
Computer Architecture
Basics I - Pipelining

Zoey Song
MIT

Legacy slides adapted from 6.191/6.5900

6.5930/1
Hardware Architecture for Deep Learning

The von Neumann Model

• Almost all modern computers are based on the von
Neumann model (John von Neumann, 1945)

• Components:

– Main memory holds programs and their data
– Central processing unit accesses and processes memory values
– Input/output devices to communicate with the outside world

Central
Processing

Unit

Main
Memory

Input/
Output

February 16, 2024 2

Key Idea: Stored-Program Computer

• Express program as a sequence of coded instructions
• Memory holds both data and instructions
• CPU fetches, interprets, and executes successive

instructions of the program

Central
Processing

Unit

instruction
instruction
instruction

data
data
data

Main
Memory

op rd rs rt

rd <= op(rs,rt)

February 16, 2024 3

0x00000011 (3)

Anatomy of a von Neumann Computer

Main Memory

February 16, 2024 4

Central
Processing

Unit

How does CPU
distinguish between

instructions and data?

registers

operations

Anatomy of a von Neumann Computer

Control
UnitDatapath

In
te

rn
al

st

or
ag

e

Main Memory

control

status

instructionsdata

…

dest

asel

fn

bsel

CCsALU

PC 1101000111011

• Instructions coded as binary data

• Program Counter or PC: Address
of the instruction to be executed

• Decode Instructions for Datapath

R1 ←ADD(R2,R3)

addressaddress

February 16, 2024 5

Instructions
• Instructions are the fundamental unit of work

 Each instruction specifies:
 An operation or opcode to be

performed
 Source operands and destination

for the result

 In a von Neumann machine,
instructions are executed
sequentially
 By default, the next PC is current

PC + size of current instruction
(e.g., PC + 4)

 Except for branch instruction

February 16, 2024 6

loop: addi x12, x12, -1
 sub x14, x15, x16
 bne x12, x0, loop
 and x16, x17, x18
 xor x19, x20, x21
 …

PC

PC+4

ALU Instructions

• What RISC-V instruction is represented by these
32 bits?

• Reference manual specifies the fields as follows:
– opcode = 0110011
– funct3 = 000
– funct7 = 0000000

– rd = 00011
– rs1 = 00010
– rs2 = 00001

=> Which operation?
=> More specific info on op (ADD)

=> x3
=> x2

opcode

00000000000100010000000110110011

rs1rs2

funct3funct7

rd

=> x1

ADD x3, x2, x1

February 16, 2024 L14-7

Instruction Description Execution

ADD rd, rs1, rs2 Add reg[rd] <= reg[rs1] + reg[rs2]

SLL rd, rs1, rs2 Shift Left Logical reg[rd] <= reg[rs1] << reg[rs2]

SLT rd, rs1, rs2 Set if < (Signed) reg[rd] <= (reg[rs1] <s reg[rs2]) ? 1 : 0

... … …

February 16, 2024 L14-8

Instruction Description Execution

ADDI rd, rs1, immI Add Immediate reg[rd] <= reg[rs1] + immI

SLLI rd, rs1, immI Shift Left Logical
Immediate

reg[rd] <= reg[rs1] << immI

SLTI rd, rs1, immI Set if < Immediate
(Signed)

reg[rd] <= (reg[rs1] <s immI) ? 1 : 0

… … …

ALU Instructions

Grouped in a category called OP with fields (AluFunc, rd,
rs1, rs2)

Grouped in a category called OPIMM with fields (AluFunc,
rd, rs1, immI)

Load and Store Instructions
Instruction Description Execution

LW rd, immI(rs1) Load Word reg[rd] <= mem[reg[rs1] + immI]

SW rs2, immS(rs1) Store Word mem[reg[rs1] + immS] <= reg[rs2]

LW and SW need to access memory for execution and
thus, are required to compute an effective memory
address

