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The Titanium Law

ADC energy is a product of four terms

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

↑ exponentially with 
higher ADC resolution

↓ with more rows
↑ with more input/weight slices

set by the DNN 
Workload

≥1 based on row 
utilization 

[Andrulis, ISCA 2023]April 24, 2024
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Use Bit Slicing to Reduce ADC Resolution

8b • 8b = 16b

1 Cycle 1 Column 1 ADC Convert

8b • 4b << 4 = 12b << 4

8b • 4b = 12b

1 Cycle 2 Columns 2 ADC Converts

+

16b

8b

ADC

16b

Sliced Weight

ADC

12b 12b

8b
Input

DAC

DAC

4b

8b

4b
ADC

4b << 4 • 8b = 12b << 4 

4b • 8b = 12b

2 Cycles 1 Column 2 ADC Converts

+
16b

WeightSliced Input
4b

ADC

12b

DAC

8b

2 Cycles

Input Weight Partial Sum

Weight slicing increases area and number of ADC converts

Input slicing increases time and number of ADC converts
April 24, 2024
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The Titanium Law: Revisit ISAAC

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

8b

128 rows

input weight

Can we reduce 
ADC energy?

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

128-Row 1024-Row 128-Row,
1b Weights

En
er

gy
/8

b 
M

AC
 (p

J)

ADC Analog Crossbar Other

April 24, 2024
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The Titanium Law: Revisit ISAAC

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

11b

1024 rows

input weight

Increase rows 
↓ 

Increase bits

↑ ↓

0.0
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128-Row 1024-Row 128-Row,
1b Weights

En
er

gy
/8

b 
M

AC
 (p

J)

ADC Analog Crossbar Other

April 24, 2024
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The Titanium Law: Revisit ISAAC

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

1b

•

1b
1b 1b
⋮ ⋮

1b 1b

7b

ADC

128 rows

input weight

Decrease bits/weight slice 
↓

Increase weight slices 
↓

Increase ADC converts

↑↓

0.0
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0.8
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1b Weights

En
er
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 (p

J)
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April 24, 2024
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How Have Prior Works Escaped These Tradeoffs?

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

2b

2b

⋮

2b

2b

2b

⋮

2b

Weight-Count-Limited

8b 8b 8b

Prune weights
↓

 Reduce MACs/DNN

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏↓

April 24, 2024

ADC ADC ADC
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How Have Prior Works Escaped These Tradeoffs?

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

2b

2b

⋮

2b

2b

2b

⋮

2b

Sum-Fidelity-Limited

4b 4b 4b

Low-Res ADC 
↓

Reduce energy 
per convert

↓

April 24, 2024

LowR
ADC

LowR
ADC

LowR
ADC
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How Have Prior Works Escaped These Tradeoffs?

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

2b

2b

⋮

2b

2b

2b

⋮

2b

Weight-Count-Limited

8b 8b 8b

ADC

Prune weights
↓

 Reduce MACs/DNN

𝑨𝑫𝑪 𝑬𝒏𝒆𝒓𝒈𝒚
𝑫𝑵𝑵 = 𝑨𝑨

𝑬𝒏𝒆𝒓𝒈𝒚
𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑨𝑨×𝑨𝑨

𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝒔
𝑴𝑨𝑪 𝑨𝑨×𝑨𝑨

𝑴𝑨𝑪𝒔
𝑫𝑵𝑵 𝑨𝑨×𝑨𝑨

𝟏
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

1b

•

2b

1b 2b

⋮ ⋮

1b 2b

2b

2b

⋮

2b

2b

2b

⋮

2b

Sum-Fidelity-Limited

4b 4b 4b

Low-Res ADC 
↓

Reduce energy 
per convert

Both approaches may require retraining DNN to preserve accuracyApril 24, 2024

ADC ADC LowR
ADC

LowR
ADC

LowR
ADC
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Reshape Input to ADC to Preserve Accuracy

ADC 
Range

ADC 
Range

DNN 
Accuracy 

Loss

Low-Resolution ADC

To preserve accuracy, 
distribution must fit the 

ADC range

Distribution of 
input to ADC

(analog column sum) 

Low-Resolution ADC

Reshape

Reshaping can either be done by changing or retraining DNN 
or with adaptive hardware that changes analog compute (RAELLA)

[Andrulis, ISCA 2023]April 24, 2024
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RAELLA’s Strategies to Reduce Input to ADC

• Center+Offset Weight Encoding
– Partition compute such that input to ADC smaller and closer to zero

