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Memory Technologies

Register| 100s of bits 20 ps $$$%
SRAM| ~10 KB-10 1-10 ns $$%
MB
DRAM ~10 GB 80 ns $$
Hard disk ~]1 TB 10 ms $

e Different technologies have vastly different tradeoffs

e Size is a fundamental limit, even setting cost aside:
- Small + low latency, high bandwidth, low energy, or
- Large + high-latency, low bandwidth, high energy

e Can we get best of both worlds? (large, fast, cheap)
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The Memory Hierarchy

Want large, fast, and cheap memory, but...
Large memories are slow
Fast memories are expensive

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

Speed: Fastest Slowest Fast
Capacity: Smallest - Largest Large
Cost: Highest Lowest Cheap
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Memory Hierarchy Interface

10 GB 1 TB
| DRAM SSD

Approach 1: Expose Hierarchy
— All memories are exposed
to Users (Programmers).

— Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy

- Programming model: Single memory, single address space
— Machine stores data in fast or slow memory depending on usage patterns

J ‘ | 10 GB | 1TB
cpu ! ke . -
SRAM DRAM SSD

L1 Cache Main memory

Swap space
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Caches

e Cache: A small memory component in the hierarchy
retains data from recently accessed addrs

Address Address
. Data | Data

)

[
»

A

e Processor requests data accesses. Two options:
— Cache hit: Data for this address in cache, returned quickly

— Cache miss: Data not in cache

e 1. Fetch data from memory to cache (may replace some data)
e 2. Deliver the data to CPU

— Processor must deal with variable memory access time
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Cache Metrics

. i hits
e Hit Ratio: HR=— —=1-MR
hits + misses

e Miss Ratio: amp=_ 5%  _1_mp
hits + misses

e Average Memory Access Time (AMAT):
AMAT = HitTime + MissRatio x MissPenalty

— Goal of caching is to improve AMAT

— Formula can be applied recursively in multi-level hierarchies:

AMAT = HitTime,, + MissRatio,, x AMAT, , =

AMAT = HitTime,, + MissRatio,, x (HitTime, , + MissRatio, , x AMAT,,) = ...

e Key to improve AMAT: Decrease the MissRatio!

— HitTime and MissPenalty is constant
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Typical Memory Reference Patterns

Address n loop iterations

. o o o o ©O o
Instruction o/ o o "°°° o o o
o o o o o
fetches S o
extPC = PC+4 °
Stack push Stack pop

Stack 0 o o o o o o oo
accesses o L %,
° Stack top ©o\oc o o o

o © o o o
o o

Data

daccesses scalar accesses

— —

o o o o o o o o Time
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Why Caches Work

e Two predictable properties of memory accesses:

— Temporal locality: If a location has been accessed recently,
it is likely to be accessed (reused) soon

— Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

e Result:

— High hit rate (low miss ratio)
— Reduced Average Memory Access Time (AMAT):

AMAT = HitTime + MissRatio x MissPenalty
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Typical Memory Reference Patterns

Address n loop iterations

o

(@]
Instruction oot oo e (Temporal Locality)
(@] (@] (@] (@]
fetches S
extPC = PC+4
Stack push
Spatial Localit Stack pop
Stack (Sp ooocy)oooooo
accesses o Stack to %
© P o \o6 o o o
o (Temporal Locality) ° 00 ° o °

Data

accesses ° scalar accesses (Temporal Locality)
Time
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Caches

Address Address
Data | . Data

Memory
32-bit BYTE address

90000000000000000000000011101000

|
[ \
Amount of memory that 00000011
32-bit addr can represent

= 27"32 * 1Byte = 4GB
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Caches

Address Address
Data | ) Data

2KB 4GB

 Cache = Key-Value Store
- Key : Address (32-bit)
- Value : Data (1Byte)

« However, cache is smaller than the main memory
- 2KB = 2048 Byte << 4294967296 Byte
- Multiple addresses can be mapped into cache line.
- You need compare a full address to ensure correctness.
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Direct-Mapped Caches

e Terminology
— Word = 4Byte
— Cacheline

Valid bit Tag (27 bits) Data (32 bits)
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Direct-Mapped Caches

e Each word(4B) in memory maps into a cache line

e Access (for cache with 8 lines):
— Index into cache line with 3-bits (the index bits)
— Read out valid bit, tag, and data(line).
— If valid bit == 1 and tag matches upper address bits, HIT

