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The von Neumann Model

• Almost all modern computers are based on the von 
Neumann model (John von Neumann, 1945)

• Components:

– Main memory holds programs and their data
– Central processing unit accesses and processes memory values
– Input/output devices to communicate with the outside world
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Main
Memory

Input/
Output
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Key Idea: Stored-Program Computer

• Express program as a sequence of coded instructions
• Memory holds both data and instructions
• CPU fetches, interprets, and executes successive 

instructions of the program
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instruction
instruction
instruction

data
data
data

Main 
Memory

op rd  rs rt

rd <= op(rs,rt)

February 16, 2024 3

0x00000011 (3)



Anatomy of a von Neumann Computer

Main Memory
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How does CPU 
distinguish between 

instructions and data? 



registers

operations

Anatomy of a von Neumann Computer
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• Instructions coded as binary data

• Program Counter or PC: Address 
of the instruction to be executed

• Decode Instructions for Datapath

R1 ←ADD(R2,R3)

addressaddress
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Instructions
• Instructions are the fundamental unit of work

 Each instruction specifies:
 An operation or opcode to be 

performed
 Source operands and destination 

for the result

 In a von Neumann machine, 
instructions are executed 
sequentially
 By default, the next PC is current

PC + size of current instruction
(e.g., PC + 4)

 Except for branch instruction
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loop: addi x12, x12, -1
   sub x14, x15, x16
   bne x12, x0, loop
   and x16, x17, x18
   xor x19, x20, x21
   …

PC

PC+4



ALU Instructions

• What RISC-V instruction is represented by these 
32 bits?

• Reference manual specifies the fields as follows:
– opcode = 0110011 
– funct3 = 000
– funct7 = 0000000

– rd = 00011
– rs1 = 00010
– rs2 = 00001

=> Which operation?
=> More specific info on op (ADD)

=> x3
=> x2

opcode

00000000000100010000000110110011

rs1rs2

funct3funct7

rd

=> x1

ADD x3, x2, x1
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Instruction Description Execution

ADD rd, rs1, rs2 Add reg[rd] <= reg[rs1] + reg[rs2]

SLL rd, rs1, rs2 Shift Left Logical reg[rd] <= reg[rs1] << reg[rs2]

SLT rd, rs1, rs2 Set if < (Signed) reg[rd] <= (reg[rs1] <s reg[rs2]) ? 1 : 0

... … …
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Instruction Description Execution

ADDI rd, rs1, immI Add Immediate reg[rd] <= reg[rs1] + immI

SLLI rd, rs1, immI Shift Left Logical 
Immediate

reg[rd] <= reg[rs1] << immI

SLTI rd, rs1, immI Set if < Immediate 
(Signed)

reg[rd] <= (reg[rs1] <s immI) ? 1 : 0

… … …

ALU Instructions

Grouped in a category called OP with fields (AluFunc, rd, 
rs1, rs2)

Grouped in a category called OPIMM with fields (AluFunc, 
rd, rs1, immI)



Load and Store Instructions
Instruction Description Execution

LW rd, immI(rs1) Load Word reg[rd] <= mem[reg[rs1] + immI]

SW rs2, immS(rs1) Store Word mem[reg[rs1] + immS] <= reg[rs2]

LW and SW need to access memory for execution and 
thus, are required to compute an effective memory 
address
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Branch Instructions
differ only in the aluBr operation they perform 
Instruction Description Execution

BEQ rs1, rs2, immB Branch = pc <= (reg[rs1] == reg[rs2]) ? pc + 
immB : pc + 4

BNE rs1, rs2, immB Branch != pc <= (reg[rs1] != reg[rs2]) ? pc + immB
: pc + 4

BLT rs1, rs2, immB Branch < 
(Signed)

pc <= (reg[rs1] <s reg[rs2]) ? pc + immB
: pc + 4

BGE rs1, rs2, immB Branch ≥ 
(Signed)

pc <= (reg[rs1] ≥s reg[rs2]) ? pc + immB
: pc + 4

BLTU rs1, rs2, immB Branch < 
(Unsigned)

pc <= (reg[rs1] <u reg[rs2]) ? pc + immB
: pc + 4

BGEU rs1, rs2, immB Branch ≥ 
(Unsigned)

pc <= (reg[rs1] ≥u reg[rs2]) ? pc + immB
: pc + 4

These instructions are grouped in a category called 
BRANCH with fields (brFunc, rs1, rs2, immB)
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Single-Cycle RISC-V Processor

