
R01-1

Sze and Emer

6.812/6.825

Hardware Architectures for Deep Learning

Machine Learning Basics

Vivienne Sze and Joel Emer

Massachusetts Institute of Technology

 Electrical Engineering & Computer Science

February 9, 2024

R01-2

Sze and Emer

Goals of Today’s Recitation

• Brief overview of the key concepts in Machine Learning

• Use Image Classification as the driving example

– Image representation

– Training process

– Hyperparameters & regularization

– Feature extraction

• Know some basic ideas about PyTorch

February 9, 2024

R01-3

Sze and Emer

PyTorch is Convenient for Research

• Easier to debug compared to TensorFlow

February 9, 2024 http://horace.io/pytorch-vs-tensorflow/

R01-4

Sze and Emer

Image Classification Task

Cat

[Source: Stanford cs231n]

Classifier

February 9, 2024

One Image One Label

R01-5

Sze and Emer

Image Classification Task

Core Problem in Computer Vision.

Also referred to as Image Recognition

Object

Detection

Image Segmentation

Can be extended to other vision tasks

February 9, 2024

[Source: Stanford cs231n]

R01-6

Sze and Emer

What is an Image?

• Images are 2-D functions: f(x, y)

– x, y are spatial coordinates

– f(x,y) is the intensity/amplitude at (x,y)

(0,0) x

y

February 9, 2024

R01-7

Sze and Emer

What is a Digital Image?

• Sampling [Spatial] → Resolution

– Size in terms of pixels (integer values)

• Quantization [Amplitude]→ Bits per pixel

– e.g. 8-bits per pixel (amplitude has values between 0 to 255)

[Image Source: R. C. Gonzalez & R. E. Woods]

00000000000013

00000000000012

00071717171717100011

0047959595126126126710010

004785126126175150150126009

004795715175199199150126008

00095175175199199150126007

00000175175175150126006

00000017515012695005

000000711029878004

0000009578710003

00000000220002

0000000000001

0000000000000

11109876543210

f (x, y) x

y

February 9, 2024

R01-8

R

G

B

Color Images

Each component is a 2-D function

February 9, 2024

R01-9

Generate Other Colors from RGB

Red, green and blue each have values between 0 to 255
256*256*256 = 16,777,216 possible colors

February 9, 2024

R01-10

Sze and Emer

Image Classification Task

[Source: Stanford cs231n]

February 9, 2024

1

0

0

0

One hot

encoding

class membership

R01-11

Sze and Emer

Image Classification Challenge

[Source: Stanford cs231n]

Need a classifier that is invariant to these variations,

but still sensitive to inter class variations

February 9, 2024

R01-12

Sze and Emer

Use Data Driven Approach

[Image Source: Stanford cs231n]

Collect dataset of labeled images

Give the computer example images to “learn” from

February 9, 2024

R01-13

Example Dataset: CIFAR-10

Download from:

https://www.cs.toronto.edu/~kriz/cifar.html

32x32 pixels (color)

10 classes

50,000 Training

10,000 Testing

Subset of 80M Tiny Images Dataset (Torralba)

Image Source: http://karpathy.github.io/

February 9, 2024

In PyTorch: torchvision.datasets

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/

R01-14

Sze and Emer

General Steps

1. Collect Labeled Dataset

– Use subsets of the data for training and testing

2. Train the Model

– Use the training set to learn task

3. Test the Model

– Use the model to predict labels for the test set that it has

never seen before, and compare to true labels (ground truth)

4. Use the Model (Inference)

– Apply model to unlabeled inputs

February 9, 2024

R01-15

Sze and Emer

Steps for Training an Image Classifier

1. Collect Labeled Dataset

– A set of N images, each labeled with one of K different classes

2. Train the Model

– Use the training set to train classifier to learn what each of the

classes looks like

3. Test the Model

– Use the classifier to predict labels for the test set of images

that it has never seen before, and compare to true labels

4. Use the Model (Inference)

– Apply model to unlabeled images

February 9, 2024

R01-16

Sze and Emer

Generalization

• After achieving adequate accuracy on the training set,

the ultimate quality of the model is determined by how

accurate it performs on unseen data

– The test set is a surrogate for unseen data

• Generalization refers to how well the model maintains

the accuracy between training and unseen data

– Generalization means not overfitting

– Overfitting: fit noise rather than signal

• What are techniques that can help the model

generalize?