¢ Example 8-line Valid bit Tag (27 bits) Data (32 bits)
direct-mapped cache:

32-bit BYTE address

000000000000000000000000111p10p0

Tag Index Byte

v
bits bits offset @ L PHIT

bits
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Direct-Mapped Caches

NumCachelLine = 8
BytePerCacheLine = 4
Cache = [BytePerCachelLine]*NumCacheLine

def Load(addr) :

LineAddr = addr/BytePerCachelLine
LineIndex = LineAddr%sNumCachelLine

Line = Cache[LineIndex] Valid bit Tag (27 bItS) Data (32 bItS)

ByteOffset = addr%BytePerCachelLine

return getByte(Line, ByteOffset)
}

32-bit BYTE address

900000000000000000000000111D10p0
Tag Index Byte

v
bits bits offset @ L PHIT

bits
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Example: Direct-Mapped Caches

64-line direct-mapped cache - 64 indices - 6 index bits (26)

Read Mem[0x400C] Valid bit Tag (24 bits) Data (32 bits)
\0100 OOOO, \0000 11,82, 0o |1 0x000058 @XDEADBEEF
N > 1 |1 0x000058 0x00000000
-Irlﬁ‘ [C)-:‘ IIEX' OXOAL% 2 |1 0x000058 0X00000007
BYTE dFFSET' 0x0 3 |1 0x000040 0x42424242
' 4 |e 0X000007 @Xx6FBA2381

HIT, DATA 0x42424242

Would 0x4008 hit? 63 |1 0x000058 OXF7324A32

INDEX: 0x2 — tag mismatch
— MISS

Part of the address (index bits) is encoded in the location

Tag + Index bits unambiguously identify the data’s address
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Block Size

e Take advantage of spatial locality: Store multiple
words per cache line
— Always fetch entire block (multiple words) from memory

Data (32x2 bits) \

Valid bit Tag (24 bits) @ta (32 bits)

0 1 0x000058 OxDEADBEEF OXDEADBEEF OxXDEADBEEF
1 1 0x000058 0Xx00000000 0Xx00000000 0Xx00000000
2 1 0x000058 0x00000007 0x00000007 0x00000007
3 1 0x000040 0x42424242 0x42424242 0x42424242
4 %) 0x000007 Ox6FBA2381 Ox6FBA2381 Ox6FBA2381
63 1 0x000058 OxF7324A32 OxF7324A32 OxF7324A32
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Block Size

e Take advantage of spatial locality: Store multiple words
per cache line

— Always fetch entire block (multiple words) from memory
— Another advantage: Reduces size of tag memory!
— Potential disadvantage: Fewer indices in the cache

e Example: 4-block * 4-words/block direct-mapped cache

Valid bit Tag (26 bits) Data (4 words = 4 * 4bytes)

1 Block = 4|words

32-bit BYTE address | . S —

Tag bits: 26 (=32-6)  1ndex bits: 2 Block offset bits: 2

(4 indices) (4 words/block)
Byte offset bits: 2
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Block Size Tradeoffs

e Larger block sizes...
— Take advantage of spatial locality

— Incur larger miss penalty since it takes longer to transfer the
block from memory

— Can increase the average hit time and miss ratio

e AMAT = HitTime + MissPenalty*MissRatio

Miss Penalty Miss Ratio AMAT

\ A .
Exploits spatial locality Increased miss penalty

and miss rate
/ ~ 64 bytes
Fewer blocks, 1

compromises
temporal locality

Block,Size Block Size Block,Size

February 23, 2024



Block Size Tradeoffs

e Larger block sizes...
— Take advantage of spatial locality

— Incur larger miss penalty since it takes longer to transfer the
block from memory

— Can increase the average hit time and miss ratio

e AMAT = HitTime + MissPenalty*MissRatio

100%
75% A B -
oy I I *
25% - I
0% - . . . . : : . . —— -
&S

& o\ O D & L & e N &N
NI KNG S S SN Yo &
) o @ v N LS %
O Oo & S g <& 0 OQ O((\c} & %&
08 words B 5-7 words B 2-4 words m 1] word c;\@

Figure 1: Number of touched 8B words in a 64B cache line before the line is

evicted. Yoon and Sullivan, “The Dynamic Granularity Memory System” [ISCA,2012]
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Fully-Associative Cache

