6.5930/1
Hardware Architecture for Deep Learning

Computer Architecture Basics

Zoey Song
MIT

Legacy slides adapted from 6.191/6.5900

Memory Technologies

Register| 100s of bits 20 ps $$$%
SRAM| ~10 KB-10 1-10 ns $$%
MB
DRAM ~10 GB 80 ns $$
Hard disk ~]1 TB 10 ms $

e Different technologies have vastly different tradeoffs

e Size is a fundamental limit, even setting cost aside:
- Small + low latency, high bandwidth, low energy, or
- Large + high-latency, low bandwidth, high energy

e Can we get best of both worlds? (large, fast, cheap)

February 23, 2024

The Memory Hierarchy

Want large, fast, and cheap memory, but...
Large memories are slow
Fast memories are expensive

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

Speed: Fastest Slowest Fast
Capacity: Smallest - Largest Large
Cost: Highest Lowest Cheap

February 23, 2024

Memory Hierarchy Interface

10 GB 1 TB
| DRAM SSD

Approach 1: Expose Hierarchy
— All memories are exposed
to Users (Programmers).

— Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy

- Programming model: Single memory, single address space
— Machine stores data in fast or slow memory depending on usage patterns

J ‘ | 10 GB | 1TB
cpu ! ke . -
SRAM DRAM SSD

L1 Cache Main memory

Swap space

February 23, 2024 One single memory

Caches

e Cache: A small memory component in the hierarchy
retains data from recently accessed addrs

Address Address
. Data | Data

)

[
»

A

e Processor requests data accesses. Two options:
— Cache hit: Data for this address in cache, returned quickly

— Cache miss: Data not in cache

e 1. Fetch data from memory to cache (may replace some data)
e 2. Deliver the data to CPU

— Processor must deal with variable memory access time

February 23, 2024

Cache Metrics

. i hits
e Hit Ratio: HR=— —=1-MR
hits + misses

e Miss Ratio: amp=_ 5% _1_mp
hits + misses

e Average Memory Access Time (AMAT):
AMAT = HitTime + MissRatio x MissPenalty

— Goal of caching is to improve AMAT

— Formula can be applied recursively in multi-level hierarchies:

AMAT = HitTime,, + MissRatio,, x AMAT, , =

AMAT = HitTime,, + MissRatio,, x (HitTime, , + MissRatio, , x AMAT,,) = ...

e Key to improve AMAT: Decrease the MissRatio!

— HitTime and MissPenalty is constant

February 23, 2024

Typical Memory Reference Patterns

Address n loop iterations

. o o o o ©O o
Instruction o/ o o "°°° o o o
o o o o o
fetches S o
extPC = PC+4 °
Stack push Stack pop

Stack 0 o o o o o o oo
accesses o L %,
° Stack top ©o\oc o o o

o © o o o
o o

Data

daccesses scalar accesses

— —

o o o o o o o o Time

February 23, 2024

Why Caches Work

e Two predictable properties of memory accesses:

— Temporal locality: If a location has been accessed recently,
it is likely to be accessed (reused) soon

— Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

e Result:

— High hit rate (low miss ratio)
— Reduced Average Memory Access Time (AMAT):

AMAT = HitTime + MissRatio x MissPenalty

February 23, 2024

Typical Memory Reference Patterns

Address n loop iterations

o

(@]
Instruction oot oo e (Temporal Locality)
(@] (@] (@] (@]
fetches S
extPC = PC+4
Stack push
Spatial Localit Stack pop
Stack (Sp ooocy)oooooo
accesses o Stack to %
© P o \o6 o o o
o (Temporal Locality) ° 00 ° o °

Data

accesses ° scalar accesses (Temporal Locality)
Time

February 23, 2024

Caches

Address Address
Data | . Data

Memory
32-bit BYTE address

90000000000000000000000011101000

|
[\
Amount of memory that 00000011
32-bit addr can represent

= 27"32 * 1Byte = 4GB

February 23, 2024

Caches

Address Address
Data |) Data

2KB 4GB

 Cache = Key-Value Store
- Key : Address (32-bit)
- Value : Data (1Byte)

« However, cache is smaller than the main memory
- 2KB = 2048 Byte << 4294967296 Byte
- Multiple addresses can be mapped into cache line.
- You need compare a full address to ensure correctness.