February 16, 2024 L14-9

Branch Instructions
differ only in the aluBr operation they perform
Instruction Description Execution

BEQ rs1, rs2, immB Branch = pc <= (reg[rs1] == reg[rs2]) ? pc +
immB : pc + 4

BNE rs1, rs2, immB Branch != pc <= (reg[rs1] != reg[rs2]) ? pc + immB
: pc + 4

BLT rs1, rs2, immB Branch <
(Signed)

pc <= (reg[rs1] <s reg[rs2]) ? pc + immB
: pc + 4

BGE rs1, rs2, immB Branch ≥
(Signed)

pc <= (reg[rs1] ≥s reg[rs2]) ? pc + immB
: pc + 4

BLTU rs1, rs2, immB Branch <
(Unsigned)

pc <= (reg[rs1] <u reg[rs2]) ? pc + immB
: pc + 4

BGEU rs1, rs2, immB Branch ≥
(Unsigned)

pc <= (reg[rs1] ≥u reg[rs2]) ? pc + immB
: pc + 4

These instructions are grouped in a category called
BRANCH with fields (brFunc, rs1, rs2, immB)

February 16, 2024 L14-10

Single-Cycle RISC-V Processor

Inst
Memory

PC

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 12

instrpc

Fetch inst

Single-Cycle RISC-V Processor

Inst
Memory

PC

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 13

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 14

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 15

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Execute

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read &
1 write
ports

rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 16

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Execute

Write dst

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read &
1 write
ports

pc

nextPc
rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 17

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Execute

Write dst

next PC

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read &
1 write
ports

pc

nextPc
rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 18

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Execute

Write dst

next PC

LD rd,(rs1)
reg[rd] <= mem[reg[rs1]]

Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read &
1 write
ports

pc

nextPc
rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024 19

instrpc

Fetch inst

Decode

rs1
rs2

Decode_inst

Decode inst Reg[rs1]
Reg[rs2]

Read src

Execute

Write dst

next PC
Data

Memory

wr_data

addr

Mem[addr]

separate instruction
memory & data

memory

• “Iron Law” of performance:

Processor Performance

Program Program Instruction Cycle
Time Instruction Cycle Time

= ⋅ ⋅

February 16, 2024 20

Program
Instruction

Instruction
Cycle

Cycle
Time

Instruction Set

Microarchitecture

Technology, circuits

(b) No Vectorization (c) Vectorized Instruction

[Reference] VeGen: A Vectorizer Generator for SIMD and Beyond (Chen et al.)

• “Iron Law” of performance:

Processor Performance

Program Program Instruction Cycle
Time Instruction Cycle Time

= ⋅ ⋅

February 16, 2024 21

Program
Instruction

Instruction
Cycle

Cycle
Time

Instruction Set

Microarchitecture Design

Technology, circuits

Single-Cycle Processor Performance

• IPC (Instruction Per Cycle) = 1
• tCLK = Longest path for any instruction

tCLK ≈ tIMEM + tDEC + tRF + tEXE + tDMEM + tWB

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

Slow!
February 16, 2024 22

Pipelined Implementation
• Divide datapath in multiple pipeline stages to reduce tCLK

– Each instruction executes over multiple cycles

• We’ll study the classic 5-stage pipeline:

IF Instruction Fetch stage: Maintains PC,
fetches instruction and passes it to

WB Write-Back stage: writes result back
into register file.

