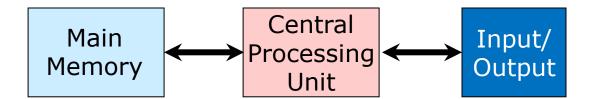
6.5930/1

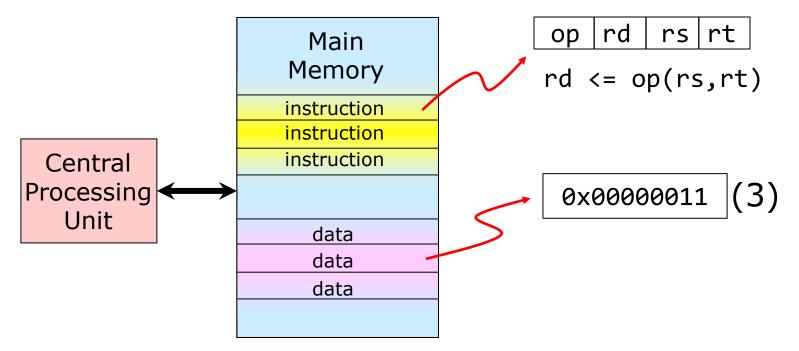
Hardware Architecture for Deep Learning

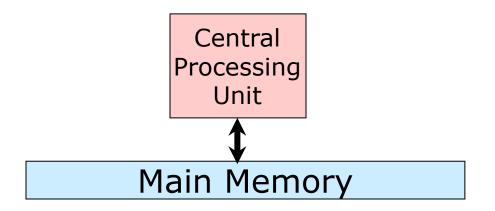

Computer Architecture Basics I - Pipelining

Zoey Song MIT

Legacy slides adapted from 6.191/6.5900

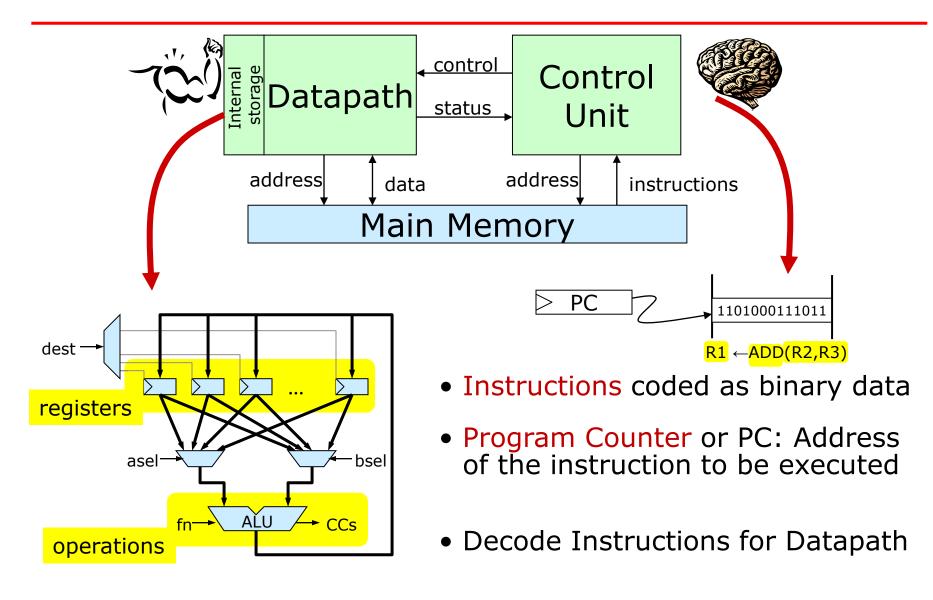
The von Neumann Model


- Almost all modern computers are based on the von Neumann model (John von Neumann, 1945)
- Components:

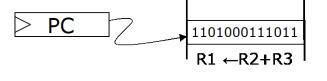

- Main memory holds programs and their data
- Central processing unit accesses and processes memory values
- Input/output devices to communicate with the outside world

Key Idea: Stored-Program Computer

- Express program as a sequence of coded instructions
- Memory holds both data and instructions
- CPU fetches, interprets, and executes successive instructions of the program

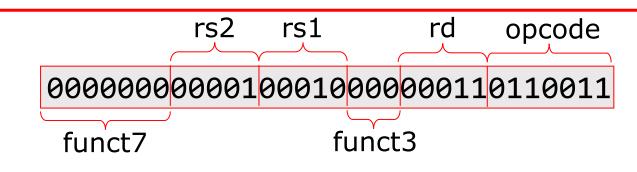


Anatomy of a von Neumann Computer


How does CPU distinguish between instructions and data?

Anatomy of a von Neumann Computer

Instructions


- Instructions are the fundamental unit of work
- Each instruction specifies:
 - An operation or opcode to be performed
 - Source operands and destination for the result
- In a von Neumann machine, instructions are executed sequentially
 - By default, the next PC is current PC + size of current instruction (e.g., PC + 4)
 - Except for branch instruction

loop: addi x12, x12, -1
 sub x14, x15, x16
 PC bne x12, x0, loop
 PC+4 and x16, x17, x18
 xor x19, x20, x21

...

