
Computer Architecture Basics

Zoey Song
MIT

Legacy slides adapted from 6.191/6.5900

6.5930/1
Hardware Architecture for Deep Learning

Memory Technologies

• Different technologies have vastly different tradeoffs
• Size is a fundamental limit, even setting cost aside:

– Small + low latency, high bandwidth, low energy, or
– Large + high-latency, low bandwidth, high energy

• Can we get best of both worlds? (large, fast, cheap)

Capacity Latency Cost/GB
Register 100s of bits 20 ps $$$$

SRAM ~10 KB-10
MB

1-10 ns $$$

DRAM ~10 GB 80 ns $$
Hard disk ~1 TB 10 ms $

February 23, 2024

The Memory Hierarchy

Want large, fast, and cheap memory, but…
Large memories are slow
Fast memories are expensive

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

MemCPU Mem Mem

Speed:
Capacity:

Cost:

Fastest
Smallest
Highest

Slowest
Largest
Lowest

Mem

Fast
Large
Cheap

≈

February 23, 2024

Memory Hierarchy Interface

Approach 1: Expose Hierarchy
– All memories are exposed

to Users (Programmers).

– Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
– Programming model: Single memory, single address space
– Machine stores data in fast or slow memory depending on usage patterns

10 GB
DRAMCPU

10 KB
SRAM

10 MB
SRAM 1 TB

SSD

February 23, 2024

10 GB
DRAM

CPU
100
KB

SRAM

1 TB
SSD

L1 Cache Main memory Swap space

One single memory

Caches

• Cache: A small memory component in the hierarchy
retains data from recently accessed addrs

• Processor requests data accesses. Two options:
– Cache hit: Data for this address in cache, returned quickly
– Cache miss: Data not in cache

• 1. Fetch data from memory to cache (may replace some data)
• 2. Deliver the data to CPU

– Processor must deal with variable memory access time

CPU Cache Main
Memory

Address
Data

Address
Data

February 23, 2024

• Hit Ratio:

• Miss Ratio:

• Average Memory Access Time (AMAT):

– Goal of caching is to improve AMAT
– Formula can be applied recursively in multi-level hierarchies:

• Key to improve AMAT: Decrease the MissRatio!
– HitTime and MissPenalty is constant

Cache Metrics

...)(32211

211

=×+×+=
=×+=

LLLLL

LLL

AMATMissRatioHitTimeMissRatioHitTimeAMAT
AMATMissRatioHitTimeAMAT

AMAT = HitTime + MissRatio × MissPenalty

February 23, 2024

Typical Memory Reference Patterns
Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

Stack push Stack pop

Stack top

scalar accesses

February 23, 2024

NextPC = PC+4

Why Caches Work

• Two predictable properties of memory accesses:
– Temporal locality: If a location has been accessed recently,

it is likely to be accessed (reused) soon

– Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

• Result:
– High hit rate (low miss ratio)
– Reduced Average Memory Access Time (AMAT):

AMAT = HitTime + MissRatio × MissPenalty

February 23, 2024

Typical Memory Reference Patterns
Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

Stack push
(Spatial Locality) Stack pop

Stack top
(Temporal Locality)

scalar accesses (Temporal Locality)

February 23, 2024

NextPC = PC+4

(Temporal Locality)

Caches

February 23, 2024

CPU Cache Main
Memory

Address
Data

Address
Data

00000000000000000000000011101000
32-bit BYTE address

Memory

00000011

1Byte

Amount of memory that
32-bit addr can represent

= 2^32 * 1Byte = 4GB

Caches

February 23, 2024

CPU Cache Main
Memory

Address
Data

Address
Data

4GB2KB

• Cache = Key-Value Store
 - Key : Address (32-bit)
 - Value : Data (1Byte)

• However, cache is smaller than the main memory
 - 2KB = 2048 Byte << 4294967296 Byte
 - Multiple addresses can be mapped into cache line.
 - You need compare a full address to ensure correctness.

Direct-Mapped Caches

• Terminology
– Word = 4Byte
– CacheLine

Tag (27 bits)Valid bit Data (32 bits)
0
1
2
3
4
5
6
7

February 23, 2024

00000000000000000000000011101000

Direct-Mapped Caches

• Each word(4B) in memory maps into a cache line
• Access (for cache with 8 lines):

– Index into cache line with 3-bits (the index bits)
– Read out valid bit, tag, and data(line).
– If valid bit == 1 and tag matches upper address bits, HIT

• Example 8-line
direct-mapped cache:

Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

February 23, 2024

00000000000000000000000011101000

Direct-Mapped Caches

Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

February 23, 2024

Example: Direct-Mapped Caches
64-line direct-mapped cache  64 indices  6 index bits (2^6)

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG: 0x40
INDEX: 0x3
BYTE OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch
 → MISS

February 23, 2024

Block Size
• Take advantage of spatial locality: Store multiple

words per cache line
– Always fetch entire block (multiple words) from memory

February 23, 2024

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Data (32x2 bits)

…

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

…

Block (2 words)

Block Size
• Take advantage of spatial locality: Store multiple words

per cache line
– Always fetch entire block (multiple words) from memory
– Another advantage: Reduces size of tag memory!
– Potential disadvantage: Fewer indices in the cache

• Example: 4-block * 4-words/block direct-mapped cache

Tag (26 bits)Valid bit Data (4 words = 4 * 4bytes)

Index bits: 2
(4 indices)

Tag bits: 26 (=32-6) Block offset bits: 2
(4 words/block)

