6.5930/1

Hardware Architectures for Deep Learning

Co-Design of DNN Models and Hardware: Precision

April 17, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology Electrical Engineering & Computer Science

14117

Goals of Today's Lecture

- Lectures on the **co-design of the DNN models and the hardware**
 - Better than what each could achieve alone
 - Unlike previously discussed approaches, these approaches can affect accuracy! \rightarrow Evaluate tradeoff between accuracy and other metrics
- Co-design approaches can be loosely grouped into two categories:
 - Reduce number of operations for storage/compute (Sparsity [Ch. 8] and Efficient Network Architectures [Ch. 9])
 - Reduce size of operands for storage/compute (Reduced Precision [Ch. 7])
- Hardware support required to maximize savings in latency & energy
 - Ensure that overhead of hardware support does not exceed benefits

Benefits of Reduced Precision

[Horowitz, ISSCC 2014]

- Reduced Precision \rightarrow Reduced Bit Width
- Reduce data movement and storage cost for inputs and outputs of MAC operation
 - Store more data (e.g., weights, activation) on chip
 - Smaller memory \rightarrow lower energy
- Reduce cost of MAC operation
 - Cost of multiplication increases with bit width (n)
 - Energy and area by O(n²)
 - Delay by O(n)

Fixed Point Arithmetic

Binary Multiplication

Sze and Emer

Various Bit Widths Within a MAC

Precision of internal values of MAC higher than inputs or outputs

Popular DNNs

Metrics	AlexNet	VGG-16	GoogLeNet (v1)
Input Size	227x227	224x224	224x224
# of CONV Layers	5	16	21 (depth)
Filter Sizes	3, 5,11	3	1, 3 , 5, 7
# of Channels	3 - 256	3 - 512	3 - 1024
# of Filters	96 - 384	64 - 512	64 - 384
# of Weights	2.3M	14.7M	6.0M
# of MACs	666M	15.3G	1.43G
# of FC layers	3	3	1
# of Weights	58.6M	124M	1M
# of MACs	58.6M	124M	1M
Max Weights per Filter (RSC)	9216	25088	1728
Minimum additional bits [log ₂ (RSC)]	14	15	11

For no loss in precision, [log₂(RSC)] is determined based on largest filter size

Determining the Bit Width

How do we determine the number of bits for the input activations (n_i) , weights (n_f) , and partial sums?

Quantization

Map data to a small set of quantization levels (e.g., L = 4) q_i = quantization values d_i = decision boundaries q_0 q_3 d_0 d_3 d₁ d_4 d_2 X 2 8 12 0 4 6 10 14 16 Quantization *x* = 1, 3, 7, 8, 9, 15, 6, 2 - $\rightarrow \hat{x} = 2, 2, 6, 10, 10, 14, 6, 2$ Q(•)

Quantization

Goal: Minimize the error between the reconstructed data from the quantization levels and the original data.

 q_i = quantization values d_i = decision boundaries

 $x_{min} \leq x \leq x_{max},$

L= number of quantization levels $p_x(x_o)$: probability density function of x

Optimally choose q_i and d_i $\min_{q_i, d_i} E[(x - \hat{x})^2] = \int_{x_o = x_{min}}^{x_{max}} (\hat{x} - x_o)^2 \cdot p_x(x_o) \cdot dx_o$ (quantization noise)

ИТ

Example

L19-12

- The *number of quantization levels* reflects the precision and ultimately the *number of bits* required to represent the data
 - Usually, log_2 of the number of levels
- *"Reduced precision"* refers to reducing the number of levels (values), and thus the number of bits
 - The benefits of reduced precision include reduced storage cost and/or reduced computation requirements
 - Can also increase throughput (recall vector lecture)
- Range of values also matters
 - Ratio of the largest and smallest non-zero value (magnitude) (i.e., x_{max}/x_{min})
 - To support a wide range, can increase the number of quantization levels or add scale factor (a form of non-uniform quantization)