• Adaptive Weight Slicing
– Adapt slicing for each DNN layer to reduce number of ADC converts

• Dynamic Input Slicing
– Dynamically change slicing to reduce number of ADC converts

• Enables ~1000x reduction in range of input to ADC, or 10-bit 
reduction in ADC resolution

April 24, 2024 [Andrulis, ISCA 2023]
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Center + Offset Weight Encoding

15
10
14

4
2
1

·

Weights Inputs

13
13
13
+

+2
-3
+1

=
4
2
1

·

InputsCenter Offsets

= 13
+2
-3
+1

4
2
1

·

Analog Offset
Offsets · Input 

!
4
2
1
+

Digital Center
Center · Sum Input 

91 3

Baseline Analog

94

Encode weights such that they are 
represent as centers and offsets

Partition computation
Digital calculates high-resolution center operations

Analog calculates parallel offset operations

Encoding allows input to ADC (output of column sum) 
to be smaller and closer to zero

April 24, 2024 [Andrulis, ISCA 2023]
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Center + Offset Weight Encoding

13
+2
-3
+1

4
2
1

·

Analog Offset
Offsets · Input 

!
4
2
1
+

Digital Center
Center · Sum Input 

91 3

✔ Low-Resolution Analog
High-resolution operations in digital domain

✔ Efficient
Vector-vector operations in analog domain

Input to ADCApril 24, 2024 [Andrulis, ISCA 2023]
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Adaptive Weight Slicing

ADC

25 = 0 0 0 1 1 0 0 1

35 = 0 0 1 0 0 0 1 1

13 = 0 0 0 0 1 1 0 1

b0001=1

b0010=2

b0000=0

b10=2

b00=0

b11=3

b01=1

b11=3

b01=1

0

0.1

0.2
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0.4
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Bi
t 7

 (M
SB

)

Bi
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Bi
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Bi
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Bi
t 3

Bi
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Bi
t 1

Bi
t 0

 (L
S

B)

Pr
ob

ab
ilit

y 
a 

Bi
t i

s 
1

MSB LSB

Distribution of input to ADC (output of 
column sum) depends on distribution 
of bits at each bit position in weight

Typical distribution* for each bit position

Adaptively merge weight bits 
with low probabilities into same 
slice without increasing range of 
input to ADC (ADC resolution)

Reduce slices per weight 
(increase bits per slice)

↓
Reduce ADC converts

Reduce area 

April 24, 2024

*for center+offset encoding

[Andrulis, ISCA 2023]
ADC ADC
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Adaptive Weight Slicing
Adapt weight slicing for each layer while preserving correctness

DNN weights are known ahead of timeà Use lightweight preprocessing

0%

50%

100%

GoogLeNet InceptionV3 MobileNetV2 BERT Large ResNet18 ResNet50 ShuffleNet

Pr
op

or
tio

n 
of

 L
ay

er
s

2 Slices per Weight
3 Slices per Weight
8 Slices per Weight

Input to ADCApril 24, 2024 [Andrulis, ISCA 2023]



L21-16

Sze and Emer

Dynamic Input Slicing
• Allocating bits per input slice needs to happen dynamically (at runtime) 
• Use speculation to allocate many bits and recovery when saturate

Reduce slices per input 
(increase bits per slice) 

↓
 Reduce ADC converts 

Reduce cycles

4b

One Cycle

One convert 
per column

Step 1: Speculation

ADC

✔ ✔ ✔ ❌
saturate

April 24, 2024

Speculation and recovery takes more cycles 
than no speculation (recovery only)

[Andrulis, ISCA 2023]

ADC ADC ADC ADC

D
AC

Deactivate 
ADC

1b

Four Cycles

1b 1b 1b

Four converts 
per column

Step 2: Recovery

ADC ADC ADC

D
AC

D
AC

D
AC

D
AC

D
AC
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Dynamic Input Slicing
• Comparing speculation for 8-bit input (one 4-bit slice + two 2-b slices) and 

recovery (eight 1-b slices) versus only recovery slices (eight 1-b slices) 
– Reduces ADC converts by 60% 
– Adds three extra cycles
– In summary, speculation improves ADC energy efficiency at cost of speed

Input to ADC
April 24, 2024 [Andrulis, ISCA 2023]
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RAELLA: Reshape Distributions of Input to ADC
• Makes analog operations produce low-resolution results

– Center+Offset Weight Encoding, Adaptive Weight Slicing, Dynamic Input Slicing

• Enables more compute per ADC convert while using lower-resolution ADCs
– Improves energy efficiency by 3.9x and throughput by 1.8x compared to iso-area ISAAC