February 23, 2024

Direct-Mapped Caches

e Terminology
— Word = 4Byte
— Cacheline

Valid bit Tag (27 bits) Data (32 bits)

February 23, 2024

Direct-Mapped Caches

e Each word(4B) in memory maps into a cache line

e Access (for cache with 8 lines):
— Index into cache line with 3-bits (the index bits)
— Read out valid bit, tag, and data(line).
— If valid bit == 1 and tag matches upper address bits, HIT

¢ Example 8-line Valid bit Tag (27 bits) Data (32 bits)
direct-mapped cache:

32-bit BYTE address

000000000000000000000000111p10p0

Tag Index Byte

v
bits bits offset @ L PHIT

bits

February 23, 2024

Direct-Mapped Caches

NumCachelLine = 8
BytePerCacheLine = 4
Cache = [BytePerCachelLine]*NumCacheLine

def Load(addr) :

LineAddr = addr/BytePerCachelLine
LineIndex = LineAddr%sNumCachelLine

Line = Cache[LineIndex] Valid bit Tag (27 bItS) Data (32 bItS)

ByteOffset = addr%BytePerCachelLine

return getByte(Line, ByteOffset)
}

32-bit BYTE address

900000000000000000000000111D10p0
Tag Index Byte

v
bits bits offset @ L PHIT

bits

February 23, 2024

Example: Direct-Mapped Caches

64-line direct-mapped cache - 64 indices - 6 index bits (26)

Read Mem[0x400C] Valid bit Tag (24 bits) Data (32 bits)
\0100 OOOO, \0000 11,82, 0o |1 0x000058 @XDEADBEEF
N > 1 |1 0x000058 0x00000000
-Irlﬁ‘ [C)-:‘ IIEX' OXOAL% 2 |1 0x000058 0X00000007
BYTE dFFSET' 0x0 3 |1 0x000040 0x42424242
' 4 |e 0X000007 @Xx6FBA2381

HIT, DATA 0x42424242

Would 0x4008 hit? 63 |1 0x000058 OXF7324A32

INDEX: 0x2 — tag mismatch
— MISS

Part of the address (index bits) is encoded in the location

Tag + Index bits unambiguously identify the data’s address

February 23, 2024

Block Size

e Take advantage of spatial locality: Store multiple
words per cache line
— Always fetch entire block (multiple words) from memory

Data (32x2 bits) \

Valid bit Tag (24 bits) @ta (32 bits)

0 1 0x000058 OxDEADBEEF OXDEADBEEF OxXDEADBEEF
1 1 0x000058 0Xx00000000 0Xx00000000 0Xx00000000
2 1 0x000058 0x00000007 0x00000007 0x00000007
3 1 0x000040 0x42424242 0x42424242 0x42424242
4 %) 0x000007 Ox6FBA2381 Ox6FBA2381 Ox6FBA2381
63 1 0x000058 OxF7324A32 OxF7324A32 OxF7324A32

February 23, 2024

=

Block (2 words) /

Block Size

e Take advantage of spatial locality: Store multiple words
per cache line

— Always fetch entire block (multiple words) from memory
— Another advantage: Reduces size of tag memory!
— Potential disadvantage: Fewer indices in the cache

e Example: 4-block * 4-words/block direct-mapped cache

Valid bit Tag (26 bits) Data (4 words = 4 * 4bytes)

1 Block = 4|words

32-bit BYTE address | . S —

Tag bits: 26 (=32-6) 1ndex bits: 2 Block offset bits: 2

(4 indices) (4 words/block)
Byte offset bits: 2

February 23, 2024

Block Size Tradeoffs

e Larger block sizes...
— Take advantage of spatial locality

— Incur larger miss penalty since it takes longer to transfer the
block from memory

— Can increase the average hit time and miss ratio

e AMAT = HitTime + MissPenalty*MissRatio

Miss Penalty Miss Ratio AMAT

\ A .
Exploits spatial locality Increased miss penalty

and miss rate
/ ~ 64 bytes
Fewer blocks, 1

compromises
temporal locality

Block,Size Block Size Block,Size

February 23, 2024

Block Size Tradeoffs

e Larger block sizes...
— Take advantage of spatial locality

— Incur larger miss penalty since it takes longer to transfer the
block from memory

— Can increase the average hit time and miss ratio

e AMAT = HitTime + MissPenalty*MissRatio

100%
75% A B -
oy I I *
25% - I
0% - : : . . —— -
&S

& o\ O D & L & e N &N
NI KNG S S SN Yo &
) o @ v N LS %
O Oo & S g <& 0 OQ O((\c} & %&
08 words B 5-7 words B 2-4 words m 1] word c;\@

Figure 1: Number of touched 8B words in a 64B cache line before the line is

evicted. Yoon and Sullivan, “The Dynamic Granularity Memory System” [ISCA,2012]

February 23, 2024

Fully-Associative Cache

Opposite extreme: Any address can be in any location
— No cache index!
— Flexible (no conflict misses)

— Expensive: Must compare tags of all entries in parallel to find
matching one

bit Data
% | [| | | | |
—>@< | [| | | | |
% | [| | | | |
—>@< O | | | | |
32-bit BYTE address S Y ; ¥ o
Tag bits ___ Block offset bits