Example: Uniform vs. Scale factor

Phir

Uniform: $q_i = 44000 \times i/16$ **Scale factor:** $q_i = (4^{i/2+1} - 4^{i/2}) \times (i\%2)/8 + 4^{i/2} - 1$

i	q_i - uniform	q_i - scale factor
0	0	0
1	2750	1.5
2	5500	3
3	8250	9
4	11000	15
5	13750	39
6	16500	63
7	19250	159
8	22000	255
9	24749	639
10	27499	1023
11	30249	2559
12	32999	4095
13	35749	10239
14	38499	16383
15	41249	40959

Original Multiplication

Quantized Multiplication

 $max(|x_f|)$

127

• Symmetric mode vs. Asymmetric mode

-128

 $-max(|x_f|)$

- DoReFa (clip act to [0,1])
- ReLU6 (clip act to [0,6])
- PACT (clip act to [0, α], where α is learned)

Source: https://intellabs.github.io/distiller/algo_quantization.html

Standard Components of the Bit Width

- Range of values
 - e.g., n_E -bits to scale values by $2^{(E-127)}$
- # of unique values per scale factor
 - e.g., n_M-bits to represent 2^M values
- Signed or unsigned values
 - e.g., signed (S) requires one bit (n_S=1)
- Total bits = $n_s + n_E + n_M$
- Floating point (FP) allows range to change for each value (n_E-bits)
- Fixed point (Int) has fixed range
- Default CPU/GPU is 32-bit float (FP32)

Common Numerical Representations

Image Source: B. Dally

Fixed-Point Format

When range is limited, a simple fixed-point format can be used. For instance, 8-bit fixed (-128 to 127)

Components of a fixed-point number

Mantissa (m): number of levels Sign (s): indicates if number is positive or negative

Plii

Fixed-Point Format

When range is limited, a simple fixed-point format can be used. For instance, 8-bit fixed (-127 to 128)

Components of a fixed-point number

Mantissa (m): number of levels Sign (s): indicates if number is positive or negative

14117

Floating-Point Format

To support a wide range, the default format in most CPUs and GPUs is 32-bit float (10⁻³⁸ to 10³⁸)

Components of a floating-point number

Mantissa (m): number of levels Exponent (e): scale to a target range (location of binary point *varies*) Sign (s): indicates if number is positive or negative

$$(-1)^s \times m \times 2^{(e-127)}$$

1111

Floating Point Arithmetic

Multiplier Example: $C = A \times B$

• **Different precision for different data types**, since different data types have different distributions

- For inference: weights, activations, and partial sums
- For training: weights, activations, partial sums, gradients, and weight update

Mixed Precision for Training

Weight update kept a full precision (FP32) while other variables are at half precision (FP16)

14117

Modified figure from [Narang, ICLR 2018]

Reduce Mantissa Bits (M)

- Reduce number of unique values
- Uniform quantization (values are equally spaced out) [default]
- **Non-uniform quantization** (spacing can be computed, e.g., logarithmic, or with look-up-table)
- Fewer unique values can make transforms and compression more effective

Non-Uniform Quantization

- Precision refers to the number of levels
 - Number of bits = log_2 (number of levels)
- Quantization refers to mapping data to a smaller set of levels
 - Uniform, e.g., fixed point
 - Non-Uniform
 - Constrained (computed as a function of binary value) e.g., log
 - Unconstrained (arbitrary relation between values) e.g., learned from opt

Objective: Reduce size to improve speed and/or reduce energy while preserving accuracy

Computed Non-Uniform Quantization

Log Domain Quantization

[Lee, LogNet, ICASSP 2017]

|4**1**17

Log Domain Computation

L19-26

Log Domain Quantization

- Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
- Accuracy loss: 3.2% on AlexNet

[**Miyashita**, *arXiv* 2016], [**Lee**, LogNet, *ICASSP* 2017]

Learned mapping of data to quantization levels (e.g., k-means)

- Additional Properties
 - Fixed or Variable (across data types, layers, channels, etc.)