February 9, 2024

[Image source: Wikipedia]

overfitting

R01-17

Sze and Emer

Hyper-Parameters

• Hyper-parameters are design choices about

the algorithm that we set rather than learn

• Example for DNNs:

– What is the number of layers?

– What is the shape of filter?

• Need to try out several times

February 9, 2024

R01-18

Sze and Emer

Evaluating Hyper-Parameters

Example: selecting number of layers

If we use the entire dataset to select the hyper-parameters, we

cannot evaluate how the model generalizes.

February 9, 2024 [Image Source: Stanford cs231n]

R01-19

Sze and Emer

Evaluating Hyper-Parameters

Example: selecting number of layers

If we use the test data to select the hyper-parameters, we will need to

access the test data often.

Each access to the test data “leaks information” and makes it less of a

surrogate for unseen data.

February 9, 2024 [Image Source: Stanford cs231n]

R01-20

Sze and Emer

Use Validation Set
• Use validation set to help choose hyper-parameters

– Minimize access to test set

For ImageNet Challenge, test set not released!

Example: selecting number of layers

February 9, 2024

R01-21

Sze and Emer

Summary

1. Collect Labeled Dataset
– Partition into training, validation and test set

2. Train Model
– Select hyper-parameters

– Use the training set to learn task

3. Evaluate Model
– Compare results of model with true answers (ground truth labels) on the

validation set

– If not happy, repeat step 2!

4. Test Model
– Compare results of model with true answers (ground truth labels) on the

test set

5. Deploy Model (Inference)
– $$$

February 9, 2024

R01-22

Sze and Emer

Linear Classifier

• A linear function that maps images to class scores

– Input: Image pixels (or features – discussed later)

– Parameters: Weights and bias (values to be trained)

– Scores: Indicate how likely image belongs to a class

– Labels: Indicate which class

f(x,W,b)

[Modified from Source: Stanford cs231n]

February 9, 2024

Labels

R01-23

Sze and Emer

Linear Classifier

[Source: Stanford cs231n]

For CIFAR-10 [3072 x 1] [10 x 1][10 x 3072] [10 x 1]

bxi

February 9, 2024

In PyTorch: torch.nn.Linear

R01-24

Sze and Emer

Linear Classifier

Combine bias and weights in to a single Weight matrix

• Each row of matrix W is a classifier for a given class

• Single Matrix Multiplication evaluates multiples classes in parallel

February 9, 2024
[Source: Stanford cs231n]

R01-25

Sze and Emer

Linear Classifier

February 9, 2024

Linear Classifier can be thought of as a basic

building block in the neural network

weighted

sum

non-linear

function f(・)

activation
W00

W30

x0

x1

x2

x3

y1

y0

y2
𝑦𝑗 = 𝑓

𝑖=0

3

𝑊𝑖𝑗 × 𝑥𝑖

R01-26

Sze and Emer

Intuition of Classifier

[Image Source: Stanford cs231n]

Visualizing weights of each classifier

Can be thought of as a template for the class

February 9, 2024

R01-27

Sze and Emer

Linear Classifier

[Source: Stanford cs231n]

bxi

February 9, 2024

For each image, the classifier generates scores for all classes.

How do we evaluate the quality the classifier?

R01-28

Sze and Emer

Use Loss Function for Evaluation

Goal

• Want the class that

matches the ground truth

label to have highest score

• Want the classes that don’t

match the ground truth

label to have low scores

• Loss function quantifies the agreement between the

predicted scores and the ground truth labels

– Scores are also referred to as logits

• Quantifying loss allows us to improve classifier (i.e. update

weights) – how good is the classifier?