ALU Instructions

- What RISC-V instruction is represented by these 32 bits?
- Reference manual specifies the fields as follows:
 - opcode = 0110011 => Which operation?
 - funct3 = 000 => More specific info on op (ADD)

ADD x3, x2, x1

- funct7 = 0000000
- rd = 00011 => x3
- $rs1 = 00010 \implies x2$
- rs2 = 00001 => x1

ALU Instructions

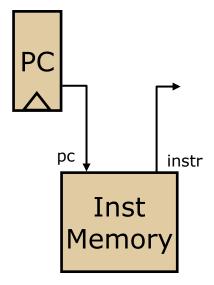
Instruction		Description	Execution		
ADD rd, r	s1, rs2	Add	<pre>reg[rd] <= reg[rs1] + reg[rs2]</pre>		
SLL rd, rs	s1, rs2	Shift Left Logical	<pre>reg[rd] <= reg[rs1] << reg[rs2]</pre>		
SLT rd, rs	s1, rs2	Set if < (Signed)	reg[rd] <= (reg[rs1] < _s reg[rs2]) ? 1 : 0		
Grouped in a category called OP with fields (AluFunc, rd rs1, rs2)					

Instruction		Description	Execution
ADDI rd, r	s1, immI	Add Immediate	reg[rd] <= reg[rs1] + immI
SLLI rd, rs1, immI		Shift Left Logical Immediate	reg[rd] <= reg[rs1] << immI
SLTI rd, rs1, immI		Set if < Immediate (Signed)	reg[rd] <= (reg[rs1] < _s immI) ? 1 : 0
	lled OPIMM with fields (AluFunc,		

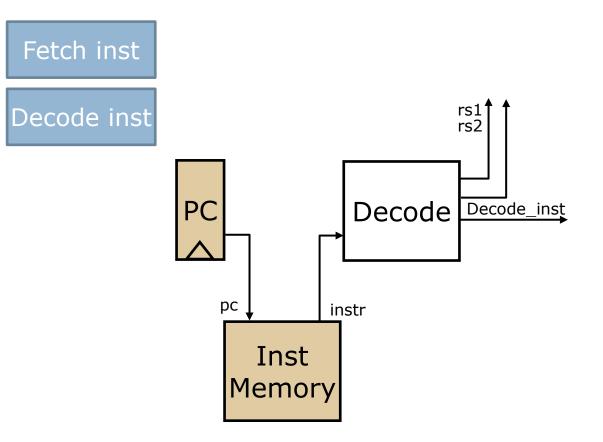
Load and Store Instructions

Instruction	Description	Execution
LW rd, immI(rs1)	Load Word	reg[rd] <= mem[reg[rs1] + immI]
SW rs2, immS(rs1)	Store Word	mem[reg[rs1] + immS] <= reg[rs2]

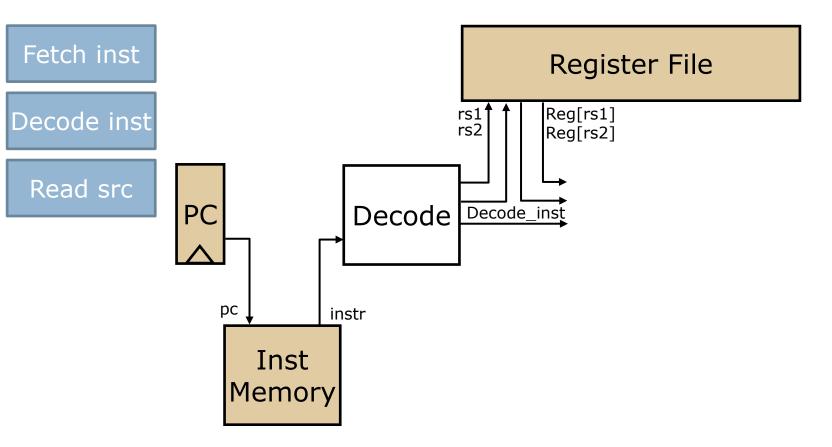
LW and SW need to access memory for execution and thus, are required to compute an effective memory address