Non-Uniform Quantization Table Lookup

Learned Quantization: Find U weights via k-means clustering to reduce number of unique weights *per layer* (weight sharing)

Consequences: Narrow weight memory and second access from (small) table Energy savings if reading from: mem(CRSMxlog₂U) + mem(Ux16) < mem(CRSMx16b)

Precision Taxonomy

- Uniform Quantization
 - Direct binary value (i.e., integer)
 - Fixed binary point (i.e., fixed point)
- Non-uniform Quantization
 - Constrained (a function of binary value) e.g., log
 - Unconstrained (arbitrary relation between values) e.g., learned from opt
 - Scaled binary value (e.g., floating point)

Mantissa (M) and Exponent Bits (E)

Tradeoff between number of bits allocated to M-bits and E-bits

Bfloat16 increases number of bits for exponents (equal to FP32) to support wider range (important for gradient) at a cost of fewer unique values

Precision Taxonomy

- Uniform Quantization
 - Direct binary value (i.e., integer)
 - Fixed binary point (i.e., fixed point)
- Non-uniform Quantization
 - Constrained (a function of binary value) e.g., log
 - Unconstrained (arbitrary relation between values) e.g., learned from opt
 - Scaled binary value (e.g., floating point)
- "Shared" values and/or hardware
 - Exponent (e.g., dynamic fixed point)

Eliminate Exponent Bits (E)

- Share range across group of values (e.g., weights for a layer or channel)
 - Referred to as block floating point or dynamic fixed point
 - Reduces storage and compute requirements
- The range can change for
 - Different types of data (e.g., activations, weights)
 - Different layers (e.g., CONV, FC)

Something in between fixed point and floating point \rightarrow Dynamic fixed point!

Dynamic Fixed-Point Format

Components of a dynamic fixed-point number

Mantissa (m): number of levels Scale factor (f): location of binary point Sign (s): indicates if number is positive or negative

Allow *f* to be vary for different groups of variables; *f* cannot change for each variable like floating point

[D. Williamson, Dynamically scaled fixed point arithmetic. 1991]

Impact on Accuracy

Varying Exponent Bias

- Allow *exponent bias* to be configurable
- AdaptivFloat [Tambe, DAC 2020]
 - Divides up exponent scale factor into two parts
 - 1. 'e' changes per value (i.e., floating point)
 - 2. Bias changes per layer (i.e., dynamic fixed point except at layer granularity)
- Configurable Float (CFloat8 & CFloat16) [Telsa Dojo 2021]
 - Fully configurable exponent bias (6-bits for CFloat8)
 - Two different methods of partitioning bits between mantissa and exponents
- Can repeatedly divide values into shared and unshared values → Fractal

L19-36

Nvidia PASCAL

"New half-precision, **16-bit** floating point instructions deliver over 21 TeraFLOPS for unprecedented training performance. With 47 TOPS (teraoperations per second) of performance, new 8-bit integer instructions in Pascal allow Al algorithms to deliver real-time responsiveness for deep learning inference."

- Nvidia.com (April 2016)

Mixed Precision in Nvidia GPUs

A100 TENSOR CORE

	INP	UT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA	SPARSE TOPS	SPARSE X-factor vs. FFMA
V100	FP32		FP32		15.7	1x	•	
	FP16		FP32		125	8x	-	-
A100	FP32		FP32	000000000000000000000000000000000000000	19.5	1x	-	
	TF32		FP32		156	8x	312	16x
	FP16		FP32		312	16x	624	32x
	BF16		FP32		312	16x	624	32x
	FP16		FP16	00000101000	312	16x	624	32x
	INT8	00000	INT32		624	32x	1248	64x
	INT4		INT32		1248	64x	2496	128x
	BINARY		INT32		4992	256x	V100->A100	
	IEEE FP64 common and an			19.5	1x	for HPC		

FFMA= floating point fused multiply-add

Source: Nvidia (May 2020)

Google's Tensor Processing Unit (TPU)

"With its TPU Google has seemingly focused on delivering the data really quickly by **cutting down on precision**. Specifically, it doesn't rely **on floating point precision like a GPU**

Instead, the chip uses integer math...TPU used **8-bit integer**."