February 9, 2024
[Image Source: Stanford cs231n]

R01-29

Sze and Emer

Loss Function

Cross-Entropy Loss (Softmax)

Li = -log
e
syi

e
s j

j
å

æ

è

ç
ç

ö

ø

÷
÷

Compute score for each class

Score of

correct class

Score of

each class

February 9, 2024

Loss function is derived from minimizing cross-entropy between

estimated class probabilities and ground truth

Update weights such that the correct label

has the highest probability

In PyTorch: torch.nn.CrossEntropyLoss

R01-30

Sze and Emer

Use Loss Function for Evaluation

• Loss function quantifies the agreement between the

predicted scores and the ground truth labels

– Scores are also referred to as logits

[Image Source: Stanford cs231n]

1 0 0

0 1 0

0 0 1

Scores (logits) Ground Truth Labels

February 9, 2024

R01-31

Sze and Emer

Loss Function

Compute Average Loss on Training Examples

Correct class

of training

image

(given)

Input

training

image

(given)

Weight

Matrix

(trained)

Prediction

Score

Average across

number of

training examples

Loss

Function
Average

Loss

i = index of example

N = number of examples

February 9, 2024

Many possible functions for Li

R01-32

Sze and Emer

Use Loss Function for Evaluation

• Ratios of scores can be used to evaluate the quality of the classifier

• Use the softmax function to keep values between 0 and 1

February 9, 2024

Scores (logits)

Softmax

function

3.67

134.3

7.39

f =
e
syi

e
s j

j
åe

syi

[Image Source: Stanford cs231n]

0.025

0.924

0.051

Probabilities

(takes on

values close

to ground

truth labels)

R01-33

Sze and Emer

Regularization

• Regularization adds constraints to improve

generalizability of model

– Examples: smoothness, number of parameters, size of the

parameters (weight decay), prior distribution or structure

February 9, 2024

[Image source: The Shape of Data]

overfittingunderfitting

R01-34

Sze and Emer

Regularization: Training vs. Test Error

February 9, 2024

[Modified from Source: scott.fortmann-roe.com/]

Test Error

Note: In this case,

error is equivalent

to loss

R01-35

Regularization for DNN: Dropout

February 9, 2024 [Srivastava, JMLR 2014]

During training, randomly set some activations and their weights to zero.

Reduces over-fitting by helping the activations (i.e. feature detectors) to be

robust to changes in its neighbors.

R01-36

Regularization for DNN: Dropout

February 9, 2024

Dropout results in more meaningful learned features (e.g. detect edges,

strokes and spots in different parts of the image). Results on MNIST shown.

[Srivastava, JMLR 2014]

R01-37

Sze and Emer

Total Loss

February 9, 2024

λ is a hyper-parameter set during training.

Larger λ improves generalizability, but may increase data loss.

R01-38

Sze and Emer

Gradient Descent

• Goal: Determine set of weights to minimize loss

• Use gradient descent to incrementally update weights

to reduce loss

– Compute derivative of loss relative to weights to indicate how to

change weights (linear approximation of loss function)

[Image Source: http://sebastianraschka.com/]
February 9, 2024

L(w)

Lmin(w)

Learning rate

R01-39

Sze and Emer

Visualization of Gradient Descent

February 9, 2024

[Image Source: Wikipedia]

R01-40

Sze and Emer

Learning Rate

• Many algorithms designed to set the learning rate

– Momentum, RMSProp, Adam, etc.

[Image Source: http://sebastianraschka.com/]

February 9, 2024

L(w)L(w)

In PyTorch: torch.optim.Adam

R01-41

Sze and Emer

Impact of Learning Rate

February 9, 2024

[Image source: http://blogs.sas.com/]

Time (epochs)

Can also decay learning rate over time for faster convergence

R01-42

Sze and Emer

Learning Rate Decay

February 9, 2024

[Image Source: Stanford cs231n]

R01-43

Sze and Emer

Frequency of Weight Updates

• Batch Gradient Descent

– Update weights after computing loss on the entire training set

– Computationally expensive to compute loss

• Stochastic Gradient Descent

– Update weights after computing loss on a single training

example; shuffle examples after going through entire training set

– Fast, but might go in the wrong direction (noisy)