Inst
Memory

PC

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor
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Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read & 
1 write 
ports

rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

Inst
Memory

Register File

PC

2 read & 
1 write 
ports

pc

nextPc
rd

Execute
data

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

Inst
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PC

2 read & 
1 write 
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1. ALU instructions
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3. Branch & jump instructions
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instrpc

Fetch inst

Decode
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Decode_inst

Decode inst Reg[rs1]
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Read src

Execute

Write dst

next PC

LD rd,(rs1)
reg[rd] <= mem[reg[rs1]]



Single-Cycle RISC-V Processor
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• “Iron Law” of performance:

Processor Performance

Program Program Instruction Cycle
Time Instruction Cycle Time

= ⋅ ⋅
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(b) No Vectorization (c) Vectorized Instruction

[Reference] VeGen: A Vectorizer Generator for SIMD and Beyond (Chen et al.)



• “Iron Law” of performance:

Processor Performance

Program Program Instruction Cycle
Time Instruction Cycle Time

= ⋅ ⋅
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Single-Cycle Processor Performance

• IPC (Instruction Per Cycle) = 1
• tCLK = Longest path for any instruction

tCLK ≈ tIMEM + tDEC + tRF + tEXE + tDMEM + tWB

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

Slow!
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Pipelined Implementation
• Divide datapath in multiple pipeline stages to reduce tCLK

– Each instruction executes over multiple cycles

• We’ll study the classic 5-stage pipeline:

IF Instruction Fetch stage: Maintains PC, 
fetches instruction and passes it to

WB Write-Back stage: writes result back 
into register file.

DEC
Decode & Read Registers stage: Decodes 

instruction and reads source operands 
from register file, passes them to

EXE Execute stage: Performs indicated 
operation in ALU, passes result to

MEM Memory stage: If it’s a load, use input as 
the address, pass read data (or ALU result 
if not a load) to

tCLK = max{tIF, tDEC, tEXE, tMEM, tWB}
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Example: Non-Pipelined Execution

1 2 3 4 5 6
IF

addi lw sub xor add addi
DEC
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4
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Example: Pipelined Execution

1 2 3 4 5 6
IF addi

DEC
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4
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Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw

DEC addi
EXE
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory
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File

Data
Memory

Execute

Register
File

+4
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Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw sub

DEC addi lw
EXE addi
MEM
WB

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4
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Example: Pipelined Execution

1 2 3 4 5 6
IF addi lw sub xor add addi

DEC addi lw sub xor add
EXE addi lw sub xor
MEM addi lw sub
WB addi lw

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4
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Classic 5-Stage Pipelined Datapath

• Pipeline registers separate 
different stages

• Each stage services one 
instruction per cycle

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4

tCLK = max{tIF, tDEC, tEXE, tMEM, tWB}
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Pipeline Hazard

1 2 3 4 5 6
IF addi lw sub xor add addi

DEC addi lw sub xor add
EXE addi lw sub xor
MEM addi lw sub
WB addi lw

addi x11, x10, 2
lw x13, 8(x14)
sub x15, x16, x17
xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
S
ta

ge
s

IF

DEC

EXE

MEM

WB

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4 Reads in DEC stage
Writes at end of

WB stage

When do register reads 
and writes happen?
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addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

Data Hazards

• Consider this instruction
sequence:

• xor reads x11 on cycle 3, but addi does not 
update it until end of cycle 5  x11 is stale!

• Pipeline must maintain correct behavior…

1 2 3 4 5 6
IF addi xor sub xori

DEC addi xor sub xori
EXE addi xor sub xori
MEM addi xor sub
WB addi xor
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Pipeline Hazards

• Pipelining tries to overlap the execution of multiple 
instructions, but an instruction may depend on 
something produced by an earlier instruction
– A data value  Data hazard

– The program counter  Control hazard
(branches, jumps, exceptions)
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Resolving Hazards

• Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

• Strategy 2: Bypass (Data hazard). Route data to 
the earlier pipeline stage as soon as it is calculated

• Strategy 3: Speculate (Control hazard)
– Guess a value and continue executing anyway
– When actual value is available, two cases

• Guessed correctly  do nothing
• Guessed incorrectly  kill & restart with correct value
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Resolving Data Hazards by Stalling

• Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

1 2 3 4 5 6 7 8
IF addi xor sub sub sub sub xori

DEC addi xor xor xor xor sub xori
EXE addi NOP NOP NOP xor sub
MEM addi NOP NOP NOP xor
WB addi NOP NOP NOP

x11 updated

Stalls decrease IPC!