DEC
Decode & Read Registers stage: Decodes

instruction and reads source operands
from register file, passes them to

EXE Execute stage: Performs indicated
operation in ALU, passes result to

MEM Memory stage: If it’s a load, use input as
the address, pass read data (or ALU result
if not a load) to

tCLK = max{tIF, tDEC, tEXE, tMEM, tWB}
February 16, 2024 23

Example: Non-Pipelined Execution

1 2 3 4 5 6
IF

addi lw sub xor add addi
DEC
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

February 16, 2024 24
tCLK ≈ tIMEM + tDEC + tRF + tEXE + tDMEM + tWB

Example: Pipelined Execution

1 2 3 4 5 6
IF addi

DEC
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

February 16, 2024 25

Cycles
S
ta

ge
s

Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw

DEC addi
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

February 16, 2024 26

Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw sub

DEC addi lw
EXE addi
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

February 16, 2024 27

Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw sub xor add addi

DEC addi lw sub xor add
EXE addi lw sub xor
MEM addi lw sub
WB addi lw

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

February 16, 2024 28
tCLK = max{tIF, tDEC, tEXE, tMEM, tWB}

Classic 5-Stage Pipelined Datapath

• Pipeline registers separate
different stages

• Each stage services one
instruction per cycle

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

tCLK = max{tIF, tDEC, tEXE, tMEM, tWB}

February 16, 2024 29

Pipeline Hazard

1 2 3 4 5 6
IF addi lw sub xor add addi

DEC addi lw sub xor add
EXE addi lw sub xor
MEM addi lw sub
WB addi lw

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4 Reads in DEC stage
Writes at end of

WB stage

When do register reads
and writes happen?

February 16, 2024 30
Read x10 Write x11

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

Data Hazards

• Consider this instruction
sequence:

• xor reads x11 on cycle 3, but addi does not
update it until end of cycle 5 x11 is stale!

• Pipeline must maintain correct behavior…

1 2 3 4 5 6
IF addi xor sub xori

DEC addi xor sub xori
EXE addi xor sub xori
MEM addi xor sub
WB addi xor

February 16, 2024 31

Pipeline Hazards

• Pipelining tries to overlap the execution of multiple
instructions, but an instruction may depend on
something produced by an earlier instruction
– A data value Data hazard

– The program counter Control hazard
(branches, jumps, exceptions)

February 16, 2024 32

Resolving Hazards

• Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

• Strategy 2: Bypass (Data hazard). Route data to
the earlier pipeline stage as soon as it is calculated

• Strategy 3: Speculate (Control hazard)
– Guess a value and continue executing anyway
– When actual value is available, two cases

• Guessed correctly do nothing
• Guessed incorrectly kill & restart with correct value

February 16, 2024 33

Resolving Data Hazards by Stalling

• Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

1 2 3 4 5 6 7 8
IF addi xor sub sub sub sub xori

DEC addi xor xor xor xor sub xori
EXE addi NOP NOP NOP xor sub
MEM addi NOP NOP NOP xor
WB addi NOP NOP NOP

x11 updated

Stalls decrease IPC!

Stall

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

February 16, 2024 34

Stall Logic

• New STALL control signal

• STALL==1
– Freezes PC and IF pipeline
– Injects NOP into EXE stage

• NOP = No-operation

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4IF

DEC

EXE

MEM

WB

STALL

STALL

STALL
NOP

February 16, 2024 35

Resolving Data Hazards by Bypassing

• Strategy 2: Bypass. Route data
to the earlier pipeline stage
as soon as it is calculated

• addi writes to x11 at the end of cycle 5…
but the result is produced during cycle 3,
at the EXE stage!

1 2 3 4 5
IF addi xor sub xori

DEC addi xor sub xori
EXE addi xor sub
MEM addi xor
WB addi

x11 updatedaddi result computed

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

February 16, 2024 36

Bypass Logic
• Add bypass muxes to

DEC outputs

• Route EXE, MEM, WB
outputs to mux inputs

• Bypass value if
destination register of
instruction matches
source register of
instruction in DEC

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4IF

DEC

EXE

MEM

WB

STALL

STALL

STALL
NOP

February 16, 2024 37

Resolving Hazards

• Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

• Strategy 2: Bypass (Data hazard). Route data to
the earlier pipeline stage as soon as it is calculated

• Strategy 3: Speculate (Control hazard)
– Guess a value and continue executing anyway
– Two cases can happen

• Correct Guess do nothing
• Wrong Guess kill & restart with correct value

February 16, 2024 38

Resolving Control Hazards with
Speculation
• What’s a good guess

for nextPC?

loop: addi x12, x12, -1
 sub x14, x15, x16
 bne x12, x0, loop
 and x16, x17, x18
 xor x19, x20, x21
 …

PC+4

February 16, 2024 39

PC

for (int i=100; i>=0; i--){
 …
}

PC+4

Resolving Control Hazards with
Speculation
• What’s a good guess

for nextPC?