- Next Platform (May 19, 2016)

accumulators are 32-bits

Quantization in TensorFlow Lite (TFLite)

TFLite has support for 8-bit quantization

IIIii

Performance of MobileNet

L19-40

[**Jacob**, *CVPR* 2018]

Quantization in TensorFlow Lite (TFLite)

Impact of quantization to 8-bits integer (accuracy within <1%)

Other Industry Examples

Шіг

- NVDLA
 - Binary/INT4/INT8/INT16/INT32/FP16 /FP32/FP64
 - For inference
- Microsoft BrainWave
 - Custom 8-bit and 9-bit floating point
 - For inference of RNNs/LSTMs on FPGAs
- Nervana Systems (now Intel)
 - Custom FlexPoint format for training
- TPU v2 & v3
 - bfloat16 for training

FPGA Performance vs. Data Type

Standardize Microscaling (MX) Data Formats

MX data formats share scaling across block of "narrow bit width elements"

Source: <u>https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai</u> (Oct 2023)

Standardize Microscaling (MX) Data Formats

Format Block		Scale	Scale	Element	Element
Name	Size	Data Format	Bits	Data Format	Bit-width
MXFP8	32	E8M0	8	FP8 (E4M3 / E5M2)	8
MXFP6	32	E8M0	8	FP6 (E2M3 / E3M2)	6
MXFP4	32	E8M0	8	FP4 (E2M1)	4
MXINT8	32	E8M0	8	INT8	8

Impact on accuracy

- Inference with MXINT8 and MXFP8 can be used on FP32 pretrained models with minimal loss
- Inference with MXFP6 closely matches FP32 accuracy after quantization-aware finetuning
- Training with MXFP6 weights, activations, and gradients w/ minimal loss (w/o changing training recipe)
- Training with MXFP4 weights and MXFP6 activations and gradients incurs only a minor loss

Source: <u>https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai</u> (Oct 2023)

Standardize Microscaling (MX) Data Formats

MX data formats used for matrix multiplication, while vector operations (e.g., layernorm, Softmax, GELU, and residual add) are performed in a scalar floating-point format like Bfloat16 or FP32

Source: <u>https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai</u> (Oct 2023)

April 17, 2024

Varying Precision

Change precision for different parts of the DNN (e.g., vary across layers)

Шіт

Activations

10-8-8-8-8-6-4

10-8-8-8-8-5-4

10-8-8-8-7-7-5-3

9-8-8-8-7-7-5-3

[**Judd**, *arXiv* 2016]

Tolerance

1%

2%

5%

10%

AlexNet (F=0)

[Moons, WACV 2016]

Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width → Skip Cycles Speed up of 1.92x vs. 16-bit fixed

Bitwidth Scaling (Power)

Reduce Bit-width → Shorter Critical Path → Reduce Voltage

Power reduction of 2.5x vs. 16-bit fixed On AlexNet Layer 2

[Moons, VLSI 2016]

L 19-48

Precision Taxonomy

- Uniform Quantization
 - Direct binary value (i.e., integer)
 - Fixed binary point (i.e., fixed point)
- Non-uniform Quantization
 - Function of binary value (e.g., log)
 - Arbitrary relation (i.e., table lookup)
 - Scaled binary value (e.g., floating point)
- "Shared" values and/or hardware
 - Exponent (e.g., dynamic fixed point)
 - Mantissa (e.g., varying precision hardware)

Fixed Point Multiplier

Precision Scalable MACs for Varying Precision

Conventional data-gated MAC

Gate unused logic (e.g., full adders) to reduce energy consumption; share hardware across different precisions

Can we add logic to increase utilization for higher throughput/area?