Stall

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF
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Stall Logic

• New STALL control signal

• STALL==1
– Freezes PC and IF pipeline
– Injects NOP into EXE stage

• NOP = No-operation

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4IF

DEC

EXE

MEM

WB

STALL

STALL

STALL
NOP
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Resolving Data Hazards by Bypassing

• Strategy 2: Bypass. Route data
to the earlier pipeline stage
as soon as it is calculated

• addi writes to x11 at the end of cycle 5…
but the result is produced during cycle 3,
at the EXE stage!

1 2 3 4 5
IF addi xor sub xori

DEC addi xor sub xori
EXE addi xor sub
MEM addi xor
WB addi

x11 updatedaddi result computed

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF
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Bypass Logic
• Add bypass muxes to 

DEC outputs

• Route EXE, MEM, WB
outputs to mux inputs

• Bypass value if 
destination register of 
instruction matches 
source register of 
instruction in DEC

PC

Instruction
Memory

Decode Register
File

Data
Memory

Execute

Register
File

+4IF

DEC

EXE

MEM

WB

STALL

STALL

STALL
NOP
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Resolving Hazards

• Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

• Strategy 2: Bypass (Data hazard). Route data to 
the earlier pipeline stage as soon as it is calculated

• Strategy 3: Speculate (Control hazard)
– Guess a value and continue executing anyway
– Two cases can happen

• Correct Guess  do nothing 
• Wrong Guess  kill & restart with correct value
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Resolving Control Hazards with 
Speculation
• What’s a good guess

for nextPC?

loop: addi x12, x12, -1
   sub x14, x15, x16
   bne x12, x0, loop
   and x16, x17, x18
   xor x19, x20, x21
   …

PC+4
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for (int i=100; i>=0; i--){ 
  …  
}
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Resolving Control Hazards with 
Speculation
• What’s a good guess

for nextPC?

• Assume nextPC = PC+4

loop: addi x12, x11, -1
   sub x14, x15, x16
   bne x12, x0, loop
   and x16, x17, x18
   xor x19, x20, x21
   …

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor

DEC addi sub bne and xor

EXE addi sub bne and xor

MEM addi sub bne and xor

WB addi sub bne and xor

Start fetching at PC+4 (and) but
bne not resolved yet…

Guessed right(x12==x0)
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Resolving Control Hazards with 
Speculation
• What’s a good guess

for nextPC?

• Assume nextPC = loop

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor addi sub bne and

DEC addi sub bne and NOP addi sub bne

EXE addi sub bne NOP NOP addi sub

MEM addi sub bne NOP NOP addi

WB addi sub bne NOP NOP

Start fetching at PC+4 (and) but
bne not resolved yet …

Guessed wrong, kill and & xor
and restart fetching at loop(addi)

loop: addi x12, x11, -1
   sub x14, x15, x16
   bne x12, x0, loop
   and x16, x17, x18
   xor x19, x20, x21
   …

February 16, 2024 41



Speculation Logic

• When EXE finds a jump 
or taken branch, it 
supplies nextPC and 
sets ANNUL==1
– Annulling instructions 

currently in IF and DEC 
stages

– Writes NOPs in IF/DEC and 
DEC/EXE pipeline registers

– Loads the branch or jump 
target into PC register

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4
IF

DEC

EXE

MEM

WB

NOP

ANNUL

ANNUL

ANNUL

ANNUL

STALL

STALL

STALL
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Summary of solutions to hazards

• Stalling can address all pipeline hazards
– Simple, but hurts IPC

• Bypassing improves IPC on data hazards
• Speculation improves IPC on control hazards

– Speculation works only when it’s easy to make good guesses
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Summary

• Processor state
– Registers (including PC)
– Memory

• Instruction set – means of updating state
– Compute
– Memory access
– Control

• Basic implementation: single-cycle RISC-V processor

• Pipelining boosts throughput, but introduces hazards
– Solutions to hazards: stall, bypass, and speculate
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