• Assume nextPC = PC+4

loop: addi x12, x11, -1
 sub x14, x15, x16
 bne x12, x0, loop
 and x16, x17, x18
 xor x19, x20, x21
 …

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor

DEC addi sub bne and xor

EXE addi sub bne and xor

MEM addi sub bne and xor

WB addi sub bne and xor

Start fetching at PC+4 (and) but
bne not resolved yet…

Guessed right(x12==x0)

February 16, 2024 40

Resolving Control Hazards with
Speculation
• What’s a good guess

for nextPC?

• Assume nextPC = loop

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor addi sub bne and

DEC addi sub bne and NOP addi sub bne

EXE addi sub bne NOP NOP addi sub

MEM addi sub bne NOP NOP addi

WB addi sub bne NOP NOP

Start fetching at PC+4 (and) but
bne not resolved yet …

Guessed wrong, kill and & xor
and restart fetching at loop(addi)

loop: addi x12, x11, -1
 sub x14, x15, x16
 bne x12, x0, loop
 and x16, x17, x18
 xor x19, x20, x21
 …

February 16, 2024 41

Speculation Logic

• When EXE finds a jump
or taken branch, it
supplies nextPC and
sets ANNUL==1
– Annulling instructions

currently in IF and DEC
stages

– Writes NOPs in IF/DEC and
DEC/EXE pipeline registers

– Loads the branch or jump
target into PC register

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4
IF

DEC

EXE

MEM

WB

NOP

ANNUL

ANNUL

ANNUL

ANNUL

STALL

STALL

STALL

February 16, 2024 42

Summary of solutions to hazards

• Stalling can address all pipeline hazards
– Simple, but hurts IPC

• Bypassing improves IPC on data hazards
• Speculation improves IPC on control hazards

– Speculation works only when it’s easy to make good guesses

February 16, 2024 43

Program Program Instruction Cycle
Time Instruction Cycle Time

= ⋅ ⋅

Instruction
Cycle

Microarchitecture

Summary

• Processor state
– Registers (including PC)
– Memory

• Instruction set – means of updating state
– Compute
– Memory access
– Control

• Basic implementation: single-cycle RISC-V processor

• Pipelining boosts throughput, but introduces hazards
– Solutions to hazards: stall, bypass, and speculate

44February 16, 2024

	Slide Number 1
	The von Neumann Model
	Key Idea: Stored-Program Computer
	Anatomy of a von Neumann Computer
	Anatomy of a von Neumann Computer
	Instructions
	Slide Number 7
	ALU Instructions
	Load and Store Instructions
	Branch Instructions�differ only in the aluBr operation they perform
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Single-Cycle RISC-V Processor
	Processor Performance
	Processor Performance
	Single-Cycle Processor Performance
	Pipelined Implementation
	Example: Non-Pipelined Execution
	Example: Pipelined Execution
	Example: Pipelined Execution
	Example: Pipelined Execution
	Example: Pipelined Execution
	Classic 5-Stage Pipelined Datapath
	Pipeline Hazard
	Data Hazards
	Pipeline Hazards
	Resolving Hazards
	Resolving Data Hazards by Stalling
	Stall Logic
	Resolving Data Hazards by Bypassing
	Bypass Logic
	Resolving Hazards
	Resolving Control Hazards with Speculation
	Resolving Control Hazards with Speculation
	Resolving Control Hazards with Speculation
	Speculation Logic
	Summary of solutions to hazards
	Summary