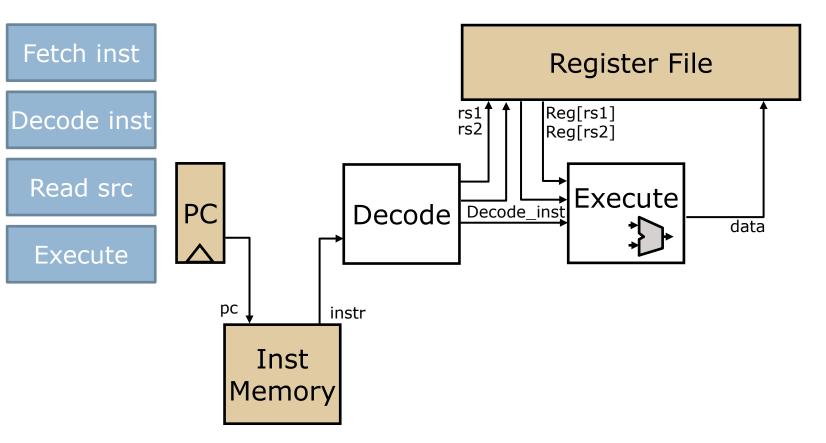

Branch Instructions

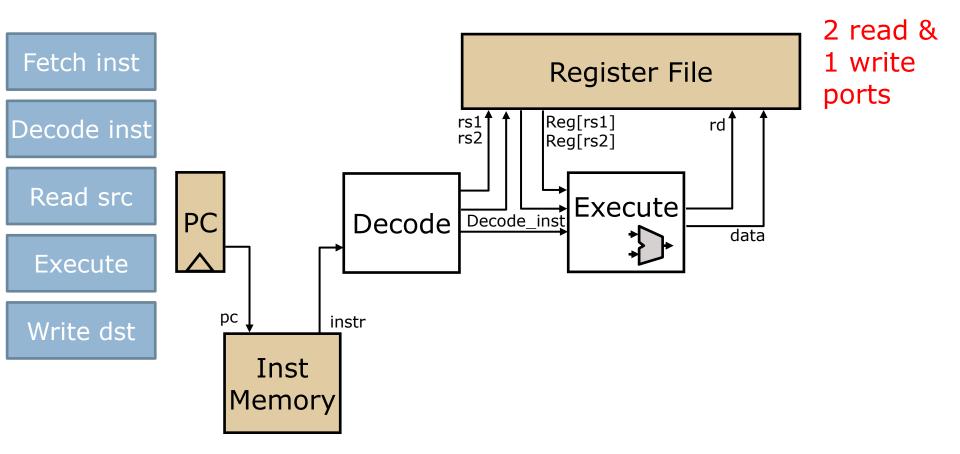
differ only in the aluBr operation they perform

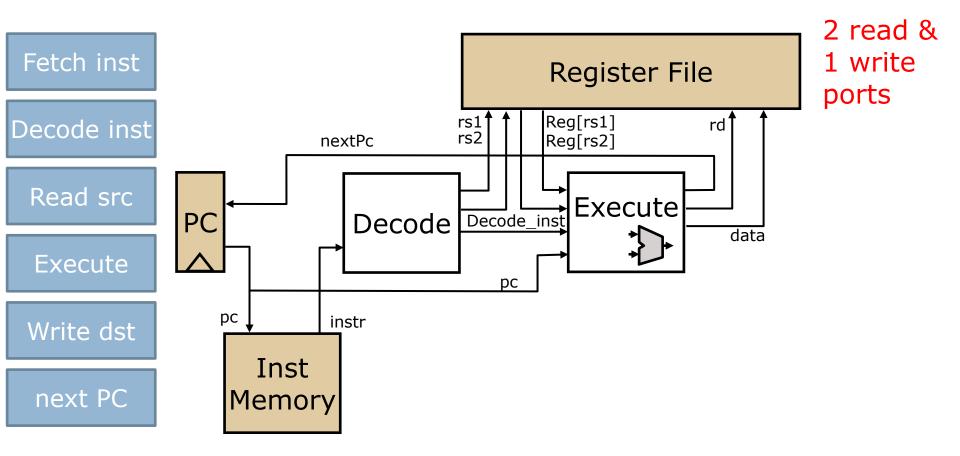

Instruction	Description	Execution
BEQ rs1, rs2, immB	Branch =	pc <= (reg[rs1] == reg[rs2]) ? pc + immB : pc + 4
BNE rs1, rs2, immB	Branch !=	<pre>pc <= (reg[rs1] != reg[rs2]) ? pc + immB : pc + 4</pre>
BLT rs1, rs2, immB	Branch < (Signed)	<pre>pc <= (reg[rs1] <_s reg[rs2]) ? pc + immB : pc + 4</pre>
BGE rs1, rs2, immB	Branch ≥ (Signed)	$pc \le (reg[rs1] \ge_s reg[rs2]) ? pc + immB$: $pc + 4$
BLTU rs1, rs2, immB	Branch < (Unsigned)	pc <= (reg[rs1] < _u reg[rs2]) ? pc + immB : pc + 4
BGEU rs1, rs2, immB	Branch ≥ (Unsigned)	$pc \le (reg[rs1] \ge_u reg[rs2]) ? pc + immB$: $pc + 4$