• Maintains DNN accuracy without changing DNN or retraining

Input to ADC
April 24, 2024 [Andrulis, ISCA 2023]
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Designing DNN Models for CiM
• Designing DNNs for CiM may differ from DNNs for 

digital processors
• Highest accuracy DNN on digital processor may be 

different on CiM
– Accuracy drops based on robustness to non-

idealities

• Reducing number of weights is less desirable
– Since CiM is weight stationary, may be better to 

reduce number of activations

– PIM tend to have larger arrays à fewer weights may 
lead to low utilization on CiM

• Current trend is deeper and smaller filters

– CiM may prefer to have shallower and larger filters
April 24, 2024 [Yang, IEDM 2019]
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CiM Using SRAM Bit Cell

• Multiplication uses I-V 
relationship of access transistor 
(WL) and stored value in bit-cell 
– Assumes binary weights and multi-

bit input activation

• Addition using current addition 
on bit line (BL)
– Limited by nonlinearity and 

sensitivity to variations

April 24, 2024

+1

WL1

WLN

IBC

ΔVBL

WLDAC 
code

1

0.02

0.04

0.06

WLDAC Code

ΔV
BL

 (V
)

0
5 10 15 20 25 30 35

Ideal transfer curve

Nominal transfer curve

-1

[Verma, SSCS 2019]
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CiM Using SRAM Bit Cell

• Binary multiplication (AND or 
XNOR) using access transistor 
(WL) and stored value in bit-cell
– Explicit capacitor to store charge

• Addition using charge sharing on 
bit line (BL)
– Better linearity and matching

April 24, 2024

W1,1,1
n

W1,1,1
n

IA1,1,1

IA1,2,1

8T Multiplying Bit Cell (M-BC)
1. Digital multiplication
2. Analog accumulation

Two modes: 
o XNOR: !!,#,$% = #$!,#,$⊕&&,',$%

o AND: !!,#,$% = #$!,#,$	×	&&,',$%

(i.e., keep #$!,#,$ high)

WLWL IAbx,y,z

Wbi,j,zn Wi,j,z
n

BL

Ox,y,zn

IAx,y,z

BLb

Pre-activation 
PAn

[Verma, SSCS 2019]
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Using Charge Sharing for Addition

April 24, 2024

Image Source: https://www.youtube.com/watch?v=XRQ_Xldr2nk

If C1=C2, Vf = ½ (V1 + V2) , which is a scaled value of the sum (addition)

https://www.youtube.com/watch?v=XRQ_Xldr2nk
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CiM Using DRAM

April 24, 2024
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[Ambit, MICRO 2017]
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CiM Using DRAM

April 24, 2024

OR (X=1, Y=1) = 1 OR (X=0, Y=0) = 0
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0
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Takes multiple cycles to built up to a multiplication.
 However, can perform many operations in parallel (bus width of DRAM)

Performs bit-wise operations using charge sharing

If Z=1, perform OR(X, Y)
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CiM Research Spans Full Stack
• Devices: The components forming each memory cell (e.g., SRAM, DRAM, 

ReRAM, STT-RAM)

• Circuits: The components performing computation, analog/digital conversion, 
storage, data movement, and other actions

• Architecture: The organization of components into a larger system (e.g., the 
number of each component and how components are connected) 

• Workload: The DNN to be run, which we model as a series of extended-
Einsum operations with tensors of varying shapes and values

• Mapping: The temporal and spatial scheduling of the workload onto the system

April 24, 2024

Need for modeling tool to enable apple-to-apple comparison 
and design space exploration à CiMLoop (used in Lab 5)
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CiMLoop

April 24, 2024

CiMLoop

Workload

× =

Devices

Circuits

DAC ADC MAC

Architecture

Data Value Distributions

Algorithm & Tensor Shapes

Data-Value-
Dependent 
Component 

Model

Per-Action Energy

ADC
Convert: 1pJ
Leak: 1mW

Read: 10fJ
Write: 2pJ

Energy
Area

Throughput

[Andrulis, ISPASS 2024]

CiMLoop is built on the 
Timeloop [Parashar, ISPASS 2019] 
+ Accelergy [Wu, ICCAD 2019]
Infrastructure

Full-System Model
(Timeloop to search for best mapping + 

Accelergy to estimate energy consumption)

Code available at 
https://github.com/mit-emze/cimloop 

Inputs (YAML)

