Observations

• Concordant traversal of B
– with multicast use of a B_n element in a step

• Concordant traversal of A
– with parallel access to elements in A_m fiber

• Works on one element of T_k fiber of T matrix at a time
• Parallel append traversal to multiple T_n fibers of T matrix

April 10, 2024

L18-42

Sze and Emer

OuterSPACE – Step 2

April 10, 2024

L18-43

Sze and Emer

OuterSPACE – Step 2 - Observations
• Concordant traversal of T tensor

– with parallel access to elements in T_k fiber

• Concordant traversal of A
– with parallel access to A_m fiber

• Works on one output K matrix at a time
• Parallel append traversal of Z matrix

• But creation order of T matrix (K,M,N) is different than
consumption order (M,N,K)!

April 10, 2024

L18-44

Sze and Emer

OuterSPACE - Design

April 10, 2024
[OuterSPACE, Pal, et.al., HPCA 2018]

L18-45

Sze and Emer

OuterSPACE - Concepts

• Two step process: partial output creation then reducing
partial outputs

• Create multiple partial output tiles using outer product
• Efficient format for different traversal orders on

creation/consumption of partial result matrices.

April 10, 2024

L18-46

Sze and EmerApril 10, 2024

Traversing Sparse Tensors

L18-47

Sze and Emer

Concordant Traversal - Uncompressed

April 10, 2024

Traversal order (slowest to fastest): K, M

L18-48

Sze and Emer

Discordant Traversal - Uncompressed

April 10, 2024

Traversal order (slowest to fastest): K,M

Any difficulties with the pattern? Not good with block memory reads

L18-49

Sze and Emer

Traversal - Flattened

April 10, 2024

Traversal order (slowest to fastest): K,M

Traversal order (slowest to fastest): M,K

L18-50

Sze and Emer

Concordant Traversal - Fibertree

April 10, 2024

Traversal order (slowest to fastest): K, M

L18-51

Sze and Emer

Discordant Traversal - Fibertree

April 10, 2024

Traversal order (slowest to fastest): M,K

L18-52

Sze and Emer

Rank Swizzle/Merger

April 10, 2024

Take lowest untaken coordinate in input M-fibers and
 place into result at location with coordinates reversed

L18-53

Sze and EmerApril 10, 2024

Gamma

L18-56

Sze and Emer

Gamma - Step 1

April 10, 2024

𝑇𝑇𝑚𝑚,𝑘𝑘,𝑛𝑛 = 𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑤𝑤(𝐴𝐴𝑚𝑚,𝑘𝑘 ,𝐵𝐵𝑘𝑘,𝑛𝑛)

Traversal (s to f): M, K, N

Parallel K, M*

*Not modelled

L18-57

Sze and Emer

Gamma – Step 1 - Observations

• There is a single concordant traversal of A
• The same B_n fibers are fetched multiple times.

• For each specific M, the processing is parallel across K
– And the T_n fibers below are created concordently
– Thus, creating T in a manner that allows for it to be rank swizzled

April 10, 2024

L18-58

Sze and Emer

Gamma - Rank Swizzled T

April 10, 2024

T[M,K,N]

T’[M,N,K]

Since elements of each K fiber in T[M,K,N] are processed in parallel and elements in
N fibers are created concordantly, the head elements needed for the swizzle are available!

L18-59

Sze and Emer

Gamma – Step 2

April 10, 2024

𝑍𝑍𝑚𝑚,𝑛𝑛 = 𝑇𝑇𝑚𝑚,𝑛𝑛,𝑘𝑘 × 𝐴𝐴𝑘𝑘,𝑚𝑚

Traversal (s to f): M, N, K

Parallel M*

*Not modelled

L18-60

Sze and Emer

Gamma – Step 2 - Observations

• Exactly one concordant traversal of (swizzled) T tensor
• Concordant traversal of (swizzled) T that means it can be

created in pipeline and consumed immediately without being
held in its entirety in a buffer.

• Note that A_k fibers are re-read repeatedly but are small
since they are post-intersection.

• Output Z is created concordantly

April 10, 2024

L18-64

FiberCache decouples read roundtrips and memory latencies

FiberCache

Time

Memory PE

…
…

Low roundtrip latency
easy to cover with

small buffers

L18-66

Sze and Emer

Gamma Concepts

• Pipeline computations with small intermediate storage
• Use parallelism/merger to do pipelined rank swizzle
• Decoupled/implicit fibercache to hold B fibers that might be

reused
• Reorder A to maximize effectiveness of fibercache

April 10, 2024

L18-67

Sze and EmerApril 10, 2024

TeAAL – Modeling Sparse Dataflows

L18-69

Sze and Emer

TeAAL - Matrix Multiplication Designs

February 26, 2024
[Nayak, TeAAL, MICRO2023]

L18-71

Sze and EmerApril 10, 2024

Summary

L18-72

Sze and Emer

spMspM dataflows

M
=x

AMxK BKxN ZMxN

KK
M

N
N

for k in [0, K)
 for m in [0, M)
 for n in [0, N)
 Z[m,n] += A[m,k] * B[k,n]

for m in [0, M)
 for n in [0, N)
 for k in [0, K)
 Z[m,n] += A[m,k] * B[k,n]

Output Stationary
Inner-product

A-stationary – Column major
Outer-product

for m in [0, M)
 for k in [0, K)
 for n in [0, N)
 Z[m,n] += A[m,k] * B[k,n]

A-stationary – Row major
Gustavson

𝑍𝑍𝑚𝑚,𝑛𝑛 = �
𝑘𝑘

𝐴𝐴𝑚𝑚,𝑘𝑘𝐵𝐵𝑘𝑘,𝑛𝑛

𝑍𝑍𝑚𝑚 = �
𝑘𝑘

𝑓𝑓𝑚𝑚,𝑘𝑘𝐵𝐵𝑘𝑘

April 10, 2024

L18-74

Speedups over Intel MKL on common-set matrices

MKL
OuterSPACE

SpArch
GAMMA (w/o Preprocessing)
GAMMA (w/ Preprocessing)

L18-75

Sze and EmerApril 10, 2024

EIE

L18-79

Sze and Emer

Summary

• Design attributes of spMspM accelerators:
– Data can be tiled to improve locality
– Sparse data makes intersection an explicit operation
– Intersection can be hierarchical – intersecting at higher levels of the fibertree
– There are three major dataflows for spMspM
– spMspM can be broken into multiple pipelined stages
– Rank swapping can be required to achieve concordant traversals
– Rank swapping can be implemented with a “merge” unit
– Data movement can be optimized via data format selection
– Data movement can be reduced with explicit-decoupled caching

• Most of the above can be expressed as a scheduled Einsum
• A loop nest implementation can be inferred from a scheduled Einsum
• Lots of interesting variations in spMspM acceleration!

April 10, 2024

L18-80

Sze and EmerApril 10, 2024

Thank You