Many Types of Precision-Scalable MACs

- Many similarities between DNN accelerators and precision-scalable MACs
- DNN accelerators with a spatial architecture contain multiple PEs within a PE array, while a spatial precision-scalable MAC contains multiple full adders within a spatial multiplier
- The PEs in the PE array accumulate partial sums, while the full adders in the multiplier accumulate partial products

Use similarities to classify different precision-scalable MAC architectures

Spatial Precision-Scalable MACs

Temporal accumulation of partial products

[Camus, JETCAS 2019]

Spatial Precision-Scalable MACs

Spatial accumulation of partial products

1411

[Camus, JETCAS 2019]

Temporal Precision-Scalable MACs

Also referred to as bit-serial processing

Шіг

[Camus, JETCAS 2019]

L19-55

Sze and Emer

Precision Scalable MACs for Varying Precision

Evaluation of **19 precision-scalable MAC designs**

- 5% of values 8bx8b
- 95% of values at 2bx2b and 4bx4b

0.6 0.000 0.5 Energy/op (pJ) Conventional data-gated 1.3x 0.3 1.6x 0.2 2 3 5 9 Throughput/area (GOPS/mm²)

Overhead of additional logic to increase utilization for higher throughput/area can reduce benefits

Sze and Emer

• Binary Connect (BC)

- Weights {-1,1}, Activations 32-bit float
- MAC \rightarrow addition/subtraction
- Accuracy loss: 19% on AlexNet

IIIii

Binary Connect

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w_{t-1} (weights) and b_{t-1} (biases), and learning rate η .

Ensure: updated parameters w_t and b_t .

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$

For k = 1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$ For k = L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b 3 Parameter undate:

3. Parameter update: Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1} $w_t \leftarrow \operatorname{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$ $b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$ "Only binarize the weights during the forward and backward propagations, but not during the parameter update"

Keep full precision weights around during training (mixed precision)

Binary Nets (Weights & Activations)

- Binarized Neural Networks (BNN)
 - Weights {-1,1}, Activations {-1,1}
 - MAC → XNOR-Count
 - Accuracy loss: 29.8% on AlexNet

Scale the Weights

• Binary Weight Nets (BWN)

- Weights {-α, α} → except first and last layers are
 32-bit float
- Activations: 32-bit float
- Add scaling
 - α determined by the I₁-norm of all weights in a filter
- Accuracy loss: 0.8% on AlexNet

Scale factor (α) can change per filter

[Rastegari, BWN & XNOR-Net, ECCV 2016]

Hardware needs to support both weight precisions

Scale the Weights and Activations

XNOR-Net

- Weights {- α , α }, Activations {- β_i , β_i }
 - except first & last layers are 32-bit float

– Add scaling

 β_i determined by the l₁-norm of all activations across channels *for given position i* of the input feature map

- Accuracy loss: 11% on AlexNet

April 17, 2024

Scale factors (α , β_i) can change per filter or position in filter

XNOR-Net

[Rastegari, BWN & XNOR-Net, ECCV 2016]

https://xnor.ai/

Ternary Nets

- Allow for weights to be zero
 - Increase sparsity, but also increase number of bits (2-bits)
- Ternary Weight Nets (TWN) [Li, Workshop @ NeurIPS 2016]
 - Weights {-w, 0, w} → except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 3.7% on AlexNet
- Trained Ternary Quantization (TTQ) [Zhu, ICLR 2017]
 - − Weights $\{-w_1, 0, w_2\}$ → except first and last layers are 32-bit float
 - Activations: 32-bit float
 - Accuracy loss: 0.6% on AlexNet

Filter Kernels of TTQ

[Zhu, ICLR 2017]

Phir

Binary/Ternary Net Hardware

- Examples
 - YodaNN (binary weights)
 - BRein (binary weights and activations)
 - TrueNorth (ternary weights and binary activations)

These designs tend only support DNN models for digital classification ('MNIST') (except YodaNN)

Binary and Ternary LLMs

BitNet = **1b weights** Ternary BitNet = **~1.58b weights** Both have 8-bit activations and trained from scratch