• Mini-batch Gradient Descent

– Divide training set into smaller sets called mini-batch, and

update weights based on loss of each mini-batch (a.k.a. ‘batch’)

• Each pass through the entire training set is referred to as an epoch

February 9, 2024

R01-44

Sze and Emer

Intuition of Classifier

[Image Source: Stanford cs231n]

Images are points in high dimensional space

(e.g. CIFAR images in 3072-dimensional space)

2-D Visualization

Note: Images not

always easily separated

with a line (features!)
February 9, 2024

R01-45

Sze and Emer

Feature Extraction

• Use features rather than pixels as input into the classifier

• Feature extraction can be thought of as transforming

pixels into a space where the images can more easily

separated by the classifier

– The transformation can be non-linear

fclass(x,W,b) fclass(fextract(x),W,b)

Perform feature extraction

before classification

February 9, 2024

CatClassifier

W,b

Feature

Extraction

R01-46

Sze and Emer

Feature Extraction

[Source: Stanford cs231n]

February 9, 2024

R01-47

Example Hand-Crafted Features

Edges contain a lot of information

February 9, 2024

R01-48

Example Hand-Crafted Features

February 9, 2024

V1 cells in the primary visual cortex are sensitive to edges

Hubel and Wiesel (1950s – Nobel Prize): https://youtu.be/Cw5PKV9Rj3o

https://youtu.be/Cw5PKV9Rj3o

R01-49

Example Hand-Crafted Features

Histogram of Oriented Gradients (HOG)

Examples

[Dalal & Triggs, CVPR 2005]
Learned Weights

February 9, 2024

R01-50

Classification Pipeline (Inference)

Score = Σn xi wi

Feature

Extraction
Classification

(wTx)

Handcrafted Features

(e.g. HOG)

Learned Features

(e.g. DNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class

(select class based

on max or threshold)

February 9, 2024

In PyTorch: torch.nn.Conv2d

R01-51

Features: Energy vs. Accuracy

0.1

1

10

100

1000

10000

0 20 40 60 80

Accuracy (Average Precision)

Energy/
Pixel (nJ)

DNN(VGG16)2

DNN(AlexNet)2

HOG1

Measured in 65nm*
1. [Suleiman, VLSI 2016]
2. [Chen, ISSCC 2016]

* Only feature extraction. Does
not include data, augmentation,
ensemble and classification
energy, etc.

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

Exponential

Linear

Video
Compression

[Suleiman et al., ISCAS 2017]February 9, 2024

R01-52

Sze and Emer

Summary

• Image Classification Task

– Input: Image → Output: label (class scores)

• Steps to training and testing a classifier

– regularization

• Example of a simple linear classifier

• Feature extraction

February 9, 2024

R01-53

Sze and Emer

PyTorch Summary

• Dataset: torchvision.datasets, torch.utils.data.DataLoader

• Construct model: torch.nn

– Linear layer: torch.nn.Linear

– Feature extraction: torch.nn.Conv2d

– Activations: torch.nn.ReLU

• Train the model:

– Loss function: torch.nn.CrossEntropyLoss

– Optimizer: torch.optim.Adam

• One training step:

– output = model(input)

– loss = loss_fn(output, target)

– optimizer.zero_grad()

– loss.backward()

– optimizer.step()

February 9, 2024

https://github.com/pytorch/examples/blob/

master/mnist/main.py

https://pytorch.org/tutorials/

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://pytorch.org/tutorials/

R01-54

Sze and Emer

Key Concepts and Terms

• Image Classification

• Training, Testing, Validation

• Linear Classifier → Weights and Bias

• Loss function → Softmax

• Generalization, Overfitting

• Regularization

• Hyper-parameters

• Epoch, Batch

• Gradient Descent, Learning Rate, Adam

• Feature Extraction

February 9, 2024

In Lab 1 and walk through the PyTorch code to see if you

can identify these concepts

R01-55

Sze and Emer

References

• For a more in-depth treatment, please see

– MIT’s Machine Learning Courses (6.036/6.876)