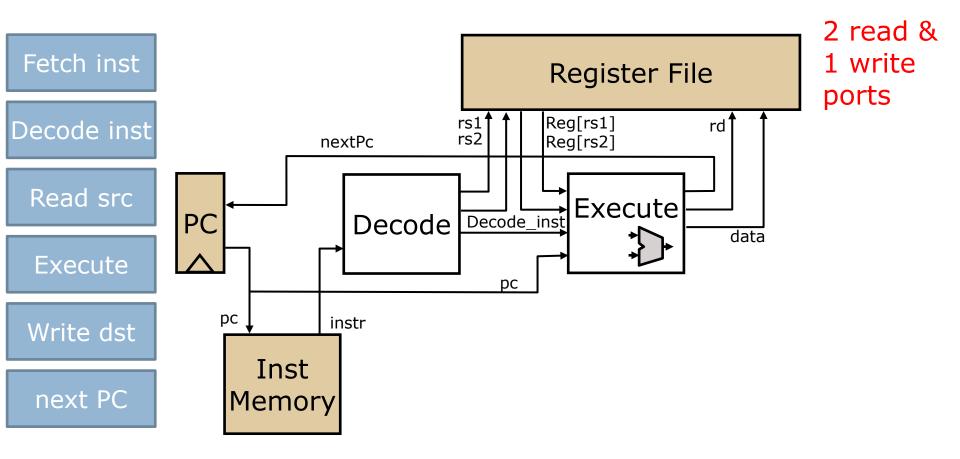
These instructions are grouped in a category called BRANCH with fields (brFunc, rs1, rs2, immB)


Fetch inst

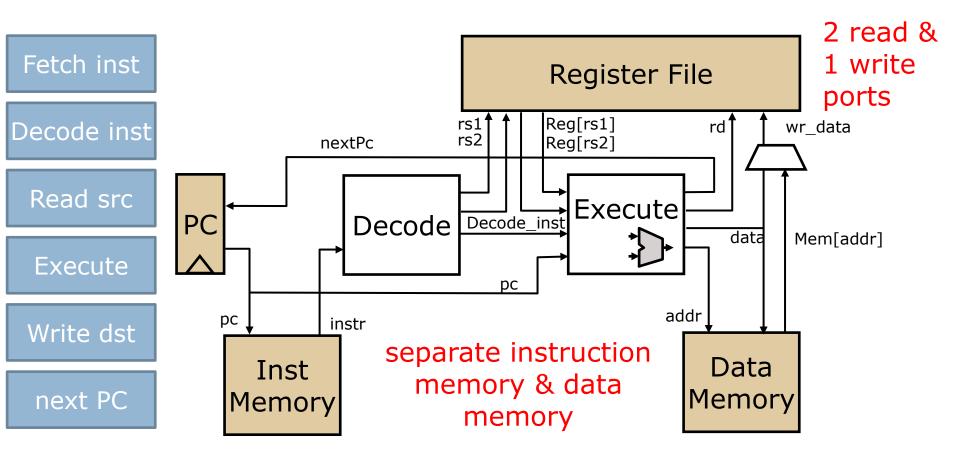

- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions


- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions


- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions


- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions

- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions


- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions

- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions

February 16, 2024

LD rd, (rs1)
reg[rd] <= mem[reg[rs1]]

- 1. ALU instructions
- 2. Load & store instructions
- 3. Branch & jump instructions

Processor Performance

• "Iron Law" of performance:

Program _	Program	Instruction	Cycle
Time	Instruction	Cycle	Time

Program

Instruction Set

Instruction

(a) Reference Implementation	(b) No Vectorization	(c) Vectorized Instruction
<pre>void dot_16x1x16_uint8_int8_int32(uint8_t data[restrict 4], int8_t kernel[restrict 16][4], int32_t output[restrict 16]) { for (int i = 0; i < 16; i++) for (int k = 0; k < 4; k++) output[i] += data[k] * kernel[i][k]; }</pre>	<pre>movzx r11d, [rdi] movsx eax, [rsi] imul r11d, eax add r11d, r10d add r11d, ecx mov [rdx], r11d</pre>	<pre>vmovdqu64 zmm0, [rdx] vpbroadcastd zmm1, [rdi] vpdpbusd zmm0, zmm0, [rsi] vmovdqu64 [rdx], zmm0</pre>
Number of Instructions	273	4

Processor Performance

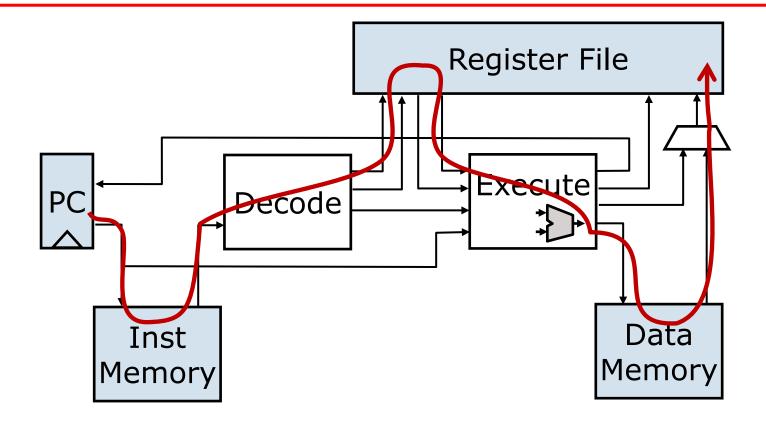
• "Iron Law" of performance:

Program _	Program	Instruction	Cycle
Time	Instruction	Cycle	Time

Program Instruction

Instruction Set

Instruction

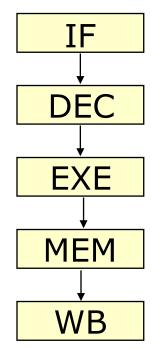

Cycle

Microarchitecture Design

Cycle Time

Technology, circuits

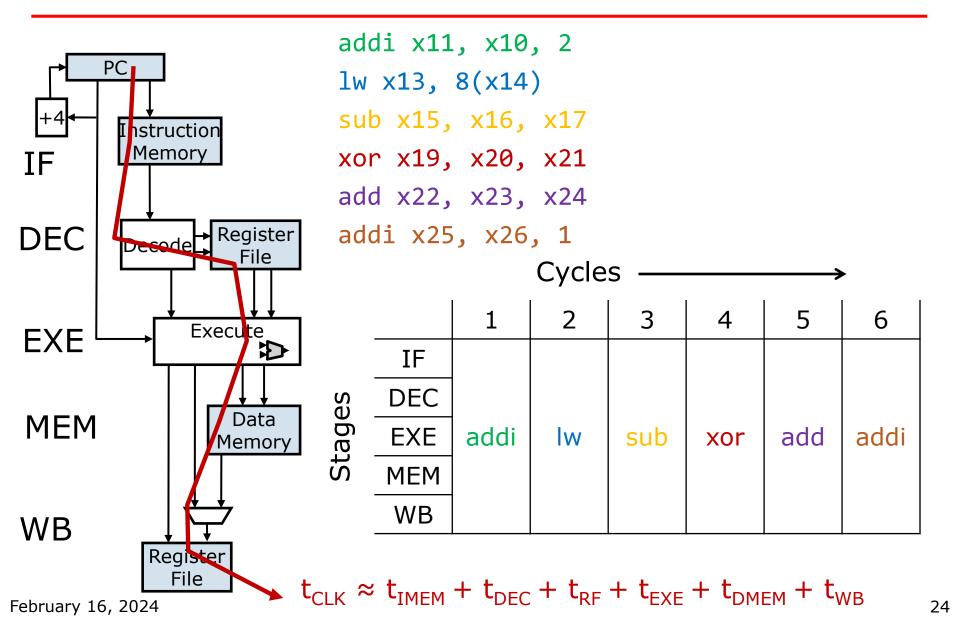
Single-Cycle Processor Performance

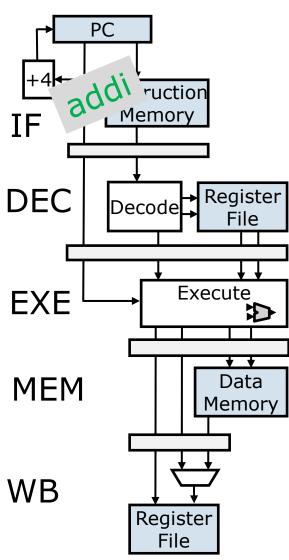


- IPC (Instruction Per Cycle) = 1
- t_{CLK} = Longest path for any instruction

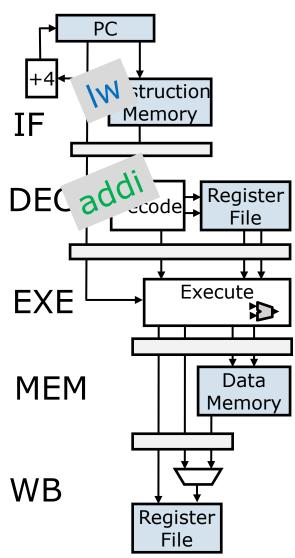
 $t_{CLK} \approx t_{IMEM} + t_{DEC} + t_{RF} + t_{EXE} + t_{DMEM} + t_{WB}$ Slow!

Pipelined Implementation

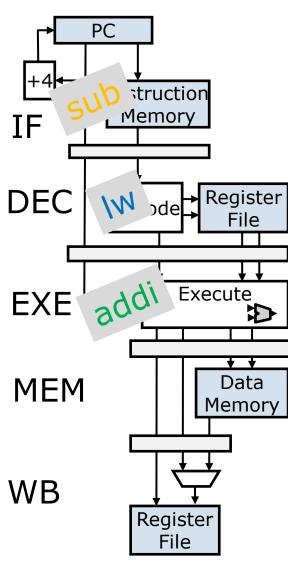

- Divide datapath in multiple pipeline stages to reduce $t_{\mbox{\tiny CLK}}$
 - Each instruction executes over multiple cycles
- We'll study the classic 5-stage pipeline:



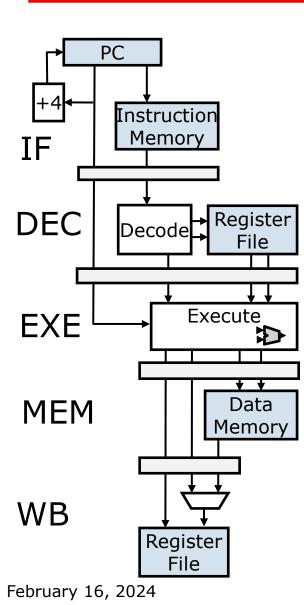
Instruction Fetch stage: Maintains PC, fetches instruction and passes it to
Decode & Read Registers stage: Decodes instruction and reads source operands from register file, passes them to
Execute stage: Performs indicated operation in ALU, passes result to
Memory stage: If it's a load, use input as the address, pass read data (or ALU result if not a load) to
Write-Back stage: writes result back


 $t_{CLK} = max\{t_{IF,} t_{DEC,} t_{EXE,} t_{MEM,} t_{WB}\}$

into register file.



addi x11, x10, 2								
lw x13, 8(x14)								
o x15,	x16,	x17						
r x19,	x20,	x21						
d x22,	x23,	x24						
di x25	, x26	, 1						
		Cycle	s —			•		
	1	2	3	4	5	6		
IF	addi							
DEC								
Stages DEC								
MEM								
WB								
	x13, x15, x19, x22, di x22, di x25 IF DEC EXE MEM	x13, 8(x14 x15, x16, x19, x20, x22, x23, di x25, x26 I IF addi DEC EXE MEM	x13, 8(x14) x15, x16, x17 x19, x20, x21 x22, x23, x24 di x25, x26, 1 Cycle 1 2 IF addi DEC EXE MEM	x13, 8(x14) x15, x16, x17 x19, x20, x21 x22, x23, x24 di x25, x26, 1 Cycles 1 2 3 IF addi DEC EXE MEM	x13, 8(x14) x15, x16, x17 x19, x20, x21 x22, x23, x24 di x25, x26, 1 Cycles 1 2 3 4 IF addi DEC 4 EXE 4 MEM 4 MEM 4 IF 4	x13, 8(x14) x15, x16, x17 x19, x20, x21 x22, x23, x24 di x25, x26, 1 Cycles		

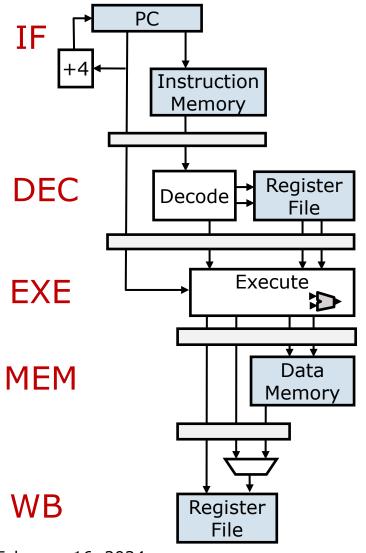


lw suł xor	di x11 x13, p x15, p x19,	8(x14 x16, x20,) x17 x21				
	d x22,	-					
ado	di x25	, X26		_			
			Cycle	s —		~~~	►
		1	2	3	4	5	6
	IF	addi	lw				
S	DEC		addi				
Stages	EXE						
St	MEM						
	WB						
							<u>. </u>

ado	di x11	., x10	, 2				
lw	x13,	8(x14)				
sul	o x15,	x16,	x17				
XOI	^ x19,	x20,	x21				
ado	d x22,	x23,	x24				
ado	di x25	, x26	, 1				
			Cycle	s —			•
		1	2	3	4	5	6
	IF	addi	lw	sub			
es	DEC		addi	lw			
Stages	EXE			addi			
St	MEM						
	WB						

Stages

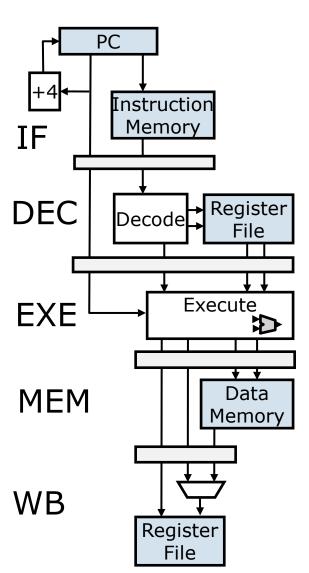
addi x11, x10, 2 lw x13, 8(x14) sub x15, x16, x17 xor x19, x20, x21 add x22, x23, x24 addi x25, x26, 1 Cycles —


	1	2	3	4	5	6
IF	addi	lw	sub	xor	add	addi
DEC		addi	lw	sub	xor	add
EXE			addi	lw	sub	xor
MEM				addi	W	sub
WB					addi	lw