32-bit BYTE address 0 1 2 3

Byte offset bits: 2
February 23, 2024

1 Block = 4 words

Block Size Tradeoffs
• Larger block sizes…

– Take advantage of spatial locality
– Incur larger miss penalty since it takes longer to transfer the

block from memory
– Can increase the average hit time and miss ratio

• AMAT = HitTime + MissPenalty*MissRatio

Block Size

Miss Penalty AMAT

Block Size

Increased miss penalty
and miss rate

Miss Ratio

Block Size

Exploits spatial locality

Fewer blocks,
compromises
temporal locality

~64 bytes

February 23, 2024

Block Size Tradeoffs
• Larger block sizes…

– Take advantage of spatial locality
– Incur larger miss penalty since it takes longer to transfer the

block from memory
– Can increase the average hit time and miss ratio

• AMAT = HitTime + MissPenalty*MissRatio

Block Size

Miss Penalty AMAT

Block Size

Increased miss pena
and miss rate

Miss Ratio

Block Size

Exploits spatial locality

Fewer blocks,
compromises
temporal locality

~64 bytes

February 23, 2024

Yoon and Sullivan, “The Dynamic Granularity Memory System” [ISCA,2012]

Fully-Associative Cache

Opposite extreme: Any address can be in any location
– No cache index!
– Flexible (no conflict misses)
– Expensive: Must compare tags of all entries in parallel to find

matching one

32-bit BYTE address

=?

=?
=?

=?

Tag bits Block offset bits

Tag Valid
bit Data

…… … … … …

0 1 2 3

Byte offset bits
February 23, 2024

Fully-Associative Cache

Opposite extreme: Any address can be in any location
– No cache index!
– Flexible (no conflict misses)
– Expensive: Must compare tags of all entries in parallel to find

matching one

32-bit BYTE address

=?

=?
=?

=?

Tag bits Block offset bits

Tag Valid
bit Data

…… … … … …

0 1 2 3

Byte offset bits
February 23, 2024

N-way Set-Associative Cache

• Use multiple direct-mapped caches in parallel to reduce
conflict misses
– Nomenclature:

• # Rows = # Sets
• # Columns = # Ways
• “set associativity”

(e.g., 4-way  4 lines/set)
– Each address maps to

only one set, but can be
in any way within the set

– Tags from all ways
are checked in parallel

• Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

TagData TagDataTagData TagData

8
se

ts

4 ways

=? =? =? =?

INCOMING ADDRESS
IndexTag

SET

WAY

February 23, 2024

Question: A N-way associative cache with
(64/N) sets has how many comparators?

Issue: Replacement Policy

Associativity Implies Choices

address

Fully associative

address

Direct-mapped

N
address

N-way set-associative

• Compare addr
with only one tag

• Location A can be
stored in exactly
one cache line

• Compare addr with N
tags simultaneously

• Location A can be
stored in exactly one
set, but in any of the
N cache lines
belonging to that set

• Compare addr with
each tag
simultaneously

• Location A can be
 stored in any cache
line

February 23, 2024

Replacement Policies

•Optimal policy: Replace the line that is accessed furthest in the
future

– Requires knowing the future…
•Idea: Predict the future from looking at the past

– If a line has not been used recently, it’s often less likely to be
accessed in the near future

•Least Recently Used (LRU): Replace the line that was accessed
furthest in the past

– Works well in practice
– Need to keep ordered list of N items → N! orderings

→ O(log2N!) = O(N log2N) “LRU bits” + complex logic
– Caches often implement cheaper approximations of LRU

•Other policies:
– First-In, First-Out (least recently replaced)
– Random: Choose a candidate at random

• Not very good, but has better worst case performance
February 23, 2024

Summary: Cache Tradeoffs

• Cache size

• Block size

• Associativity

• Replacement policy

AMAT = HitTime + MissRatio × MissPenalty

February 23, 2024

Lab2 Foreshadowing

February 23, 2024

A[i,j]

A is stored in
row-major order.

Address(i,j)=i*N+j

Fine-grain Multithreading

Resolving Hazards

• Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

• Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

• Strategy 3: Speculate
– Guess a value and continue executing anyway
– When actual value is available, two cases

• Guessed correctly  do nothing
• Guessed incorrectly  kill & restart with correct value

• Strategy 4: Find something else to do
February 23, 2024

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T1: LW r5, 12(r1)

t9

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Take instructions from different programs

February 23, 2024

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

Take instructions from different programs

February 23, 2024

Fine-grain Multithreaded Pipeline

Have to carry thread select down pipeline to ensure
correct state bits read/written at each pipe stage

+1

2 Thread
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1Register

File1

X

Y

2

D$

February 23, 2024

• Each thread needs its own user architectural state
– PC, Register Files

Thank you!

	Slide Number 1
	Memory Technologies
	The Memory Hierarchy
	Memory Hierarchy Interface
	Caches
	Cache Metrics
	Typical Memory Reference Patterns
	Why Caches Work
	Typical Memory Reference Patterns
	Caches
	Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Example: Direct-Mapped Caches
	Block Size
	Block Size
	Block Size Tradeoffs
	Block Size Tradeoffs
	Fully-Associative Cache
	Fully-Associative Cache
	N-way Set-Associative Cache
	Associativity Implies Choices
	Replacement Policies
	Summary: Cache Tradeoffs
	Lab2 Foreshadowing
	Slide Number 27
	Resolving Hazards
	Multithreading
	Multithreading
	Fine-grain Multithreaded Pipeline
	Slide Number 32