Byte offset bits

February 23, 2024

Fully-Associative Cache

® can be in any location

NumCacheLine = 4

BytePerCachelLine = 4%4 . . .
Cache = [BytePerCacheLine]*NumCacheLine entries in parallel to find

Tags = [32-1og2(BytePerCacheLine)]*NumCacheLine

def Load(addr) : a_“d Data
LineIndex = addr/BytePerCachelLine bit
L | | | | |
for tag in Tags: L] | | | | |
if tag == LineIndex : L 1] | | | |
return Cache[LineIndex]]] | | | |
return MISS :
} \ 4 \ 4 \ 2 \ 4
{) 1 2 3/
B v
Tag bits Block offset bits

Byte offset bits

February 23, 2024

N-way Set-Associative Cache

e Use multiple direct-mapped caches in parallel to reduce

conflict misses INCOMING ADDRESS
- Nomenclature: Tag Index
* # Rows = # Sets TagData (TagData \TagData TagData

o # Columns = # Ways

e “set associativity”
(e.g., 4-way - 4 lines/set)

— Each address maps to
only one set, but can be
in any way within the set _

- Tags from all ways é é WAY é é

are checked in parallel \A LA
4 ways

e Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

Question: A N-way associative cache with
(64/N) sets has how many comparators?

A

8 sets

I | — SET

February 23, 2024

Associativity Implies Choices

Issue: Replacement Policy

Direct-mapped N-way set-associative Fully associative
address address address
|]
o N N B
R ——»] | |
—{ oo O00O0
——] | |
e Compare addr e Compare addr with N e« Compare addr with
with only one tag tags simultaneously each tag
simultaneously
e Location A can be e Location A can be e Location A can be
stored in exactly stored in exactly one stored in any cache
one cache line set, but in any of the line

N cache lines
belonging to that set
February 23, 2024

Replacement Policies

e Optimal policy: Replace the line that is accessed furthest in the
future
- Requires knowing the future...
e Idea: Predict the future from looking at the past

— If a line has not been used recently, it's often less likely to be
accessed in the near future

e Least Recently Used (LRU): Replace the line that was accessed
furthest in the past

— Works well in practice

— Need to keep ordered list of N items — N! orderings
— O(log,N!) = O(N log,N) “LRU bits” + complex logic

— Caches often implement cheaper approximations of LRU
e Other policies:
— First-In, First-Out (least recently replaced)

— Random: Choose a candidate at random
e Not very good, but has better worst case performance

February 23, 2024

Summary: Cache Tradeoffs

AMAT = HitTime + MissRatio x MissPenalty
e Cache size

e Block size

e Associativity

e Replacement policy

February 23, 2024

Lab2 Foreshadowing

= = A is stored in
= > row-major order.
Ali,j] Address(i,j)=i*N+j

// Col Major Traversal (j->i order)
for (int j=0; j<1024; j++) {
for (int i=0; 1<1024; i++) {

// Row Major Traversal (i->j order)
for (int i=0; i<1024; i++) {
for (int j=0; j<1024; j++) {

suml += A[i][3j];

sum2 += A[i][j];
}
}

February 23, 2024

Fine-grain Multithreading

Resolving Hazards

e Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

e Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

e Strategy 3: Speculate
— Guess a value and continue executing anyway

- When actual value is available, two cases
e Guessed correctly - do nothing
e Guessed incorrectly =2 kill & restart with correct value

e Strategy 4: Find something else to do

February 23, 2024

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 12 13 4 15 16 7 .18 .19

F[(D|X|M|W}

February 23, 2024

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 12 13 4 15 16 7 .18 .19

F[D[X
BEE
F

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

| 1nlolx|=
_-noxzmém
QIXIEI=]

February 23, 2024

Fine-grain Multithreaded Pipeline

. J_u XL, _
CC 0 J— 1$ |—|IR|— Register A\ > ‘
1 L\J > VAN File1 , y , 'é' DS | | |
4 “ A > > :
T 1 1
_u "2 Thread W 2 A

select
Have to carry thread select down pipeline to ensure

correct state bits read/written at each pipe stage

e Each thread needs its own user architectural state
— PC, Register Files

February 23, 2024

Thank you!

	Slide Number 1
	Memory Technologies
	The Memory Hierarchy
	Memory Hierarchy Interface
	Caches
	Cache Metrics
	Typical Memory Reference Patterns
	Why Caches Work
	Typical Memory Reference Patterns
	Caches
	Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Example: Direct-Mapped Caches
	Block Size
	Block Size
	Block Size Tradeoffs
	Block Size Tradeoffs
	Fully-Associative Cache
	Fully-Associative Cache
	N-way Set-Associative Cache
	Associativity Implies Choices
	Replacement Policies
	Summary: Cache Tradeoffs
	Lab2 Foreshadowing
	Slide Number 27
	Resolving Hazards
	Multithreading
	Multithreading
	Fine-grain Multithreaded Pipeline
	Slide Number 32