Outputs

https://github.com/mit-emze/cimloop
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CiMLoop
• Flexibility

– A flexible specification that lets users describe, model, and map workloads to both 
circuits and architecture

• Accuracy
– A data-value-dependent energy model that captures the interaction between DNN 

operand values, data representations, and analog/digital values
– Estimated values from model are within 8% of values reported for measured designs 

• Speed
– A fast statistical model that uses the average energy per component action for constant 

runtime w.r.t. number of components and amortizes overhead across mappings
– Enables orders-of-magnitude speed up relative to other high-accuracy models

April 24, 2024 [Andrulis, ISPASS 2024]
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Example: Apples-to-Apples Comparison

Macro

[Sinangil, JSSC 2021] [Wang, VLSI 2022] [Jia, JSSC 2020]

Technology Node 7nm 22nm 65nm

ADC Type 4b Flash 8b SAR 8b SAR
Memory Device 6T SRAM 8T SRAM + Capacitor 6T SRAM

10

100

1000

1 2 3 4 5 6 7 8

En
er

gy
 E

ffi
ci

en
cy

 
(T

O
PS

/W
)

Number of Input & Weight Bits

Macro 1 Macro 2 Macro 3

Compare Designs:
Same technology, ADC, 

device for all macros

[Sinangil] [Wang] [Jia]

[Andrulis, ISPASS 2024]
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Example: Design Space Exploration

April 24, 2024

Explore array size (architecture) and DNN shapes (workload)

[Andrulis, ISPASS 2024]
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Companies doing Analog CiM

April 22, 2024
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Compute with Light

April 24, 2024

https://www.economist.com/science-and-
technology/2022/12/20/artificial-intelligence-and-
the-rise-of-optical-computing 

“Unlike electrons, photons (which are 
electrically neutral) can cross each others’ 
paths without interacting, so glass fibres 
can handle many simultaneous signals in 
a way that copper wires cannot. An 
optical computer could likewise do lots 
of calculations at the same time. Using 
photons reduces power consumption, too. 
Electrical resistance generates heat, 
which wastes energy. The passage of 
photons through transparent media is 
resistance-free.”

https://www.economist.com/science-and-technology/2022/12/20/artificial-intelligence-and-the-rise-of-optical-computing
https://www.economist.com/science-and-technology/2022/12/20/artificial-intelligence-and-the-rise-of-optical-computing
https://www.economist.com/science-and-technology/2022/12/20/artificial-intelligence-and-the-rise-of-optical-computing
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Compute with Light
Matrix Multiplication in the Optical Domain

• Cost of moving a photon can be independent of distance

• Multiplication can be performed passively

[Shen, Nature Photonics 2017]

Copies of I(k)
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�

FwnIwI(k)

(input)

(weights)

(output)NL

[Bernstein, CLEO 2020]

April 24, 2024
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Compute with Light

https://www.wired.com/story/chip-ai-works-using-light-not-electrons/ 

“…chip runs 1.5 to 10 times faster than 
a top-of-the-line Nvidia A100 AI chip,
Running a natural language model 

called BERT, for example, Lightmatter 
says Envise is five times faster than 
the Nvidia chip; it also consumes one-

sixth of the power”

April 24, 2024

https://www.wired.com/story/chip-ai-works-using-light-not-electrons/


L21-34

Sze and Emer

CiMLoop for Photonics Modeling

April 24, 2024 [Andrulis, ISPASS 2024]

Last year’s final 
project in 6.5930 

involved modeling 
and validation
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Summary

• Cross-layer design critical for providing additional efficiency improvements
• For DNN processing using Advanced Technologies, it is important to factor in device 

and circuit limitations into the architecture 
• Textbook Chapter 10 

– https://doi.org/10.1007/978-3-031-01766-7

• Other References
– Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory 

Accelerator Designs,” IEEE International Symposium on Performance Analysis of Systems and Software 
(ISPASS), April 2020 [ paper PDF | code github ]

– T. Andrulis, J. Emer, V. Sze, “RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss 
Analog PIM: No Retraining Required!,” International Symposium on Computer Architecture (ISCA), June 2023 
[ PDF ]

– T. Andrulis, J. Emer, V. Sze, “CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool,” 
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), May 2024

April 24, 2024

https://doi.org/10.1007/978-3-031-01766-7
http://accelergy.mit.edu/accelergy_ISPASS.pdf
https://github.com/Accelergy-Project/processing-in-memory-design
http://www.rle.mit.edu/eems/wp-content/uploads/2023/04/2023_isca_raella.pdf