Models	Size	Memory (GB)↓	Latency (ms)↓	PPL↓
LLaMA LLM	700M	2.08 (1.00x)	1.18 (1.00x)	12.33
BitNet b1.58	700M	0.80 (2.60x)	0.96 (1.23x)	12.87
LLaMA LLM	1.3B	3.34 (1.00x)	1.62 (1.00x)	11.25
BitNet b1.58	1.3B	1.14 (2.93x)	0.97 (1.67x)	11.29
LLaMA LLM	3B	7.89 (1.00x)	5.07 (1.00x)	10.04
BitNet b1.58	3B	2.22 (3.55x)	1.87 (2.71x)	9.91
BitNet b1.58	3.9B	2.38 (3.32x)	2.11 (2.40x)	9.62

April 17, 2024

Source: https://arxiv.org/abs/2402.17764

Sze and Emer

Summary of Reduce Precision

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed	w/o fine-tuning	8	10	0.4
Point	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Uniform	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

* first and last layers are 32-bit float

Impact of Reduced Precision

Source: <u>https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator</u>

Research on Reduced Precision for Training

- Gradients have large dynamic ranges that vary across layers
- Hybrid 8-bit float [**Sun**, *NeurIPS* 2019]
 - HFP8 (forward: E=4, M=3, S=1, backward: E=5, M=2, S=1)
- 4-bit training [**Sun**, *NeurIPS* 2020]
 - Gradients use a radix-4 logarithmic format (FP4)
 - Also, FP8 for some layers
 - Per-layer trainable scale factor for gradient to utilize full range
 - Two-phase rounding (different quantization levels) to minimize quantization errors

Statistical information lost when rounding to nearest quantization level. Instead, use stochastic rounding where probability is proportional to distance from quantization level. Referred to as "unbiased rounding scheme".

- Probability x rounds to $x_1 = (\mathbf{x} x_1)/(x_2 x_1)$
- Probability x rounds to $x_2 = (x_2-x)/(x_2-x_1)$

[Barnes, Electronic Eng 1951]

Stochastic Rounding

Impact on training on MNIST with fixed-point number of bit width (i.e., WL=word length) of 16 at different fractional length (FL)

[Gupta, ICML 2015]

PliT

Sze and Emer

Design Considerations for Reduced Precision

- Impact on accuracy
 - Must consider difficulty of dataset, task, and DNN model
 - e.g., Easy to reduce precision for an easy task (e.g., digit classification); does method work for a more difficult task?
 - Quantization-aware training vs. Post-training quantization
- Does hardware cost exceed benefits?
 - Need extra hardware to support variable precision
 - e.g., Additional shift-and-add logic and registers for variable precision
 - Granularity impacts hardware overhead as well as accuracy
 - e.g., More overhead to support (1b, 2b, 3b ... 16b) than (2b, 4b, 8b, 16b)
- Evaluation
 - Use 8-bit for inference and 16-bit float for training for baseline
 - 32-bit float is a weak baseline

Interplay with Other Optimizations

DNN Model Shape

- WRPN: Wide Reduce Precision Network [Mishra, ICLR 2018]
 - Increasing width (# of channels) to recover accuracy from reduce precision (4-bits, 2-bits)

Dataflows

- UNPU: Unified neural processing unit [Lee, JSSC 2019]
 - Use input-stationary dataflow since weights are reduced precision

Summary

- Reducing precision is an effective way to reduce compute and storage costs
 - Widely exploited in industry already
- Fine tuning is critical for maintaining accuracy
 - Retraining needed for lower precision, especially binary nets
- Weight sharing reduces storage but not necessarily compute
- There are a **LOT** of publications in this space!

Recommended Reading

- Textbook Chapter 7
 - <u>https://doi.org/10.1007/978-3-031-01766-7</u>
- V. Camus et al., "Review and Benchmarking of Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded Neural-Network Processing," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems,* October 2019
 - <u>https://ieeexplore.ieee.org/abstract/document/8887521/</u>