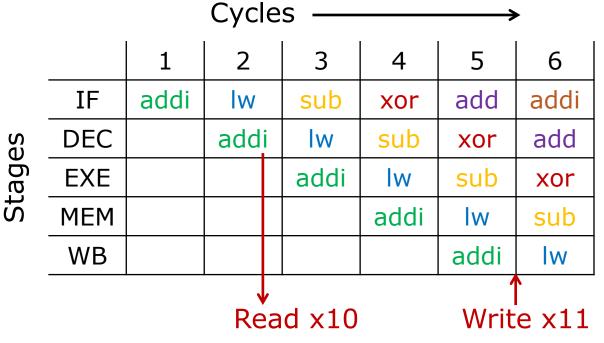
Т

1

 $t_{CLK} = max\{t_{IF,} t_{DEC,} t_{EXE,} t_{MEM,} t_{WB}\}$


Classic 5-Stage Pipelined Datapath

- Pipeline registers separate different stages
- Each stage services one instruction per cycle


$$t_{\text{CLK}} = max\{t_{\text{IF,}} t_{\text{DEC,}} t_{\text{EXE,}} t_{\text{MEM,}} t_{\text{WB}}\}$$

Pipeline Hazard

addi x11 x10, 2 lw x13, 8(x14) sub x15, x16, x17 xor x19, x20, x21 add x22, x23, x24 addi x25, x26, 1

When do register reads and writes happen? Reads in DEC stage Writes at end of WB stage

Data Hazards

• Consider this instruction sequence:

addi x11, x10, 2 xor x13, x11, x12 sub x17, x15, x16 xori x19, x18, 0xF

	1	2	3	4	5	6
IF	addi	xor	sub	xori		
DEC		addi	xor	sub	xori	
EXE			addi	xor	sub	xori
MEM				addi	xor	sub
WB					addi	xor

- xor reads x11 on cycle 3, but addi does not update it until end of cycle 5 → x11 is stale!
- Pipeline must maintain correct behavior...

Pipeline Hazards

- Pipelining tries to overlap the execution of multiple instructions, but an instruction may depend on something produced by an earlier instruction
 - A data value \rightarrow Data hazard
 - The program counter → Control hazard (branches, jumps, exceptions)

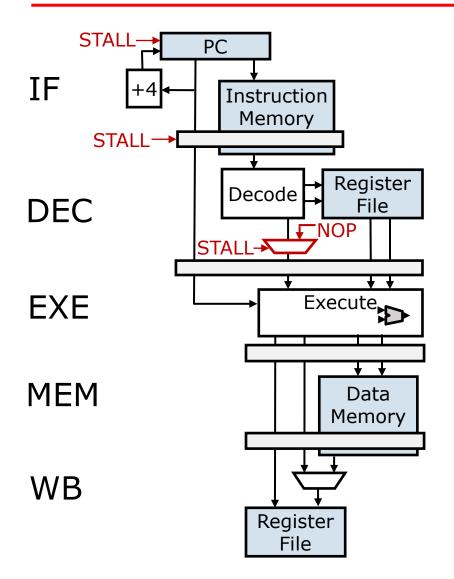
Resolving Hazards

- Strategy 1: Stall. Wait for the result to be available by freezing earlier pipeline stages
- Strategy 2: Bypass (Data hazard). Route data to the earlier pipeline stage as soon as it is calculated
- Strategy 3: Speculate (Control hazard)
 - Guess a value and continue executing anyway
 - When actual value is available, two cases
 - Guessed correctly \rightarrow do nothing
 - Guessed incorrectly \rightarrow kill & restart with correct value

Resolving Data Hazards by Stalling

• Strategy 1: Stall. Wait for the result to be available by freezing earlier pipeline stages

addi x11, x10, 2 xor x13, x11, x12 sub x17, x15, x16 xori x19, x18, 0xF


			~						
	1	2	3	4	5	6	7	8	
IF	addi	xor	sub	sub	sub	sub	xori		
DEC		addi	xor	xor	xor	xor	sub	xori	
EXE			addi	NOP	NOP	NOP	xor	sub	
MEM				addi	NOP	NOP	NOP	xor	
WB					addi	NOP	NOP	NOP	

Stall

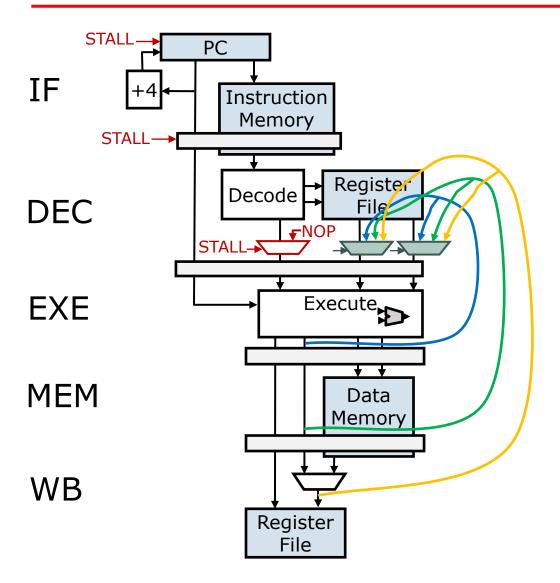
[↑] x11 updated

Stalls decrease IPC!