• https://introml.mit.edu/

– MIT’s Computer Vision Course (6.819/6.869)

• http://6.869.csail.mit.edu/fa18/

– Class notes from Stanford’s CNN Course (cs231n)

• http://cs231n.stanford.edu/syllabus.html

• http://cs231n.github.io/classification/

• http://cs231n.github.io/linear-classify/

February 9, 2024

https://introml.mit.edu/
http://6.869.csail.mit.edu/fa18/
http://cs231n.stanford.edu/syllabus.html
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/

R01-56

Sze and Emer

References

• Textbook: Chapters 1 & 2

– https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC

050

• Stanford cs231n

– http://cs231n.github.io/classification/

– http://cs231n.github.io/linear-classify/

• http://www.deeplearningbook.org/

– Chapter 5 http://www.deeplearningbook.org/contents/ml.html

• Other Works Cited in Recitation

– CIFAR-10 Dataset: https://www.cs.toronto.edu/~kriz/cifar.html

– L. Zitnick, “Which way forward? AI + vision,” CVPR Workshop, 2017

– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG

and CNN Features for Embedded Vision,” IEEE International Symposium of Circuits and

Systems, 2017.

– N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," Computer Vision

and Pattern Recognition, 2005

February 9, 2024

https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/ml.html
https://www.cs.toronto.edu/~kriz/cifar.html

R01-57

Sze and Emer

Demo of CIFAR-10 CNN Training

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

February 9, 2024

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

	Slide 1: 6.812/6.825 Hardware Architectures for Deep Learning Machine Learning Basics
	Slide 2: Goals of Today’s Recitation
	Slide 3: PyTorch is Convenient for Research
	Slide 4: Image Classification Task
	Slide 5: Image Classification Task
	Slide 6: What is an Image?
	Slide 7: What is a Digital Image?
	Slide 8: Color Images
	Slide 9: Generate Other Colors from RGB
	Slide 10: Image Classification Task
	Slide 11: Image Classification Challenge
	Slide 12: Use Data Driven Approach
	Slide 13: Example Dataset: CIFAR-10
	Slide 14: General Steps
	Slide 15: Steps for Training an Image Classifier
	Slide 16: Generalization
	Slide 17: Hyper-Parameters
	Slide 18: Evaluating Hyper-Parameters
	Slide 19: Evaluating Hyper-Parameters
	Slide 20: Use Validation Set
	Slide 21: Summary
	Slide 22: Linear Classifier
	Slide 23: Linear Classifier
	Slide 24: Linear Classifier
	Slide 25: Linear Classifier
	Slide 26: Intuition of Classifier
	Slide 27: Linear Classifier
	Slide 28: Use Loss Function for Evaluation
	Slide 29: Loss Function
	Slide 30: Use Loss Function for Evaluation
	Slide 31: Loss Function
	Slide 32: Use Loss Function for Evaluation
	Slide 33: Regularization
	Slide 34: Regularization: Training vs. Test Error
	Slide 35: Regularization for DNN: Dropout
	Slide 36: Regularization for DNN: Dropout
	Slide 37: Total Loss
	Slide 38: Gradient Descent
	Slide 39: Visualization of Gradient Descent
	Slide 40: Learning Rate
	Slide 41: Impact of Learning Rate
	Slide 42: Learning Rate Decay
	Slide 43: Frequency of Weight Updates
	Slide 44: Intuition of Classifier
	Slide 45: Feature Extraction
	Slide 46: Feature Extraction
	Slide 47: Example Hand-Crafted Features
	Slide 48: Example Hand-Crafted Features
	Slide 49: Example Hand-Crafted Features
	Slide 50: Classification Pipeline (Inference)
	Slide 51: Features: Energy vs. Accuracy
	Slide 52: Summary
	Slide 53: PyTorch Summary
	Slide 54: Key Concepts and Terms
	Slide 55: References
	Slide 56: References
	Slide 57: Demo of CIFAR-10 CNN Training