Opposite extreme: Any address can be in any location
— No cache index!
— Flexible (no conflict misses)

— Expensive: Must compare tags of all entries in parallel to find
matching one

bit Data
% | [ | | | | |
—>@< | [ | | | | |
% | [ | | | | |
—>@< O | | | | |
32-bit BYTE address S Y ; ¥ o
Tag bits ___ Block offset bits

Byte offset bits
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Fully-Associative Cache

® can be in any location

NumCacheLine = 4

BytePerCachelLine = 4%4 . . .
Cache = [BytePerCacheLine]*NumCacheLine entries in parallel to find

Tags = [32-1og2(BytePerCacheLine)]*NumCacheLine

def Load(addr) : a_“d Data
LineIndex = addr/BytePerCachelLine bit
L | | | | |
for tag in Tags: L] | | | | |
if tag == LineIndex : L 1] | | | |
return Cache[LineIndex] ] ] | | | |
return MISS :
} \ 4 \ 4 \ 2 \ 4
{ ) 1 2 3/
B v
Tag bits Block offset bits

Byte offset bits
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N-way Set-Associative Cache

e Use multiple direct-mapped caches in parallel to reduce

conflict misses INCOMING ADDRESS
- Nomenclature: Tag Index
* # Rows = # Sets TagData (TagData \TagData TagData

o # Columns = # Ways

e “set associativity”
(e.g., 4-way - 4 lines/set)

— Each address maps to
only one set, but can be
in any way within the set _

- Tags from all ways é é WAY é é

are checked in parallel \A LA
4 ways

e Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

Question: A N-way associative cache with
(64/N) sets has how many comparators?

A

8 sets

I | — SET
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Associativity Implies Choices

Issue: Replacement Policy

Direct-mapped N-way set-associative Fully associative
address address address
| ]
o N N B
R ——»] | |
—{ oo O00O0
——] | |
e Compare addr e Compare addr with N e« Compare addr with
with only one tag tags simultaneously each tag
simultaneously
e Location A can be e Location A can be e Location A can be
stored in exactly stored in exactly one stored in any cache
one cache line set, but in any of the line

N cache lines
belonging to that set
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Replacement Policies

e Optimal policy: Replace the line that is accessed furthest in the
future
- Requires knowing the future...
e Idea: Predict the future from looking at the past

— If a line has not been used recently, it's often less likely to be
accessed in the near future

e Least Recently Used (LRU): Replace the line that was accessed
furthest in the past

— Works well in practice

— Need to keep ordered list of N items — N! orderings
— O(log,N!) = O(N log,N) “LRU bits” + complex logic

— Caches often implement cheaper approximations of LRU
e Other policies:
— First-In, First-Out (least recently replaced)

— Random: Choose a candidate at random
e Not very good, but has better worst case performance
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Summary: Cache Tradeoffs

AMAT = HitTime + MissRatio x MissPenalty
e Cache size

e Block size

e Associativity

e Replacement policy
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Lab2 Foreshadowing

= = A is stored in
= > row-major order.
Ali,j] Address(i,j)=i*N+j

// Col Major Traversal (j->i order)
for (int j=0; j<1024; j++) {
for (int i=0; 1<1024; i++) {

// Row Major Traversal (i->j order)
for (int i=0; i<1024; i++) {
for (int j=0; j<1024; j++) {

suml += A[i][3j];

sum2 += A[i][j];
}
}
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Fine-grain Multithreading



Resolving Hazards

e Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

e Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

e Strategy 3: Speculate
— Guess a value and continue executing anyway

- When actual value is available, two cases
e Guessed correctly - do nothing
e Guessed incorrectly =2 kill & restart with correct value

e Strategy 4: Find something else to do
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Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 12 13 4 15 16 7 .18 .19

F[(D|X|M|W}
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Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 12 13 4 15 16 7 .18 .19

F[D[X
BEE
F

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

| 1nlolx|=
_-noxzmém
QIXIEI=]
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Fine-grain Multithreaded Pipeline

. J_u XL, _
CC 0 J— 1$ |—|IR|— Register A\ > ‘
1 L\J > VAN File1 , y , 'é' DS | | |
4 “ A > > :
T 1 1
_u "2 Thread W 2 A

select
Have to carry thread select down pipeline to ensure

correct state bits read/written at each pipe stage

e Each thread needs its own user architectural state
— PC, Register Files
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Thank you!
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