Stall Logic

- New STALL control signal
- STALL==1
 - Freezes PC and IF pipeline
 - Injects NOP into EXE stage

Resolving Data Hazards by Bypassing


 Strategy 2: Bypass. Route data to the earlier pipeline stage as soon as it is calculated addi x11, x10, 2 xor x13, x11, x12 sub x17, x15, x16 xori x19, x18, 0xF

 addi writes to x11 at the end of cycle 5... but the result is produced during cycle 3, at the EXE stage!

	1	2	3	4	5		
IF	addi	xor	sub	xori			
DEC		addi	xor 🛉	sub	xori		
EXE			addi	xor	sub		
MEM				addi	xor		
WB					addi		
addi result computed 1 1							

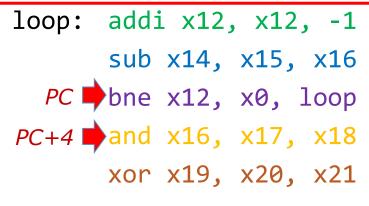
11 updated

Bypass Logic

 Add bypass muxes to DEC outputs

• Route EXE, MEM, WB outputs to mux inputs

 Bypass value if destination register of instruction matches source register of instruction in DEC


Resolving Hazards

- Strategy 1: Stall. Wait for the result to be available by freezing earlier pipeline stages
- Strategy 2: Bypass (Data hazard). Route data to the earlier pipeline stage as soon as it is calculated
- Strategy 3: Speculate (Control hazard)
 - Guess a value and continue executing anyway
 - Two cases can happen
 - Correct Guess \rightarrow do nothing
 - Wrong Guess \rightarrow kill & restart with correct value

Resolving Control Hazards with Speculation

• What's a good guess for nextPC? PC+4

...

for (int i=100; i>=0; i--){ ... }

Resolving Control Hazards with Speculation

- What's a good guess for nextPC? PC+4
- Assume nextPC = PC+4
- loop: addi x12, x11, -1
 sub x14, x15, x16
 bne x12, x0, loop

...

- and x16, x17, x18
- xor x19, x20, x21

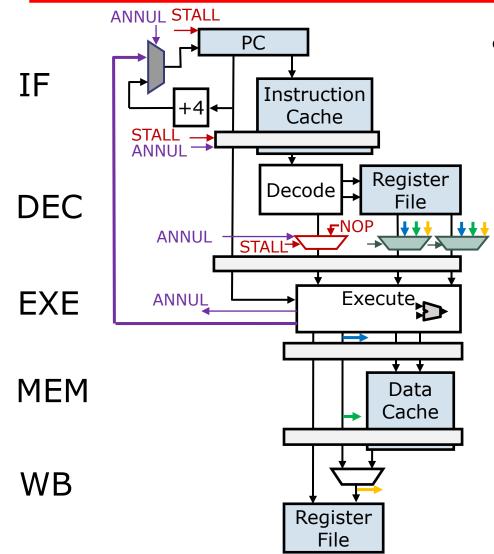
	1	2	3	4	5	6	7	8	9
IF	addi	sub	bne	and	xor				
DEC		addi	sub	bne	and	xor			
EXE			addi	sub	bne	and	xor		
MEM				addi	sub	bne	and	xor	
WB					addi	sub	bne	and	xor
			1	٨	<u> </u>				

Start fetching at PC+4 (and) but Guessed right (x12==x0) bne not resolved yet...

Resolving Control Hazards with Speculation

- What's a good guess for nextPC? PC+4
- Assume nextPC = loop
- loop: addi x12, x11, -1
 sub x14, x15, x16
 bne x12, x0, loop
 and x16, x17, x18
 xor x19, x20, x21

...


L

	1	2	3	4	5	6	7	8	9
IF	addi	sub	bne	and	xor	addi	sub	bne	and
DEC		addi	sub	bne	and	NOP	addi	sub	bne
EXE			addi	sub	bne	NOP	NOP	addi	sub
MEM				addi	sub	bne	NOP	NOP	addi
WB					addi	sub	bne	NOP	NOP
γ									

Start fetching at PC+4 (and) but bne not resolved yet ...

Guessed wrong, kill and & xor and restart fetching at loop(addi)

Speculation Logic

- When EXE finds a jump or taken branch, it supplies nextPC and sets ANNUL==1
 - Annulling instructions currently in IF and DEC stages
 - Writes NOPs in IF/DEC and DEC/EXE pipeline registers
 - Loads the branch or jump target into PC register

Summary of solutions to hazards

- Stalling can address all pipeline hazards
 Simple, but hurts IPC
- Bypassing improves IPC on data hazards
- Speculation improves IPC on control hazards
 - Speculation works only when it's easy to make good guesses

Program _	Program	Instruction	Cycle	
Time	Instruction	Cycle	Time	
Instruc Cyc	—— M	icroarchitect	ture	

Summary

- Processor state
 - Registers (including PC)
 - Memory
- Instruction set means of updating state
 - Compute
 - Memory access
 - Control
- Basic implementation: single-cycle RISC-V processor
- Pipelining boosts throughput, but introduces hazards
 - Solutions to hazards: stall, bypass, and speculate